
RPKI rsync Download Delay Modeling

Steve Kent and Kotikalapudi Sriram

Email: kent@bbn.com ; ksriram@nist.gov

March 11, 2013

IETF-86 SIDR WG Meeting, Orlando, FL

1

The authors wish to thank David Mandelberg, Andrew Chi, and Rob Austein for

sharing RPKI rsync measurement data. Thanks are also due to Chris Morrow, Doug

Montgomery, Sandy Murphy, and Randy Bush for comments and suggestions.

mailto:kent@bbn.com
mailto:ksriram@nist.gov

Executive Summary

2

• New measured values of rsync speed (ms/object) for the hierarchic-structured

rpki.ripe.net are much lower:

 12 ms/object (BBN) and 17 ms/object (Austein) (see [1][2][3])

 These basic per unit measurements are 52X and 35X lower, respectively, than

what was measured in the past (avg. 628 ms/object) (see [4] for the previous

measurement data; [5] reported an analysis using the data in [4]).

• In the model presented here, the rsync download delays have been estimated for

realistic ranges of # repositories, #RPKI objects, and ms/object measure.

• We have also included parallel fetching by each relying party (RP) from multiple

repositories.

 Parallel fetching lowers the total (system wide) delay to perform rsync. This is a

realistic assumption, and has been implemented and tested (by BBN).

• The effects of session setup overheads have also been included explicitly in the model.

• Based on the results of this modeling, we project global rsync delays, as seen

by each RP doing an incremental fetch, to be in the range of single digit minutes

to tens of minutes.

 Even lower values are possible with additional optimizations to current prototype

and production RPKI systems.

How Many Publication Points

Citation for the (84%,16%) stub, non-stub AS data (measurements by Randy Bush):

See slide 15 in [7].

3

Publication

Points

RIRs 5 5

ASes 43,000

% of ASes with a single allocation source 90%

% of ASes with multiple (2) allocation sources 10%

Avg. # of sources from which an AS has allocations 1.1

% Stub AS 84%

% non-stub AS 16%

Stub Ases 36,120 39,732

Non-stub ASes 6,880 7568

Total # Publication Points 47305

Estimation of # RPKI Objects

4
Origin validation only (i.e., no router certs)

Path validation (i.e., with router certs)

* Note 1: Each non-stub AS pub point carries 6 CA certs (on average) of stub ASes,

and each RIR carries 1514 CA certs (on average) of non-stub ASes, see slide 3.

** Note 2: Router certs: One pair (current + next) per stub AS; 5 pairs per non-stub

AS (non-stubs have 5 zones of trust on average in their AS).

* Note 1

** Note 2

Grand

Total

Stub AS

non-Stub

AS RIR

CA cert 1 7 1515

CRL 1 1 1

Manifest 1 1 1

Ghostbuster Record 1 1 1

ROA 1 1 1

Router certs 2 10 0

Totals (per AS or RIR) 7 21 1,519

Totals (multiply line

above by corresponding

Pub Points):

Without router certs 198,660 83,248 7,593 289,501

With router certs 278,124 158,928 7,593 444,645

Objects per Pub Point

Object type

Frequency of Changes in RPKI Objects

If periodic key rollover is used for

replay protection then router certs

change every 24 hours or so.

Stub AS

non-Stub

AS RIR

CA cert annually annually annually

CRL daily daily daily

Manifest daily daily daily

Ghostbuster

Record annually annually annually
ROA annually annually annually

Router certs

daily or

annually

daily or

annually n/a

Object type

Change frequency

5

Rate of Changes in RPKI Objects when
Router Certs Rollover Annually

365 days per year

Origin validation only

Path validation (router certs rollover annually)

6

These numbers do not

include newly added

pub points, just changes

to existing pub points.

Grand

Total

Changes

(per Day)

Stub AS

non-Stub

AS RIR

CA cert 0.0027 0.0192 4.1496

CRL 1.0000 1.0000 1.0000

Manifest 1.0000 1.0000 1.0000

Ghostbuster Record 0.0027 0.0027 0.0027

ROA 0.0027 0.0027 0.0027

Router certs 0.0055 0.0274 0.0000

Totals (per AS or RIR) 2.0137 2.0521 6.1551

Totals (multiply line

above by corresponding

Pub Points):

Without router certs 79,791 15,323 31 95,144

With router certs 80,008 15,530 31 95,569

Object type

Changes per day at each

Pub Point

Rate of Changes in RPKI Objects when
Router Certs Rollover Daily

365 days per year

Path validation (router certs rollover daily)

7

These numbers do

not include newly

added pub points,

just changes to

existing pub points.

