SCTP Tutorial

Randall Stewart (randall@lakerest.net)
Michael Tuxen (tuexen@fh-muenster.de)



Outline

Overview

Services provided by SCTP
Deployment considerations
Current developments



Timeline of Transport Protocols

UDP (RFC 768, August 1980)

TCP (RFC 793, September 1981)
SCTP (RFC 2960, October 2000)
UDP-Lite (RFC 3828, July 2004)
DCCP (RFC 4340, March 2006)
MP-TCP (RFC 6824, January 2013)



Timeline of SCTP RFCs

* Core Protocol
— Initial Base Specification (RFC 2960, October 2000)
— Checksum Change (RFC 3309, September 2002)
— Errata and Issues (RFC 4460, April 2006)
— Updated Base Specification (RFC 4960, September 2007)
* Protocol Extensions
— Partial Reliability (RFC 3758, May 2004)
— Chunk Authentication (RFC 4895, August 2007)
— Address Reconfiguration (RFC 5061, September 2007)
— Stream Reconfiguration (RFC 6525, February 2012)
* API
— Socket API (RFC 6458, December 2011)



Protocol Overview

Connection oriented (SCTP association)
Supports unicast
Same port number concept as other transport protocols

Message oriented

— Supports arbitrary large messages (fragmentation and
reassembly)

— Supports bundling of multiple small messages in one SCTP
packet

— Flexible ordering and reliability
Supports multihoming using IPv4 and IPv6

Packet consists of a common header followed by chunks
Extendable



Association Setup

Four way handshake
Resistance against “SYN flooding”

Negotiates

— Initial number of streams
— Initial set of IP addresses
— Supported extensions

User messages can already be transmitted on the
third leg (after one RTT i.e. same as TCP)

Handles the case of both sides initiating the
association.



Data Transfer

TCP friendly congestion control

User messages are put into DATA chunks (possibly multiple
in case of fragmentation)

Each DATA chunk is identified by a Transmission Sequence
Number (TSN)
Acknowledgements (SACKs) reporting

— Cumulative TSN

— Gaps (up to approximately 300 in a sack)

— Duplicate TSNs

Retransmissions

— Based on timer

— Based on gap reports



Association Teardown

* Graceful shutdown
— Teardown without message loss.
— Based on an exchange of three messages.
— Supervised by timer
— No half close state is allowed
* Non-graceful shutdown
— Possibly message loss

— Uses a single message



Service: Preservation of Message
Boundaries

Most application protocols are message based

Simplifies application protocols and its
implementation

Awareness of message boundaries makes
optimal handling at the transport layer /
application layer boundary possible

But special attention is needed for supporting
arbitrary large messages



Service: Partial Reliability

Allows to avoid spending resources on user
messages not being relevant anymore for the
receiver.

The sender can abandon user messages base on
criteria called PR-SCTP policy

PR-SCTP policies are implemented on the sender
side and does not require negotiation.

Examples of PR-SCTP policies:

— Lifetime

— Number of retransmissions

— Priority with respect to buffering



Service: Partial Ordering

An SCTP association provides up to 2216 uni-
directional streams in each direction.

The application is free to send a message on a stream
of its choice.

Minimizes head of line blocking, because message
ordering is only preserved within each stream.

In addition, messages can be marked for unordered
delivery.

The stream reconfiguration extension (RFC 6525)
allows to

— Add streams during the lifetime of an association

— Reset streams (i.e. start over at stream sequence 0)



Service: Network Fault Tolerance

Each end-point can have multiple IP-addresses
Each path is continuously supervised

Primary path is used for initial transmission of user
data

In case of a failure, another (working) address is used
The Address Reconfiguration extension (RFC 5061)
allows

— Add and delete IP-addresses during the lifetime of an
association

— Select the local and remote primary path
Currently being specified: loadsharing



Security

* SCTP over IPSec
— Specified in RFC 3554, July 2003
— Multihoming improvements for IPSec
— Not implemented (as far as the authors know)

* TLS over SCTP
— Specified in RFC 3436, December 2002
— Doesn’t provide all services (no PR-SCTP, only ordered delivery)

— Doesn’t scale well and can’t be implemented directly in
OpenSSL, however can be build as part of the application

* DTLS over SCTP
— Specified in RFC 6083, September 2010
— Provides almost all services provided by SCTP and its extensions
— Implemented in OpenSSL 1.0.1



Usage

SIGTRAN: Telephony sighaling networks
RSerPool

Diameter

PFIX

-orces

RTCWeb




RTCWeb

* Transport layer for data channels

* Encapsulated in DTLS running on top of UDP
using ICE/STUN/TURN for NAT traversal

e Usage of
— multiple streams
— ordered / unordered delivery
— partial reliability
— stream reconfiguration



Implementations

Provided by OS vendor for
— FreeBSD
— Linux
— Solaris
The FreeBSD has been ported to support
— Mac OS X as a network kernel extension (NKE)
— Windows as a kernel driver

— Windows, Linux, FreeBSD, MacOS X as a userland stack
(included in Firefox)

Commercial implementations for various operating systems

Implementations are interoperable as shown in nine
interoperability tests.



Socket API (RFC 6458)

Two programming models:

— One to one Style API

— One to many Style API
Several socket options allowing fine-tuning of parameters
Notifications (events that happen on the transport connection)
Additional cmsgs for sendmsg()/recvmsg()
Additional functions for

— supporting multiple IP addresses per end-point

— sending and receiving user messages

— Transition of sockets between programming models

Mostly supported by FreeBSD, Linux and Solaris allowing users to
write portable programs



NAT Traversal

* Legacy NATs:

— UDP encapsulation, allows UDP port numbers to be
modified by middle-boxes

— Requires support in the SCTP end-hosts
— Doesn’t require special support in the middle-boxes

e SCTP aware NATSs:

— SCTP port numbers are not modified by middle-boxes

— Requires support from the middle-boxes and the end-
hosts, however no communication between middle-
boxes is required



Ongoing SCTP-related Work in TSVWG

 UDP tunneling (in IESG discussion)

* SCTP aware NATs

* ECN support

* Interleaving of user messages

* Loadsharing

e Optimizations (sack immediately and others)



Conclusion

* SCTP provides a variety of flexible services
— Network fault tolerance
— Partial reliability
— Partial ordering

* Interoperable implementations are available
 Middleboxes need to be taken into account



