BGP Path Marking
draft-bgp-path-marking-00

Abstract

The potential advertisement of non-best paths by a BGP speaker supporting the add-path or the best-external extensions makes it difficult for other BGP speakers to identify the paths that have been selected as best by those who advertise them. This information is required for proper operation of some applications. Towards that end, this document proposes marking the paths using extended communities that encode the path type.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 12, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

When there are multiple paths for a given address prefix, BGP chooses one of the paths as the "best-path" according to the best-path selection rules prescribed in [RFC4271] and installs the best-path in its forwarding table. Classically, each BGP speaker advertises only
the best-path to its peers. So when a BGP speaker receives a path from one of its peers, it is assured that the path is used by the peer for forwarding and all other peers have received the same path from this peer. This leads to consistent routing in a BGP network.

The classical advertisement rule of sending only the best-path does not convey the full routing state of a destination present on a BGP speaker to its peers.

- In order to improve link bandwidth utilization, most BGP implementations choose additional paths, that satisfy certain conditions, as "multi-path", and install them in the forwarding table. Incoming packets for that destination are load-balanced across the best-path and the multi-path(s). I.e., there may be paths installed in the forwarding table that are not advertised to the peers.

- When an Autonomous System (AS) deploys a route-reflector ([RFC4456]) instead of using full IBGP mesh, the BGP speakers receive only the route reflector’s best-path and therefore lose information about the best-paths of other IBGP peers.

- If an IBGP path is chosen as the best-path by a non-route-reflector BGP speaker, then the best-path is not sent to its IBGP peers. Thus the IBGP peers learn nothing from this BGP speaker even though it might have other EBGP paths for that destination.

- Even when a BGP speaker selects an EBGP path as the best-path and advertises it to its peers, it may have additional EBGP paths for the destination. Should those paths be advertised a priori, they could be used by the peers in the event of loss of reachability of the best-path resulting in faster convergence.

There are extensions to the classical BGP advertisement rule to provide additional information about the routing state of a destination. A BGP speaker supporting the best-external [I-D.ietf-idr-best-external] extension sends its best external path to its IBGP peers when the best-path is an IBGP path. A BGP speaker supporting the add-path [I-D.ietf-idr-add-paths] extension advertises multiple paths for a given address prefix.

With best-external or add-path extensions in use, when a BGP speaker receives a path from a peer, that path may not be the best-path, or it may not be installed in the peer’s forwarding table. In some scenarios, knowledge of the path type - i.e., whether the path is the best-path, or whether the path is installed in the forwarding table - is essential.
For instance, in a typical dual-homed VPN in primary-backup configuration, the backup path is created by advertising the best-external path from the backup PE with worse LOCAL_PREF. However, when the customer adds a site in another AS, the LOCAL_PREF information does not reach that site. As a result, data traffic coming from that site may incorrectly be forwarded over the backup link instead of the primary link.

Similarly when an add-path enabled peer receives multiple paths from a peer, it does not know which one among those paths is the best-path and which ones are installed in the forwarding table. An exogenous monitoring system, e.g., would require that information to properly tweak the policies on the router to effect desired forwarding optimization.

This draft proposes marking the advertised paths by an extended community, called Path Type community, that encodes the path type. The path type provides the necessary information to the BGP speakers about how the path is used by the sender when add-path or best-external extensions are in use.

2. The BGP Path Type Community

The BGP Path Type Community is an IPv4 Address Extended Community ([RFC4360]) defined as follows:

Type Field:

The value of the high-order octet of the extended Type Field is 0x01, which indicates that it is transitive. The value of low-order octet of the extended type field for this community is TBD.

Value Field:

The Value field contains two sub-fields, described below:

+---------------------+
| Router-ID (4 octet) |
+---------------------+
| Path type (2 octet) |
+---------------------+

The Router-ID field contains the BGP identifier of the BGP speaker that adds the Path Type community to a path.
The Path type field contains a bitfield where each bit encodes a specific role of the path. Multiple bits may be set when a path is used in multiple roles.

<table>
<thead>
<tr>
<th>Value</th>
<th>Path type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>Unknown</td>
</tr>
<tr>
<td>0x0001</td>
<td>Best-path</td>
</tr>
<tr>
<td>0x0002</td>
<td>Best-external path</td>
</tr>
<tr>
<td>0x0004</td>
<td>Multi-path</td>
</tr>
<tr>
<td>0x0008</td>
<td>Backup path</td>
</tr>
<tr>
<td>0x0010</td>
<td>Uninstalled path</td>
</tr>
<tr>
<td>0x0020</td>
<td>Unreachable path</td>
</tr>
</tbody>
</table>

Table 1: Path Type Values

The best-path is defined in [RFC4271] and the best-external path is defined in [I-D.ietf-idr-best-external].

