draft-dukkipati-tcppm-tcp-loss-probe-01

N. Dukkipati, N. Cardwell, Y. Cheng, M. Mathis

TCPM WG @IETF 86, 12 March 2013.
Tail loss probe (TLP) recap

Problem
 Timeout recovery is 10-100x longer than fast recovery.
 Tail drops in short transactions are very common.
 70% of losses on Google services recovered via timeouts.

Goal
 Reduce tail latency of short Web transactions.

Approach
 Convert RTOs to fast recovery.
 Retransmit the last packet in 2 RTTs to trigger FR.

Impact
 Reduced RTO events by 15%.
 Reduced HTTP response time 6% on average, 10% at tail (99%).
 0.48% overhead in TLP probes.
TLP example
Changes between -00 and -01

New section on FACK threshold based recovery.

Experiment results with TLP loss detection algorithm.

Scheduling PTO at min(PTO, RTO).

Several minor edits:
 Why is PTO 2.RTT (and not RTT, 3.RTT...)?
 TCP Loss Probe -> Tail Loss Probe.
 Use of one probe (versus multiple probes) per tail loss episode.
 Decision against 1-byte retransmission.
 Referenced Rescue retransmission.
 Relation to RTO-restart.
FACK threshold based recovery

SND.FACK is the highest sequence number known to have been received plus one.*

Threshold based recovery algorithm:

\[
\text{If } (\text{SND.FACK} - \text{SND.UNA}) > \text{dupack threshold}: \\
\quad \rightarrow \text{Invoke Fast Retransmit and Fast Recovery.}
\]

A very effective algorithm for invoking loss recovery. In Linux as the default since 1998.

Detecting TLP repaired losses

Problem:
Must invoke congestion control if TLP repairs loss and the only loss is last segment.

Approach: Count duplicate ACKs for TLP retransmissions.
 TLP episode: N consecutive TLP segments for same tail loss.
 End of TLP episode: ACK above SND.NXT.
 Expect to receive N TLP dupacks before episode ends.
 No loss: sender receives N TLP dupacks.
 Loss: sender recvs <N TLP dupacks.
 On detecting loss, reduce cwnd and ssthresh as in fast recovery.
Loss detection example

Client

Server

cwnd == 10

2.RTT

loss probe: 10

TLPHighRxt = 10

ACK: 10

TLPHighRxt remains 10

ACK: 11

Recd. no dupack

cwnd = 7

TLPHighRxt = 0
Loss detection experiment results

Loss detection algorithm found ~33% of TLP retransmissions repaired a loss.

Latency with loss detection is slightly better than without.

Single byte probe is not very useful in practice.
When is a TLP sent?

\[PTO = 2 \times SRTT \]

\[\text{if } (\text{FlightSize} == 1) \]
\[PTO = \max(PTO, 1.5 \times SRTT + WC\text{DelAckT}) \]

\[PTO = \max(PTO, 10\text{ms}) \]

\[PTO = \min(RTO, PTO) \]

RTO is rearmed to "now + RTO" at the time of sending a TLP.
WG adoption

Work in progress.
 Sent upstream to Linux.
 Submitted a research paper.

Key: TCP should have a mechanism to deal directly with tail losses.

TLP is a simple, practical, easily-deployable scheme:
 Trades a small amount of bandwidth for latency.
 Keeps RTO conservative to reduce spurious timeouts and cwnd reductions (e.g., mobile).
 Works with other features like RTO-restart, F-RTO, cwnd undo, limited transmit, early retransmit, better RTO estimation.

Ready to be adopted as WG item.