Grand

Total

Changes

(per Day)

Stub AS

non-Stub

AS RIR

CA cert 0.0027 0.0192 4.1496

CRL 1.0000 1.0000 1.0000

Manifest 1.0000 1.0000 1.0000

Ghostbuster Record 0.0027 0.0027 0.0027

ROA 0.0027 0.0027 0.0027

Router certs 2.0000 10.0000 0.0000

Totals (per AS or RIR) 4.0082 12.0247 6.1551

Totals (multiply line

above by corresponding

Pub Points): 159,255 91,003 31 250,288

Object type

Changes per day at each

Pub Point

RPKI Objects Downloaded in
Each of Five Scenarios

8

Scenarios

#Objects

downloade

d per

instance

All objects rsync download (w/o Rtr certs) 289,501

All objects rsync download (with Rtr certs) 444,645

Download changes only at 24-hr polling

intervals (w/o router certs) 95,144

Download changes only at 24-hr polling

intervals (with router certs - rollover annually) 95,569

Download changes only at 24-hr polling

intervals (with router certs - rollover daily) 250,288

Rsync Delay Measurements

• X includes all components of delay: (1) rsync session setup/teardown overheads (negligible
because only 3 sessions are involved), (2) rsync processing plus network delays (propagation, TCP
flow control, etc.).

• The 17.22 ms ms/object measurement is 36X lower than the average 628 ms/object number used
in [5], where it was derived from measurement data with flat repository structure from [4].

9

Measurements for rpki.ripe.net with hierarchic repository structure

1. Austein’s measurements: see slide 24 in [1]; also see slides 6, 10 in [2].; also see slides 10, 11 here.

2. BBN’s measurements: Private communication [3].

Citations:

Measurement (RIPE Heirarchical) BBN's Rob Austein's

R # RPKI Objects 4,898 4,690

X Total time to sync (sec) 59.04 80.78 sec

S = X*1000/R sync time per object (ms/obj) 12.05 17.22 ms

C

rsync session setup/teardown

overhead (sec per session) 1.22 0.5 sec
rsync sessions per visit to a TA

repository 3 3
rsync sessions per visit to a non-TA

repository 1 1

rsync Sessions to Repository
rpki.ripe.net

10

RIPE transitions from Flat to Hierarchic

Repository Structure

Flat Repository

Structure

Hierarchic Repository

Structure

~ 1200

3

#
 r

s
y
n

c
 S

e
s
s
io

n
s
 t
o

 R
e

p
o

s
it
o

ry
 p

e
r

V
is

it

Citation: Austein’s measurements – see slides 6 in [2].

Seconds/Object
rpki.ripe.net

11

RIPE transitions from Flat to Hierarchic

Repository Structure

Flat Repository

Structure

Hierarchic Repository

Structure

~ 800 ms

~ 17 ms

Citation: Austein’s measurements – see slides 10 in [2].

S
e
c
o
n
d
s
 t
o
 t

ra
n
s
fe

r
p
e
r

O
b
je

c
t

(a
v
e
ra

g
e
 p

e
r

s
e
s
s
io

n
)

Measurements with Synthesized RPKI Objects:
ms/Object (w/o Network Delays)

12

• Client and repository running on two virtual machines on the same computer (Intel Core i7 CPU
at 2.2 GHz)

• So no network delays are involved

Source: Measurement data from D. Mandelberg BBN [4].

Total Number of Objects

R
s
y
n
c
 m

s
/o

b
je

c
t

0

0.1

0.2

0.3

0.4

0.5

0 100,000 150,000 200,000 250,000 300,000 50,000

Measurements with Synthesized RPKI Objects:
Measured rsync Delay (with Network Delays)

13

• Client: VM in Boston, MA with two 2.4GHz, 2GB RAM
• Server: Amazon EC2 m1.large instance in Tokyo (two cores, 7.4GB ram)

Source: Measurement data from D. Mandelberg BBN [4].

TCP receive

window scaling

enabled by default

in Linux kernels

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100000 200000 300000 400000 500000 600000 700000

To
ta

l t
im

e
 t

o
 s

yn
c

(s
e

co
n

d
s)

Number of Objects

0% of Objects Changed

20% of Objects Changed

40% of Objects Changed

60% of Objects Changed

80% of Objects Changed

100% of Objects Changed

14

• Client: VM in Boston, MA with two 2.4GHz, 2GB RAM
• Server: Amazon EC2 m1.large instance in Tokyo (two cores, 7.4GB ram)

Source: Measurement data from D. Mandelberg BBN [4].

