More Accurate ECN Problem Statement and Requirements

Mirja Kühlewind
Richard Scheffenegger

Problem statement

- Explicit Congestion Notification (ECN)
 - Allows marking packets instead of dropping
 - TCP provides only one bit of feedback per RTT
 - TCP defines three header bits for ECN

- New IP (Conex), TCP (DCTCP) mechanisms need more granular ECN feedback

- Current TCP ECN feedback falls short on providing necessary fidelity
Document status

- Adopted as a TCPM WG Item at IETF85
- Draft is partially incomplete
- requires input from community
 - Omissions?
- Basis for discussion of possible mechanisms and signaling schemes
Requirements

- Resilience
- Timely feedback
- Integrity
- Accuracy
- Complexity
Current ECN Feedback concept

- Can be regarded as two 1-bit counters for CE, ECT(1)
- CE Counter does not overflow
- ECT(1) Counter does overflow
- Receiver signals current value of counters to Sender
- Sender transmits an explicit “Reset”/”ACK” for CE counter

➡ Reliable feedback of one bit per RTT
Design Approaches

- Naïve, overflowing counters
- Counter-with-reset
- Signal each counter value explicitly
- Multiple counter values mapped to same signal
- Deliver signals for the two counters independently
- Deliver signals for the two counters alternatively
Initial ECN feedback studies

- A naïve implementation, based on counters that overflow, requires much more than 3 bits to meet all criteria.
- Required for both CE and ECT(1) counters.
- Fewer bits possible with separate signaling of each counter.
Possible Encoding options

- Reuse of (ECE,CWR,NS) TCP header bits
 - Capability negotiation in TCP 3WHS
 - Use of codepoints for more dense encoding
 - State engine, sending of additional pure ACKs

- Reuse (New use) of other TCP header bits
 - Unused TCP Flag bits
 - TCP ID field
 - TCP URG Pointer (when URG not set)

- TCP Option
 - In addition to existing feedback scheme
Thank you
Backup
One Bit Feedback

- Send one ECE for each CE received (shift state of previous ECE to CWR)
- Use delayed ACK only if state of CE doesn’t change

Issues:
 - ACK Loss may result in complete loss of congestion information.
 - Increased number of ACKs (higher network load)
Three Bit Counter

- Combine TCP header bits to send least significant bits of CE counter in every ACK

- Issues:
 - Higher resiliency against ACK loss
 - ECN Nonce not possible
Three Bit Codepoint

- Combine TCP header bits to a codepoint field
- Signal CE and ECT(1) counter in next ACK when value changes

Issues:
- Fewer bits for counters to mitigate against ACK loss
- ECN Nonce can be supported
- Future extensions possible by reserving one codepoint
TCP Option

- Negotiated in 3WHS
- Much more signaling bits (ie. ECT(0), ECT(1), CE, non-ECT, lost packets, and potential to account for bytes instead if packets).
- Complementary to current TCP header bits

Issues:
 - Higher overhead,
 - Minor deployability issues
 - Potentially more complexity to gather values
Additional TCP Flags

- In combination with previously mentioned schemes

- Issues:
 - Major deployability issues (technical and administrative)
 - Only up to 3 bits available
Re-use of TCP Fields (URG Pointer)

- In combination with previously mentioned schemes

- Issues:
 - Potential deployability issues (technical and administrative)
 - Enough signaling bits to address all requirements
 - Future extentsions.