A multi-path is not the best-path but installed in the forwarding table and used for forwarding packets. We use the convention that the best-path is not considered a multi-path.

A backup path is installed in the forwarding table, but it is not used for forwarding until all multipath(s) and the best-path become unreachable. Backup paths are used for fast convergence in the event of failures.

All other reachable paths are marked as 'Uninstalled'.

Lastly, all paths that are considered unreachable are marked as 'Unreachable'. Unreachable paths may be sent only in special cases (such as to a monitoring application).

3. Rules

- A BGP speaker MAY add the Path Type community to an originated path.

- When a BGP speaker receives a path from a peer and propagates it without changing the NEXT_HOP to self:
 * If the path contained a Path Type community, it MUST be retained in the propagated path.
If the path did not contain a Path Type community, the speaker **MAY** add a Path Type community with 'Unknown' value.

- When a path received from a peer is propagated after changing the NEXT_HOP to self:
 - If the path did not contain a Path Type community, the Path Type community indicating the path role **MAY** be added.
 - If the path contained a Path Type community:
 - If data traffic entering the router for the given destination may be forwarded over other paths (e.g., for doing load balancing), then the existing Path Type community **MUST** be removed. The BGP speaker **MAY** add its own Path Type community.
 - If data traffic entering the router for the given destination is forwarded only along the given path, then the existing Path Type community **MAY** be retained.

In all cases, when a BGP speaker adds its own Path Type community, it sets its own router-id in the community. Note that BGP router-id need not be unique across ASes.

The above rule-set prevents a route reflector from modifying the Path Type community set by its client (unless the route reflector is changing the NEXT_HOP to self).

When a peer is capable of sending only one path for a given address prefix and it sends the path without any Path Type community, the path **MAY** be considered as the best-path of the peer. In all other cases, a path without any Path Type community **SHOULD** be considered to have an 'Unknown' Path type.

A local policy might modify the above rules. For instance, if a monitoring application peers with a BGP speaker with add-path capability for the sole purpose of learning its paths and their types, then the speaker may always add its own Path Type community when it advertises the paths to that peer even if it does not change the NEXT_HOP to self. Such overriding policies should be used with caution if the advertised paths may impact forwarding decisions in the network.

4. Operational Considerations

If a speaker receives a path with a Path Type community with an invalid combination of bits (e.g., both 'Multi-path' and 'Backup')
bits are set), the path MUST NOT be considered invalid. Such error cases SHOULD be logged through other means.

An implementation SHOULD provide a configurable option for the user to indicate whether a path should be readvertised when its type is changed. If the user does not configure the option, the BGP speaker MUST NOT readvertise a path just to update its Path Type community (e.g., when a path type changes from ‘Multi-path’ to ‘Uninstalled’ due to a change in IGP metric).

An implementation SHOULD provide a configurable option for removing Path Type communities from paths that are advertised to untrusted peers.

An implementation SHOULD mark all paths for a given address prefix consistently. If one of the paths is marked, then all other paths SHOULD be marked.

An implementation MAY modify its best-path selection algorithm to take path type information into account. For instance, paths with type ‘Best-path’ MAY be preferred over paths of other types. Similarly, paths of type ‘Best-external’ MAY be considered ineligible for being a multipath.

5. Applications

In this section, we illustrate some applications that benefit from the Path Type community proposed in this draft.

5.1. Avoiding suboptimal routing in Inter-AS VPN

Figure 1: Inter-AS VPN scenario

Figure 1 depicts an L3VPN network that spans two ASes: AS1 and AS2. The ASes may be connected using either Option-B or Option-C
techniques [RFC4364]. A customer site with equipment CE1 is dual-homed in AS1, connected to PE1 and PE2. For prefix A/B, the customer prefers to use the link between CE1 and PE1. This routing preference is expressed by setting the LOCAL_PREF of the prefix advertised by PE1 to a higher value than that of the prefix advertised by PE2. This causes PE2 to use PE1’s route as the best-path and its own EBGP path becomes the best-external path. PE2 is configured to advertise its best-external path. Therefore, both PEs continue to advertise their own EBGP path. The provider uses unique route-distinguishers for its VPNs. So PE1 and PE2 advertises different VPN prefixes: (RD1)A/B and (RD2)A/B. Both these prefixes are advertised to PE3 in AS2. PE3 imports both paths to its own VPN with route-distinguisher RD3.

