Power Aware Networks (PANET): problem statement and requirements

Beichuan Zhang, Junxiao Shi, Jie Dong, Mingui Zhang, Med Boucadair

The Problem

- Increasing energy consumption of network infrastructures
 - More network devices: routers, switches, ...
 - Devices are more power-hungry.
- Impacts
 - Power delivery, Cooling
 - Financial and environmental
 - Limiting system performance and future growth
- In ISPs, IXPs, data centers, enterprises, ...

The Opportunity

- Networks have lots of redundancy
 - Redundant links and nodes
 - Overprovisioned link capacity
 - Load-balancing traffic engineering
- Average link utilization is low but all devices are running at full capacity all the time.
 - High resiliency, low energy efficiency.
- Need a better tradeoff between the two.

Solutions

- More energy-efficient hardware components
- Better energy management mechanisms
 - E.g., Energy Efficient Ethernet (IEEE 802.3az)
 - Allow a link to go Low Power Idle or even deeper sleep.
 - Keep the link alive and remain the same speed.
- At Layer-3
 - Coordinate forwarding workload to give lower layers more chance of saving power network-wide.
 - E.g., aggregate traffic onto fewer links, to save standby power of others.
 - GreenTE web demo: http://greente.65536.cn

GreenTE Web Demo

GreenTE demo

	opining opt (teas tim) (time) (time)									
from \ to	Seattle	New York	Chicago	Atlanta	Washington	Los Angeles	Houston	Kansas City	Salt Lake City	
Seattle		23021	34985	23550	37237	101388	14438	15810	17162	
New York	0		41611	59480	59942	44426	16893	46917	7587	
Chicago	0	77570		58857	647666	47046	25419	212506	109936	
Atlanta	0	107539	14181		66905	150941	39251	17232	4162	
Washington	0	334980	211549	134210		131438	31506	136355	101092	
Los Angeles	24080	46791	132406	15896	37328		20761	15586	51219	
Houston	0	51716	142463	21616	44745	244136		49326	52413	
Kansas City	0	55825	244190	32388	287676	81569	117227		159809	
Salt Lake City	153386	46486	66960	26022	47109	7420	31628	32846		

Seattle -> Atlanta

0%	Seattle-Salt Lake City-Kansas City-Chicago-Atlanta							
0%	Seattle-Los Angeles-Houston-Atlanta							
0%	Seattle-Salt Lake City-Kansas City-Houston-Atlanta							
0%	Seattle-Salt Lake City-Kansas City-Chicago-Washington-Atlanta							
100%	Seattle-Salt Lake City-Kansas City-Chicago-New York-Washington-Atlanta							

Proposed PANET Problem Statement

- Develop power-aware layer-3 mechanisms to improve network energy efficiency.
 - Fully realize lower-layer's energy-saving potential.
 - Satisfy upper-layer's performance requirements.
 - Compatible with other protocols at the same layer.

Scope

- Focus on a single domain.
- What type of networks?

First steps:

- Understand router's power consumption model
- Understand the technology and trends
- Problem statement, framework, low-hanging fruit.

Dependency/Assumption

- Lower layer's energy-saving mechanisms and parameters
 - E.g., wakeup time, shutdown time, transition cost, link alive or not, durability, granularity of power control, etc.
- Power status of network elements.
 - E.g., EMAN.

Requirements

- Maintain network resiliency
 - Node/link failures, congestion, etc.
 - FRR mechanisms?
- Satisfy QoS
 - Delay, jitter, etc.
- Compatible with other protocols.
 - Work properly when only a subset of network elements are in power-saving mode.
- Support operational policies.
- Understand the impacts on network operation and management.

Comments?