0

1

2

3

4

5

6

100000 200000 300000 400000 500000 600000 700000

rs
yn

c
ti

m
e

 p
e

r
o

b
je

ct
 (

m
s/

o
b

je
ct

)

Number of Objects

20% of Objects Changed
40% of Objects Changed
60% of Objects Changed
80% of Objects Changed
100% of Objects Changed

Avg. ms/obj

= 2.15 ms

Measurements with Synthesized RPKI Objects:
ms/Object (with Network Delays)

TCP receive

window scaling

enabled by default

in Linux kernels

Other Modeling Parameters
• All stub ASes are expected to

outsource CA/repository operation

• Some of the non-stub ASes will

also outsource

• A fraction of non-stub ASes will

operate CAs/repositories

• Total # non-sub ASes = 6880

• This study varies the # repositories

from 500 to 7000

• RP can run even 20 to 30 rsync

fetch threads simultaneously to

different repositories

• We conservatively assume 5X

speedup due to parallel fetches

15

Repostories:
R = # repositories (range considered) 500 - 7,000

Parallel fetching:
F = # parallel fetches (RP simultaneously

fetching from different repositories) 5

Rsync Download Delay Components

16

See slides 8, 9 and 13 for the values of the

parameters used in our modeling:

We choose C = 1220 ms, conservatively (slide 9).

F = 5 (slide 13).

R is varied from 500 to 7000 (slide 13).

T is varies from 4 ms to 20 ms (see slides 9,15).

N varies based on the download scenario (slide 8).

𝐹 = # parallel fetches from RP to repositories
𝑅 = # repositories
𝐶 = session setup time per visit to repository (ms)
𝑁 = # RPKI objects to be downloaded

𝑇 = measured ms obj 𝐚𝐜𝐭𝐮𝐚𝐥 rsync download time

rsync processing, network:

𝐷𝑟 =
𝑁 ∗ 𝑇

𝐹

Total rsync download delay, in minutes:

𝐷 = (𝐷𝑐 + 𝐷𝑟) 60,000

Connection setup overhead:

𝐷𝑐 =
𝑅 ∗ 𝐶

𝐹
 ms

ms

Assumption: R > F

Future Envisioned Speedup Factors
• We already have measurements of 12 ms/object and 17 ms/object

(including network delays) from BBN and R. Austein (slide 9).

• A significant part of the above ms/object numbers may be the network

delays (between the US and the Netherlands) – inferred from info on

slide 12.

• Hence, with repository mirroring (by RIRs, LIRs, major ISPs) in the future,

the ms/object number may come down significantly.

• Faster processors and parallel processing using multiple cores may also

provide further speedup.

• The next slide considers a range of ms/object values (excluding session

setup/teardown overhead) from 4 ms/obj to 20 ms/obj

• Session setup/teardown delays are included separately in our modeling

as per eqns. on slide 14.

17

Time to sync: Components

18

All objects rsync (with router certs)

0

10

20

30

40

50

60

 500
4 ms

500
20ms

7000
4ms

7000
20ms

D
e

la
y

(m
in

u
te

s)

Session setup overhead

rsync processing, network

Total time to sync

ms/obj

repositories

Effect of Polling Interval Value (1/2)

19

• When the polling interval is reduced, say, from 24 hrs to 16 or 8 hrs,

then the number of changed objects during each visit will be reduced

accordingly by a factor of 2/3 or 1/3, respectively, relative to the

corresponding 24-hr-polling numbers (see Slide 8).

• Hence, for the smaller polling intervals, the rsync processing plus

network-delay part of the Total Time to Sync goes down.

• But the # repositories to be visited remains unchanged.

• So the session overhead part of the Total Time to Sync remains

unchanged and also becomes more dominant (at high # repositories)

• See numerical results on the next slide.

Effect of Polling Interval Value (2/2)

20

ms/obj: T = 20 ms (the high end of the range)

repositories: R = 7000 (the high end of the range)

Note: When #

repositories is large,

the session setup

time is the biggest

component; so the

variations for

different polling

intervals are not too

pronounced.

But here they are

pronounced but

doesn’t matter

because the delay

numbers here are

generally much

smaller.

ms/obj: T = 20 ms (the high end of the range)

repositories: R = 500 (the low end of the range)

Polling

interval

(hours)

Download changes

only at polling

intervals (w/o

router certs)

Download changes only

at polling intervals

(with router certs -

rollover annually)

Download changes only

at polling intervals (with

router certs - rollover

daily)

8 30.63 30.64 34.08

16 32.74 32.76 39.64

24 34.86 34.88 45.20

objects 95,144 95,569 250,288

Total time to sync (minutes)

Polling

interval

(hours)

Download changes

only at polling

intervals (w/o

router certs)

Download changes only

at polling intervals

(with router certs -

rollover annually)

Download changes only

at polling intervals (with

router certs - rollover

daily)

8 4.15 4.16 7.60

16 6.27 6.28 13.16

24 8.38 8.41 18.72

objects 95,144 95,569 250,288

Total time to sync (minutes)

21

Different Estimates of # RPKI Objects

• Other estimates [5][8] of # RPKI objects are large primarily due the

assumption that there will be 1 Million BGPSEC routers worldwide and

each will have its distinct pair of router certs (keys)!

