Session Continuation

Phillip Hallam-Baker
Nico Williams



Existing Work

* Problem Statement and Requirements

— draft-williams-websec-session-continue-prob

* One or more proposed solutions
— draft-hallambaker-httpintegrity
— draft-williams-websec-session-continue-proto
— draft-hammer-oauth-v2-mac-token



Three Types of Authentication:

* Registration
— Decide she is ‘Alice’ give her a token / password
— [Out of Scope]

* Presentation [HTML / SAML / OAUTH / ... ]

— Alice proves she has a token
— Give her another token
— [Out of WEBSEC scope — See HTTP-AUTH]

 Continuation [Cookies]
— Re-authenticate without representing credentials




TLS is not the (full) answer

* TLS Client Authentication is rarely viable
— Works very well when it works
— Requires client certs

* Only some traffic moves over TLS
* TLS is not designed to meet threat model

— Protect bearer tokens from chosen plaintexts
generated by Turing complete engine controlled
by the attacker. (Aww come on!)



Problems

* HTTP Cookies are bearer tokens
— Present cookie to gain access
— Brittle security
— Cached by intermediaries under Rule 81

— Remain in shared machines
— Relies on TLS in unsafe ways (CRIME, BEAST)

* No session closure

— Cookies typically cached for 2 weeks!



Alternative

* Registration, Presentation as before

e Standard for session continuation

— MAC Based (like Digest, maybe Digest 2.0)
* Use big (128+ bit keys) for security
* Client never passes key en-clair

— Standard mechanism for replay attack prevention
— Standard session log out
— TLS channel binding (if using TLS)



Presentation Implications

* SAML, OpenlD, OAUTH, ...

— Simplifies design

— Purpose designed capability for function
e HTTP-Auth

— Take out of design consideration

* Cookie replacement
— Need mechanism to pass key en-clair to client



Cookie Implications:

e 2 types of cookie

— Server session state stored on client
* Use encryption and authentication

— Bearer token authentication
 Should GO AWAY

 Won'’t (quickly)



Use Cases

* Web Browsing

— Has to support legacy
* Must accept a downgrade attack

— User interface concerns
 Web Services
— Can mandate particular mechanism

— May not have a ‘user’



Requirements

* Permit determination that specified party

— Sent a message
* Cookies

— Sent this message
e Content binding

— Sent this message to me
* Replay attack
* Man in the Middle Attack
e TLS Channel binding



Content Binding

* Scope
— None

* Just like cookies do today

— Request / Response line (Method, URI)

e Often the most important

— Headers
* Here be dragons

— Message Body

* Ignore transport encoding (e.g. chunked)



Replay Attack

* Bound to issue time
— Only prevents replay outside time window
— Does not require local state
— Requires trustworthy clock

* Challenge-Response nonce
— Proves message was sent to me
— Requires local state to reject duplicates.



TLS Binding

e HTTP and TLS frequently have different extent
— TLS accelerator gateway
— MITM Proxy

* TLS Binding allows HTTP endpoints to tell

— Specify credentials



Realization

e Use Authorization / WWW-Authenticate

— Headers exist
— Wrong names

e Use New Header

— Avoids confusion with legacy
— Requires new headers

 Bike shed discussion



Next Steps

e Do we want to address this?

e What features do we not need?
— How do we decide?



