Port set Type: Contiguous vs. Non-Contiguous

http://tools.ietf.org/html/draft-ietf-softwire-map-04 http://tools.ietf.org/html/draft-sun-dhc-port-set-option-00

Qi Sun

2013.3 Orlando

Motivation for port sharing

- IPv4 exhaustion
 - Several nodes share one IPv4 address by assigning non-overlapped port sets to each node
 - Providing IPv4 service without IPv4 routing on the provider IPv6 network
- Port set: Is contiguous port-set sufficient or do we need non-contiguous port-sets?

Back in Beijing Interim Meeting

From Ole's slides

From Med's slides

Mainly focus on statelessly mapping IPv4 address and port into IPv6 prefix

Comparison Points

- Security
- Preservation of Well-Known Ports
- Complexity
- Backwards Compatibility with uPnP IGD:1

Contiguous / Non-Contiguous Port Sets

- Contiguous: A single port range per-client
- Non-Contiguous: Multiple port ranges distributed evenly across port space per-client
- Bit Presentation
 - Contiguous:

+-----+
| port set prefix | port number suffix |
+-----+
|<-----k bits----->|<----(16-k) bits----->|

– Non-Contiguous:

Option format

GMA

0										1										2										3	
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+	+	+	+	+	+	+	+	+	+	+	+-+		-	+	 -	+	 -	 -	+	+		+		+	+	+	+	+			+-+
OPTION MAP PORTPARAMS						option-length																									
+	+	+	+	+	+	- +	+_ -		+	+	+-+			+		+			+	+				+	+	+	+	+			+-÷
	rs	sv		0:	ffs	set	t	1	csv	7	1	PS:	D-	-16	en							PS	SII)							
+	+	+	+	+	+	+	 -		+	+	+-+			+	-	+			+	+		+		+	+	+	+	+			+-+

Security

- Limited port range reduces port entropy -> it could be simpler for an attacker to guess ports
 - Source port randomization
- Ratio of address sharing increases -> the next port easier to predict
 - irrespective of whether it is contiguous or not
- Contiguous
 - Single port range: Predictable if allocation policy is known
- Non-Contiguous
 - Algorithmic port-set allocation: Predictable if allocation policy is known

Preserving Well-Known Ports

Contiguous

- Don't assign PSIDs falling within the WKP range
- WKPs only available for the first few PSIDs

Non-Contiguous

- a-bits (A > 0)
- PSID can be arbitrary, so that ISPs won't be required to exclude some of prefixes (as PSID is part of MAP IPv6 prefix)
- WKPs only available for the first few PSIDs

Complexity

Contiguous

- Simple for CPE, Tunnel Concentrator, provisioning system, logging system, etc.
- 'Human readable' format makes it easier to troubleshoot without tools

Non-Contiguous

- Brings complexity to all devices CPE, server and clients (DHCP based)
- Necessitates the use of tools to calculate allocated port ranges, complicating troubleshooting, logging, etc.
- Could be hard to debug

Backward Compatibility to uPnP

- Mainly about IGD:1
 - No external port negotiation
 - Fail if external port unavailable
- Testing shows neither have good compatibility
- Probability for IGD:1 to work normally is the same for both port-set algorithms

Summary

	Contiguous Port-set	Non-Contiguous Port-set					
Security	Predictable	Predictable					
	Sharing ratio increases -> Easier to predict (RFC[605]						
Cost to Preserve WKP	Not allocate first few	a-bit in port number (A > 0)					
	PSIDs	(PSID can be arbitrary)					
Complexity	Low	High					
Compatibility with IGD:1	Not Good	Not Good					

- Non-contiguous port-sets offer little security with greater complexity.
- Conclusion: a simple contiguous port range, plus port randomization on the client side is preferable

For the WG

- Is contiguous port-set enough?
- Conclusion?