Using routing protocols for reducing power consumption - a metric-based approach

Shankar Raman, Balaji Venkat*, Gaurav Raina Indian Institute of Technology Madras

Outline

- Motivation
- Power reduction approach
 - Inter-AS,
 - Inter-Area, Intra-Area
- Router power profiles
- Future work
 - Multicast
 - Power reduction trade-off

Power / Internet trends in India

Reported blackouts / brownouts

This site has won the mBillionth Awards 2012 under m-News & Journalism Category. | Compared | Comp

http://powercuts.in

Supply from Grid:

- From 6 to 24 hours
- Thermal power plants

Mobile Internet Penetration

http://ibnlive.in.com/news/mobile-internet-usage-in-india-outstrips-traffic-from-desktops-report/308772-11.html

Mobile Devices

- High penetration
 - 900 Million Subscribers
 - 600 Million unique
- More Video traffic

Future trends

Power Generation

http://mospi.nic.in

2015

Internet

- Video > 50% by 2013
- 9 fold growth
- 53x in 2015 from 2005
- Mobile 28%

Power

- Thermal Power
- Solar (12 hours)
- Wind (Unreliable)

Need:

Protocols that can *automatically re-route to low power consuming devices* during black/brown outs.

Service levels: Audio conference preferable instead of video/audio conference

Motivation: router power variation

Values in Watts

Picture source : EANTC

Full Chassis MX480 3D

Device level power consumption

- Base power to full utilization
 - Approximately 11.6 % change
- Part of areas and autonomous systems (AS)
 - Power variation = Σ power variation in router `i'
- AS have large variation
- •Make use of these variations

Motivation: variation between routers

Power profile showing the power consumption in various modes of operation from power up, idle and 70% and 100% link utilization at 1518-byte frames for the switches under test.

Miercom, September 2010

Proposed techniques

- Metric
 - Consumed power to available bandwidth
 - Consumed power to Multicast Replication Capacity
- Topology
 - BGP strands, OSPF/ISIS Link State Database and the OSPF/ISIS TE Database
- Algorithm
 - Modified BGP Power Sum Algorithm, Constrained Shortest Path first
- Traffic Engineering
 - RSVP TE
- Hierarchical Approach
 - Inter-AS and Intra-AS (Inter-Area and Intra-Area)

Example: Using BGP "the how"

Modified steps in BGP algorithm

```
If PWR metric is in use
   If there is only one AS path choose this path exit;
   If there are many AS paths
      calculate the PWR based shortest path;
      install it in the routing table;
     exit;
Use the BGP algorithm
```

Selective low-power path leak (inter-area)

Simulations

Uniform distribution of PWR

Exponential distribution of PWR

Potential power savings

Not aiming at maximum power savings

Trials = time instants

On average we get power reduction for a given power distribution (in routers, Area, AS)

Router level measurement / profiles

Case 4: Switch over to Available Power / Available Bandwidth

Future work

- Create power profile for areas and AS
 - Cannot be optimal with power points
 - currently used
- Use metrics to drive the power reduction
 - Implement for multicast as well
- Inter-AS
 - Minimize the tradeoffs latency/hops, delay-jitter
 - Research on buffer sizing and queue management
 - Increase accuracy of topology discovery

Thank you

Questions?

Backup

Approach at every level

- Metric
 - Consumed Power to Available Bandwidth
 - Consumed Power to Available Replication capacity
- Building the Power based Topology
 - BGP, OSPF, ISIS
 - Use available routing protocols to exchange power information
- Algorithm
 - CSPF, Modified BGP power summation
- Traffic Engineering
 - RSVP TE

Benefits to Operators

- Power reduction techniques can be under the control of the operator or the device vendor.
 - Method can be chosen by the operator.
- Operators get informed about devices that have high power consumption per gigabit of traffic.
 - Little manual intervention needed.
- Protocols take care of the operational power variation
- Can redirect traffic if running on external power sources
- Power variation during traffic load from base power is not differentiated currently.
- Schemes use the hierarchical routing model of the ISPs

Experimental Setup Quagga Router - Topology

Show ip bgp (routes)

₩ 🖯 🗊 mjsraman@	mjsraman-VirtualBox	-Ubuntu: ~			
*	10.4.1.2	0	0	0 7673800, i	
Total number of p	refixes 7				
bgpd# sh ip bgp					
BGP table version					
Status codes: s s			valid, > best	t, i - internal,	
	IB-failure, S Sta				
Origin codes: i -	IGP, e - EGP, ?	- incomplete			
Network	Next Hop	Metric LocF	rf Weight Pat	th	
*> 1.1.1.1/32	10.5.1.1		. 0	0 7671 7672 7674 767310, 10	
, 100, 100, i					
*	10.4.1.2	0	0	0 7673800, i	
*> 10.1.0.0/16	10.5.1.1	1	0	0 767110, ?	
*	10.4.1.2		0	0 7673 7674 7672800, 100, 1	
0, ?					
*> 10.2.0.0/16	10.5.1.1		0	0 7671 767210, 10, ?	
*	10.4.1.2		0	0 7673 7674800, 100, ?	
*> 10.3.0.0/16	10.5.1.1		0	0 7671 7672 767410, 10, 100	
, ?					
*	10.4.1.2	1	0	0 7673800, ?	
* 10.4.0.0/16	10.4.1.2	1	0	0 7673800, ?	
*>	0.0.0.0	1	32768	0 (null)?	
* 10.5.0.0/16	10.5.1.1	1	22760	0 767110, ?	
* 10 15 1 1/22	0.0.0.0	1	32768	0 (null)?	
*> 10.15.1.1/32	10.5.1.1		0	0 7671 7672 7674 767310, 10	
, 100, 100, i	10.4.1.2	0	0	0 7673800, i	
	10.4.1.2	U	U	0 7073800, t	
Total number of p	sofivos 7				

Traceroute from AS 7675

Hierarchical Approach with Protocols

- AS level topology intra-AS power reduction
 - BGP
 - draft-mjsraman-panet-bgp-power-path-01
 - Without BGP
 - draft-mjsraman-panet-inter-as-psp-01
- Intra-AS
 - Inter-area, Intra-area
 - draft-mjsraman-panet-ospf-power-topo-00
 - draft-mjsraman-panet-intra-as-psp-te-leak-00
- Multicast, ECMP
 - draft-mjsraman-panet-pce-power-mcast-replic-00
 - draft-mjsraman-panet-pim-power-00
 - draft-mjsraman-panet-ecmp-redirect-power-repl-cap-00