Existing behavior:

Since LOCAL_PREF is not sent across AS boundary, both paths on PE3 have the default LOCAL_PREF of 100. As a result the best-path selection on PE3 may boil down to tie breaking steps and the path towards PE2, which is the best-external path, may be chosen. Alternately, the path from PE2 may be chosen as the multipath and may be used for load-balancing. Therefore, some or all data traffic entering PE3 would reach CE1 via PE2, which is not what the customer desired.

Behavior with Path Type Community:

When PE2 advertises its path, it adds the best-external Path Type community. This community is preserved across AS boundary. If option C is used, then RR1 or RR2 does not change the NEXT_HOP and hence the community is preserved according to the rule-set (Section 3). If option B is used, then the community reaches AR1 since RR1 does not change the NEXT_HOP. At AR1, (RD2)A/B has only one path and forwarding traffic entering AR1 from AR2 for this destination (determined by the outer label) would use this path. Therefore, AR1 retains the Path Type community set by PE2. The same applies to AR2. So at PE3, the path to PE2 has the best-external Path Type community and therefore PE3 can choose to not use this path for forwarding.

If the best-path algorithm takes the Path Type community values into account, it eliminates the need for setting LOCAL_PREF to deprefer the best-external path even within a single AS. This simplifies the network design and management.

Instead of using Path Type communities, it is possible to use policies on the border routers (AR1 and AR2 for option B, or RR1 and
RR2 for option C) to recreate the LOCAL_PREF in AS2 (e.g., by matching on the RD and the prefix). However, the recreated LOCAL_PREF may interfere with the local policies set in AS2 (e.g., if there are other paths in AS2 for A/B that the customer wants to use as secondary paths). In addition, such policies are error-prone and complex to manage, especially when the customer is allowed to change the primary/backup relationships between PE1 and PE2 on its own. The standardized mechanism of Path Type community is free from such drawbacks.

5.2. Monitoring applications

A modern Service Provider (SP) network may contain thousands of BGP routers. For planning, proper engineering and operation of a backbone, it is a good practice to continuously monitor the routers’ states and perhaps keep a history. Many Network Management Systems (NMS) establish IBGP sessions with BGP speakers to collect the paths the speaker has. When the speaker supports add-path (or best-external), the NMS receives non-best-paths. There are also monitoring protocols such as BMP [I-D.ietf-grow-bmp] that similarly receives all paths from a speaker.

When an NMS receives multiple paths for a destination, it is important for its operation to know which path is the best-path, which paths are installed in forwarding table, which path is used as a backup, etc. The NMS system may run the best-path algorithm on those paths on its own. However, its information, especially on IGP metric, local policies, etc., may be incomplete and hence its own calculations may not match that of the router’s. It is also noted that even if the NMS system collected additional information to run the best-path algorithm from the point-of-view of the router, it would have to do so for every router in the network, which would impose a very high computational burden on the NMS.

When Path Type community is in use, the router provides the required information directly, thus avoiding computational load on the NMS as well as potential discrepancies between the point-of-view of the router and that of the NMS.

5.3. SDN applications

Similar to the monitoring applications, a "Software Defined Networking" application monitors the routing state and based on it, may change the policies on the router, or inject additional paths, to influence the forwarding. When a BGP speaker supports Path Type communities and add-path, an SDN application can simply peer with the router to receive its routing state in real-time even if the router does not provide vendor-specific APIs for doing the same.
5.4. Selective Best-path

When the classical BGP advertisement rule is followed, all paths a BGP speaker considers for best-path are already installed in the forwarding table of the peer. However, when add-path, or best-external extensions are used, that no longer holds. If the BGP speakers support the Path Type communities, then the classical behavior can be reinstated by considering only those paths in the best-path algorithm that are marked as best-path or multi-path. Detailed discussions on the rules and benefits of such an approach are outside the scope of this draft.

6. IANA Considerations

Section 2 defines an IPv4 Address specific transitive extended community called the Path Type extended community. IANA is requested to assign a sub-type value for the Path Type extended community. The last 2 bytes of the value field of the Path Type extended community contains a bitfield that encodes the type of the advertised path. IANA is expected to maintain a registry for these bits. Section 2 defines 6 of those bits. The rest of the bits are to be assigned by IANA using the "IETF Consensus" policy defined in [RFC2434].