• The key assumption in [5][8] is that each BGPSEC router will have a

distinct router key. But it is unlikely; instead each non-stub AS will have a

few security zones and router keys will likely be shared within each zone.

• Anyway, we vary the # RPKI objects up to 3,000,000 (see next slide)

Estimated Total

RPKI Objects

This Effort 444,645

Eric Osterweil et al. [5] 2,651,000

Tim Bruijnzeels et al. [8] 3,000,000

22

Total Time to Sync: Vary # RPKI Objects

• This is download time for rsync’ing ALL objects

0.00

0.50

1.00

1.50

2.00

2.50
Ti

m
e

 (
H

o
u

rs
)

RPKI Objects rsync'ed

rsync session setup

rsync processing, network

Total time to sync

ms/obj = 12.05 ms (BBN) # Repositories = 7000

Conclusions

23

• New measured values of rsync speed (ms/object) for the hierarchic-

structured rpki.ripe.net are much lower:

 12 ms/object (BBN) and 17 ms/object (Austein) (see [1][2][3])

 These basic per unit measurements are 52X and 35X lower, respectively,

than what was measured in the past (avg. 628 ms/object) (see [4][5]).

• Global rsync download delays have been estimated for realistic ranges of #

repositories, # RPKI objects, and ms/object measure.

• The effects of session setup overheads and parallel fetching have been

included explicitly in the model.

• Based on the results of this modeling, we project global rsync delays, as seen

by each RP doing an incremental fetch, to be in the range of single digit

minutes to tens of minutes.

• Even lower values are possible with additional optimizations to current

prototype and production RPKI systems.

Backup material

24

Total Time to Sync: Vary ms/obj

25

Keep # repositories fixed: R = 7000 (the high end of the range)

Rsync

delay

parameter

(ms/obj)

All object

rsync

download

(w/o Rtr certs)

All object

rsync

download

(with Rtr

certs)

Download changes

only at 24-hr

polling intervals

(w/o router certs)

Download changes only

at 24-hr polling

intervals (with router

certs - rollover

annually)

Download changes only

at 24-hr polling intervals

(with router certs -

rollover daily)

4 32.37 34.44 29.78 29.79 31.85

6 34.30 37.41 30.42 30.42 33.52

8 36.23 40.37 31.05 31.06 35.19

10 38.16 43.33 31.68 31.70 36.86

12 40.09 46.30 32.32 32.34 38.52

14 42.02 49.26 32.95 32.97 40.19

16 43.95 52.23 33.59 33.61 41.86

18 45.88 55.19 34.22 34.25 43.53

20 47.81 58.16 34.86 34.88 45.20

objects 289,501 444,645 95,144 95,569 250,288

Total time to sync (minutes)

Total Time to Sync: Vary ms/obj

26

Keep # repositories fixed: R = 500 (the low end of the range)

Rsync

delay

parameter

(ms/obj)

All object

rsync

download

(w/o Rtr certs)

All object

rsync

download

(with Rtr

certs)

Download changes

only at 24-hr

polling intervals

(w/o router certs)

Download changes only

at 24-hr polling

intervals (with router

certs - rollover

annually)

Download changes only

at 24-hr polling intervals

(with router certs -

rollover daily)

4 5.90 7.97 3.31 3.31 5.37

6 7.83 10.93 3.94 3.95 7.04

8 9.76 13.89 4.57 4.59 8.71

10 11.69 16.86 5.21 5.22 10.38

12 13.62 19.82 5.84 5.86 12.05

14 15.55 22.79 6.48 6.50 13.72

16 17.48 25.75 7.11 7.13 15.39

18 19.41 28.72 7.75 7.77 17.05

20 21.34 31.68 8.38 8.41 18.72

objects 289,501 444,645 95,144 95,569 250,288

Total time to sync (minutes)

Total Time to Sync: Vary # Repositories

27

Keep ms/obj fixed: T = 20 ms (the high end of the range)

repositories

All object

rsync

download

(w/o Rtr certs)

