LLCPS

draft-urien-tls-lhcp-01.txt

Pascal Urien
Pascal.Urien@Telecom-ParisTech.fr

IETF 86, Orlando, FL, USA
March 15th 2013
What is NFC?

• Near Field Communication (NFC)
• A proximity communication protocol (a few centimeters) using the 13,56Mhz frequency
 – Works with electromagnetic field coupling ranging from 1 to 10 A/M
 – Data throughput from 106 To 848 kbps
 – According to Google one million of NFC enable smartphones are sold every week. 100 millions of NFC chips were manufactured by NXP last year
 – Main markets: payment, access control, transport.
• Two working modes
 – Reader/Writer and Card Emulation. A device named "Reader" feeds another device called "Card", thanks to a 13,56 MHz electromagnetic field coupling. This mode is typically used with contactless smartcards or with NFC RFIDs.
 – Peer To Peer (P2P). Two devices, the "Initiator" and the "Target" establish a NFC communication link. In the "Active" mode these two nodes are managing their own energy resources. In the "Passive" mode the Initiator powers the Target via a 13,56 MHz electromagnetic field coupling.
• This draft focuses on the P2P mode security
 – No security features today
 – The basic idea is to reuse TLS
NFC Modes

13,56 MHz

Reader

M

1A/m to 10 A/m

1-10 centimeters

Reader/Writer - Card

13,56 MHz

Card

Initiator

M

1A/m to 10 A/m

1-10 centimeters

Peer To Peer

Target
NFCIP-1

• The NFCIP-1 layer is usually running in a microcontroller chip that drives the NFC radio. An NFC session occurs in four logical steps.
 – 1) **Initialization and Anti-collision**, the Initiator periodically probes the presence of a Target.
 – 2) **Activation and Parameters Selection**, once a Target has been detected a set of parameters are notified or negotiated; in particular LLCP services are selected.
 – 3) **Data Exchange**, frames are exchanged via the Data Exchange Protocol (DEP); the Initiator sends (DEP) requests acknowledged by Target responses; the packets size ranges from 64 to 256 bytes; **DEP provides error recovery mechanisms, so upper layers such as LLCP, exchange error free packets**.
 – 4) **De-Activation**, the initiator can release the NFC session at any time, via Release-Request/Response messages.
LLCP - Logical Link Control Protocol

• The LLCP Protocol looks like a light version of the IEEE 802.2 LLC standard.
 – But LLCP works over DEP, which is error free
• LLCP packets include a mandatory two bytes header comprising the DSAP (Destination Service Access Point, 6 bits), the SSAP (Source Service Access Point, 6 bits) and the PTYPE (4 bits) indicating the class of the PDU (Protocol Data Unit).
• LLCP services are identified by a fix SAP or a service name
• LLCP supports two transport modes
 – Connected mode
 • INFORMATION PDUs are acknowledged by RR (Receiver Ready) PDUs
 – Non connected mode
 • Unumbered Information (UI) PDUs are not formerly acknowledged
Example of SNEP service secure by TLS

SNEP: Simple NDEF Exchange Protocol
SNEP Put Packet

10 SNEP Version
02 Put
00 00 00 0E Payload Length

NDEF Record :
(NFC Text Record Type Definition)

D1: 1 1 0 1 0 001
01: Type Length
0A: Payload Length
54: Type= ‘T’, Text
02: ID= UTF8
65 6E: “EN”
53 61 6D 70 6C 65 20: "Sample "

Legacy NFC P2P stack

This draft
SN= com.ietf.tls.x (x=snepl)
LLCPS: TLS over LLCP

- Two transport modes
 - Connected
 - Works with a service name such as "com.ietl.tls.x". A service name (like "com.ietf.tls.snep") easily identifies the P2P application transported by TLS
 - INFORMATION PDU are formerly acknowledged by RR PDU
 - Non Connected
 - Works with a well known SAP value (to be defined)
 - One SAP per P2P application transported by TLS
 - UI (Unnumbered Information) PDU are implicitly acknowledged by SYMM PDU

- TLS packets are segmented in a set of INFORMATION or UI PDUs
LLCPS configuration

• Two classes of NFC nodes
 – Initiator / Target

• Two roles
 – Server / Client

• For some classes of applications Initiator/Server and Target/Client could be a natural choice

• But other configurations (Initiator/Client, Target/Server) are possible for usual P2P applications
LLCPS PDUs

- LLCPS deals with eight PTYPEs:
 - **CONNECT** (connection to the "com.ietf.tls.x" service),
 - **CC** (Connection Confirm),
 - **DISC** (Disconnect),
 - **DM** (Disconnected Mode),
 - **INFORMATION** (TLS messages, connected mode),
 - **UI** (Unnumbered Information),
 - **RR** (Receiver Reader), i.e. the acknowledgment of an INFORMATION PDU)
 - **SYMM** (Symmetry) that indicates an inactivity over LLCP and avoids timeout at the DEP level.
Five processes

• Each LLCPS entity manages **five exclusive processes**.

• Each process manages a set of LLCP PDUs.

 — The Connection Process (CP)

 • accept() / connect()

 — The Disconnection Process (DP)

 • close(), optional

 — The Sending Process (SP)

 • send(), manages the segmentation of TLS messages in LLCP packets.

 — The Receiving Process (RP)

 • recv(), manages a reception buffer and the reassembly of LLCP packet in TLS messages.

 — The Inactivity Process (IP)

 • SYMM PDU are generated/echoed in order to avoid a LLCP timeout.
Example of Initiator/Server Target/Client LLCPS exchanges Connected Mode
Example of Initiator/Server Target/Client LLCPS exchanges

Non-connected Mode
Conclusion

LLCPS is it a possible working item for the TLS WG?