7. Security Considerations

This document introduces no new security concerns to BGP or other specifications referenced in this document.

8. Contributors

Adam Simpson
Alcatel-Lucent
600 March Road
Ottawa, Ontario K2K 2E6
Canada
Email: adam.simpson@alcatel-lucent.com

Roberto Fragassi
Alcatel-Lucent
600 Mountain Avenue
Murray Hill, New Jersey
USA
Email: roberto.fragassi@alcatel-lucent.com

9. Acknowledgments

We would like to thank Bruno Decraene for his feedback on this work.

[Page 10]
10. References

10.1. Normative References

10.2. Informative References

Authors’ Addresses
Pradosh Mohapatra
Cumulus Networks
140 C. Whisman Rd.
Mountain View, CA 94041
USA

Email: pmohapat@cumulusnetworks.com
Distribution of MPLS Traffic Engineering (TE) LSP State using BGP
draft-dong-idr-te-lsp-distribution-03

Abstract

This document describes a mechanism to collect the Traffic
Engineering (TE) LSP information using BGP. Such information can be
used by external components for path reoptimization, service
placement and network visualization.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 16, 2014.
1. Introduction

In some network environments, the states of established Multi-Protocol Label Switching (MPLS) Traffic Engineering (TE) Label Switched Paths (LSPs) in the network are required by some components external to the network domain. Usually this information is directly maintained by the ingress Label Edge Routers (LERs) of the MPLS TE LSPs.

One example of using the LSP information is stateful Path Computation Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide benefits in path reoptimization. While some extensions are proposed in Path Computation Element Communication Protocol (PCEP) for the Path Computation Clients (PCCs) to report the LSP states to the PCE, this mechanism may not be applicable in a management-based PCE architecture as specified in section 5.5 of [RFC4655]. As illustrated in the figure below, the PCC is not an LSR in the routing domain, thus the head-end nodes of the TE-LSP may not implement the PCEP protocol. In this case some general mechanism to collect the TE-LSP states from the ingress LERs is needed. This document
proposes an LSP state collection mechanism complementary to the mechanism defined in [I-D.ietf-pce-stateful-pce].

![Figure 1. Management-Based PCE Usage](image.png)

In networks with composite PCE nodes as specified in section 5.1 of [RFC4655], the PCE is implemented on several routers in the network, and the PCCs in the network can use the mechanism described in [I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE nodes. An external component may further need to collect the LSP information from all the PCEs in the network to get a global view of the LSP states in the network.

In some networks, a centralized controller is used for service placement. Obtaining the TE LSP state information is quite important for making appropriate service placement decisions with the purpose of both meeting the application’s requirements and utilizing the network resource efficiently.

The Network Management System (NMS) may need to provide global visibility of the TE LSPs in the network as part of the network visualization function.

BGP has been extended to distribute link-state and traffic engineering information and share with some external components [I-D.ietf-idr-ls-distribution]. Using the same protocol to collect other network layer information would be desired by the external components, which avoids introducing multiple protocols for network
information collection. This document describes a mechanism to
distribute the TE LSP information to external components using BGP.

2. Carrying LSP State Information in BGP

2.1. LSP Identifier Information

The TE LSP Identifier information is advertised in BGP UPDATE
messages using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes
[RFC4760]. The "Link State NLRI" defined in
[I-D.ietf-idr-ls-distribution] is extended to carry the TE LSP
Identifier information. BGP speakers that wish to exchange TE LSP
information MUST use the BGP Multiprotocol Extensions Capability Code
(1) to advertise the corresponding (AFI, SAFI) pair, as specified in
[RFC4760].

The format of "Link State NLRI" is defined in
[I-D.ietf-idr-ls-distribution]. Two new "NLRI Type" are defined for
TE LSP Identifier Information as following:

- NLRI Type = 5: IPv4 TE LSP NLRI
- NLRI Type = 6: IPv6 TE LSP NLRI

The IPv4 TE LSP NLRI (NLRI Type = 5) is shown in the following
figure:

```
+-----------------------------------------------+
| Protocol-ID                                  |
| +-----------------------------------------------+
| Identifier (64 bits)                          |
| +-----------------------------------------------+
| IPv4 Tunnel Sender Address                    |
| +-----------------------------------------------+
| Tunnel ID | LSP ID                                      |
| +-----------------------------------------------+
| IPv4 Tunnel End-point Address                 |
| +-----------------------------------------------+
| +-----------------------------------------------+
```

Figure 2. IPv4 TE LSP NLRI

The IPv6 TE LSP NLRI (NLRI Type = 6) is shown in the following
figure:
For IPv4 TE LSP NLRI and IPv6 TE LSP NLRI, the Protocol-ID field is set to 6, which indicates that the NLRI information has been sourced by RSVP-TE.