All object

rsync

download

(with Rtr

certs)

Download changes

only at 24-hr

polling intervals

(w/o router certs)

Download changes only

at 24-hr polling

intervals (with router

certs - rollover

annually)

Download changes only

at 24-hr polling intervals

(with router certs -

rollover daily)

500 21.34 31.68 8.38 8.41 18.72

1000 23.37 33.72 10.42 10.44 20.76

1500 25.41 35.75 12.45 12.48 22.80

2000 27.45 37.79 14.49 14.52 24.83

2500 29.48 39.83 16.53 16.55 26.87

3000 31.52 41.86 18.56 18.59 28.91

3500 33.56 43.90 20.60 20.63 30.94

4000 35.59 45.94 22.64 22.66 32.98

4500 37.63 47.97 24.67 24.70 35.02

5000 39.67 50.01 26.71 26.74 37.05

5500 41.70 52.05 28.75 28.77 39.09

6000 43.74 54.08 30.78 30.81 41.13

6500 45.78 56.12 32.82 32.85 43.16

7000 47.81 58.16 34.86 34.88 45.20

objects 289,501 444,645 95,144 95,569 250,288

Total time to sync (minutes)

Total Time to Sync: Vary # Repositories

28

Keep ms/obj fixed: T = 4 ms (the low end of the range)

repositories

All object

rsync

download

(w/o Rtr certs)

All object

rsync

download

(with Rtr

certs)

Download changes

only at 24-hr

polling intervals

(w/o router certs)

Download changes only

at 24-hr polling

intervals (with router

certs - rollover

annually)

Download changes only

at 24-hr polling intervals

(with router certs -

rollover daily)

500 5.90 7.97 3.31 3.31 5.37

1000 7.93 10.00 5.34 5.35 7.41

1500 9.97 12.04 7.38 7.38 9.45

2000 12.01 14.08 9.42 9.42 11.48

2500 14.04 16.11 11.45 11.46 13.52

3000 16.08 18.15 13.49 13.49 15.56

3500 18.12 20.19 15.53 15.53 17.59

4000 20.15 22.22 17.56 17.57 19.63

4500 22.19 24.26 19.60 19.60 21.67

5000 24.23 26.30 21.64 21.64 23.70

5500 26.26 28.33 23.67 23.68 25.74

6000 28.30 30.37 25.71 25.71 27.78

6500 30.34 32.41 27.75 27.75 29.81

7000 32.37 34.44 29.78 29.79 31.85

objects 289,501 444,645 95,144 95,569 250,288

Total time to sync (minutes)

References

29

1. R. Austein, R. Bush, and M. Elkins, “A few months in the life of an RPKI validator,” Presentation
slides, January 2013. (See measurement data on slide 24 corresponding to the hierarchical
repository structure at rpki.ripe.net) http://www.hactrn.net/opaque/a-few-months-in-the-life-of-
an-rpki-validator-2013-01-05.pdf

2. R. Austein, R. Bush, and M. Elkins, “RIPE goes hierarchical,” Presentation slides, January 2013. (See
slides 6 and 10.) http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf

3. A. Chi and D. Mandelberg (BBN), Private communication, February 2013.

4. R. Bush, “Measuring RPKI repositories,” NANOG-56, October 2012.
http://www.nanog.org/meetings/nanog56/presentations/Monday/mon.general.bush.26.pdf

5. E. Osterweil, T. Manderson, and R. White, “Sizing Estimates for a Fully Deployed RPKI,” Verisign
Labs Technical Report #1120005 version 2, December 2012. http://techreports.verisignlabs.com/tr-
lookup.cgi?trid=1120005&rev=2

6. A. Chi, “Update on RPKI validator testing,” IETF 85, November 2012.
http://www.ietf.org/proceedings/85/slides/slides-85-sidr-11.pdf

7. K. Sriram and Randy Bush, “Estimating CPU Cost of BGPSEC on a Router,” Presented at the RIPE 63,
October 2011, (see slide 15), http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf

8. T. Bruijnzeels, O. Muravskiy, and B. Weber, “RPKI Repository Analysis and Requirements,” IETF
Draft, February 2012, http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/

http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/opaque/a-few-months-in-the-life-of-an-rpki-validator-2013-01-05.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.nanog.org/meetings/nanog56/presentations/Monday/mon.general.bush.26.pdf
http://www.nanog.org/meetings/nanog56/presentations/Monday/mon.general.bush.26.pdf
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://ripe63.ripe.net/presentations/127-111102.ripe-crypto-cost.pdf
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/
http://datatracker.ietf.org/doc/draft-tbruijnzeels-sidr-repo-analysis/

