LLCPS draft-urien-tls-llcp-01.txt

Pascal Urien
Pascal.Urien@Telecom-ParisTech.fr

IETF 86, Orlando, FL, USA March 15th 2013

What is NFC?

- Near Field Communication (NFC)
- A proximity communication protocol (a few centimeters) using the 13,56Mhz frequency
 - Works with electromagnetic field coupling ranging from 1 to 10 A/M
 - Data throughput from 106 To 848 kbps
 - According to Google one million of NFC enable smartphones are sold every week. 100 millions of NFC chips were manufactured by NXP last year
 - Main markets: payment, access control, transport.
- Two working modes
 - Reader/Writer and Card Emulation. A device named "Reader" feeds another device called "Card", thanks to a 13,56 MHz electromagnetic field coupling. This mode is typically used with contactless smartcards or with NFC RFIDs.
 - Peer To Peer (P2P). Two devices, the "Initiator" and the "Target" establish a NFC communication link. In the "Active" mode these two nodes are managing their own energy resources. In the "Passive" mode the Initiator powers the Target via a 13,56 MHz electromagnetic field coupling.
- This draft focuses on the P2P mode security
 - No security features today
 - The basic idea is to reuse TLS

NFC Modes

1-10 centimeters

Reader/Writer - Card

Peer To Peer

NFCIP-1

- The NFCIP-1 layer is usually running in a microcontroller chip that drives the NFC radio. An NFC session occurs in four logical steps.
 - 1) Initialization and Anti-collision, the Initiator periodically probes the presence of a Target.
 - 2) Activation and Parameters Selection, once a Target has been detected a set of parameters are notified or negotiated; in particular LLCP services are selected.
 - 3) Data Exchange, frames are exchanged via the Data Exchange Protocol (DEP); the Initiator sends (DEP) requests acknowledged by Target responses; the packets size ranges from 64 to 256 bytes; DEP provides error recovery mechanisms, so upper layers such as LLCP, exchange error free packets.
 - 4) De-Activation, the initiator can release the NFC session at any time, via Release-Request/Response messages.

LLCP - Logical Link Control Protocol

- The LLCP Protocol looks like a light version of the IEEE 802.2 LLC standard.
 - But LLCP works over DEP, which is error free
- LLCP packets include a mandatory two bytes header comprising the DSAP (Destination Service Access Point, 6 bits), the SSAP (Source Service Access Point, 6 bits) and the PTYPE (4 bits) indicating the class of the PDU (Protocol Data Unit).
- LLCP services are identified by a fix SAP or a service name
- LLCP supports two transport modes
 - Connected mode
 - INFORMATION PDUs are acknowledged by RR (Receiver Ready) PDUs
 - Non connected mode
 - Unumbered Information (UI) PDUs are not formerly acknowledged

Example of SNEP service secure by TLS

LLCPS: TLS over LLCP

- Two transport modes
 - Connected
 - Works with a service name such as "com.ietl.tls.x". A service name (like "com.ietf.tls.snep") easily identifies the P2P application transported by TLS
 - INFORMATION PDU are formerly acknowledged by RR PDU
 - Non Connected
 - Works with a well known SAP value (to be defined)
 - One SAP per P2P application transported by TLS
 - UI (Unnumbered Information) PDU are implicitly acknowledged by SYMM PDU
- TLS packets are segmented in a set of INFORMATION or UI PDUs

LLCPS configuration

- Two classes of NFC nodes
 - Initiator / Target
- Two roles
 - Server / Client
- For some classes of applications Initiator/Server and Target/Client could be a natural choice
- But other configurations (Initiator/Client, Target/ Server) are possible for usual P2P applications

LLCPS PDUs

- LLCPS deals with eight PTYPEs:
 - CONNECT (connection to the "com.ietf.tls.x" service),
 - CC (Connection Confirm),
 - DISC (Disconnect),
 - DM (Disconnected Mode),
 - INFORMATION (TLS messages, connected mode),
 - UI (Unnumbered Information),
 - RR (Receiver Reader), i.e. the acknowledgment of an INFORMATION PDU)
 - SYMM (Symmetry) that indicates an inactivity over LLCP and avoids timeout at the DEP level.

Five processes

- Each LLCPS entity manages five exclusive processes.
- Each process manages a set of LLCP PDUs.
 - The Connection Process (CP)
 - accept() / connect()
 - The Disconnection Process (DP)
 - close(), optional
 - The Sending Process (SP)
 - send(), manages the segmentation of TLS messages in LLCP packets.
 - The Receiving Process (RP)
 - recv(), manages a reception buffer and the reassembly of LLCP packet in TLS messages.
 - The Inactivity Process (IP)
 - SYMM PDU are generated/echoed in order to avoid a LLCP timeout.

Example of Initiator/Server Target/Client LLCPS exchanges

Connected Mode

Example of Initiator, Server Target/Client LLCPS exchanges

Non-connected Mode

Conclusion

LLCPS is it a possible working item for the TLS WG?