The Identifier field is used to discriminate between instances with different LSP technology - e.g. one identifier can identify the instance for packet path, and another one is to identify the instance of optical path.

The other fields in the IPv4 TE LSP NLRI and IPv6 TE LSP NLRI are the same as specified in [RFC3209].

2.2. LSP State Information

The LSP State TLV is used to describe the characteristics of the TE LSPs, which is carried in the optional non-transitive BGP Attribute "LINK_STATE Attribute" defined in [I-D.ietf-idr-ls-distribution].
The "Value" field of the LSP State TLV corresponds to the format and semantics of a set of objects defined in [RFC3209], [RFC3473] and [RFC5440] for TE LSPs. Rather than replicating all RSVP-TE related objects in this document the semantics and encodings of existing RSVP-TE objects are re-used. Hence all RSVP-TE LSP objects are regarded as sub-TLVs. The LSP State TLV SHOULD only be used with IPv4/IPv6 TE LSP NLRI.

```
+----------------/kubernetes+------------------+-
|              Type             |             Length            |
+----------------/kubernetes+------------------+-
|                                                               |
+----------------/kubernetes+------------------+-
|                                                               |
+----------------/kubernetes+------------------+-
```

Figure 4. LSP State TLV

Currently the TE LSP Objects that can be carried in the LSP State TLV include:

- LSP Attributes (LSPA) Object [RFC5440]
- Explicit Route Object (ERO) [RFC3209]
- Record Route Object (RRO) [RFC3209]
- BANDWIDTH Object [RFC5440]
- METRIC Object [RFC5440]
- Protection Object [RFC3473]
- Admin_Status Object [RFC3473]

Other TE LSP objects may also be carried in LSP state TLV, which is for further study.

3. IANA Considerations

IANA needs to assign one new TLV type for "LSP State TLV" from the TLV registry of Link_State Attribute.

IANA needs to assign one Protocol-ID for 'RSVP-TE' from the BGP-TE/LS registry of Protocol-IDs.
4. Security Considerations

TBD

5. References

5.1. Normative References

5.2. Informative References

Authors’ Addresses

Jie Dong
Huawei Technologies
Huawei Building, No. 156 Beiqing Rd.
Beijing 100095
China
Email: jie.dong@huawei.com

Mach(Guoyi) Chen
Huawei Technologies
Huawei Building, No. 156 Beiqing Rd.
Beijing 100095
China
Email: mach.chen@huawei.com

Hannes Gredler
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
US
Email: hannes@juniper.net

Stefano Previdi
Cisco Systems, Inc.
Via Del Serafico, 200
Rome 00142
Italy
Email: sprevidi@cisco.com
Distribution of MPLS Traffic Engineering (TE) LSP State using BGP
draft-dong-idr-te-lsp-distribution-04

Abstract

This document describes a mechanism to collect the Traffic Engineering (TE) LSP information using BGP. Such information can be used by external components for path reoptimization, service placement and network visualization.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 24, 2014.
1. Introduction

In some network environments, the states of established Multi-Protocol Label Switching (MPLS) Traffic Engineering (TE) Label Switched Paths (LSPs) in the network are required by some components external to the network domain. Usually this information is directly maintained by the ingress Label Edge Routers (LERs) of the MPLS TE LSPs.

One example of using the LSP information is stateful Path Computation Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide benefits in path reoptimization. While some extensions are proposed in Path Computation Element Communication Protocol (PCEP) for the Path Computation Clients (PCCs) to report the LSP states to the PCE, this mechanism may not be applicable in a management-based PCE architecture as specified in section 5.5 of [RFC4655]. As illustrated in the figure below, the PCC is not an LSR in the routing domain, thus the head-end nodes of the TE-LSP may not implement the PCEP protocol. In this case some general mechanism to collect the TE-LSP states from the ingress LERs is needed. This document...
proposes an LSP state collection mechanism complementary to the mechanism defined in [I-D.ietf-pce-stateful-pce].

![Diagram of Service Request and Response]()

In networks with composite PCE nodes as specified in section 5.1 of [RFC4655], the PCE is implemented on several routers in the network, and the PCCs in the network can use the mechanism described in [I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE nodes. An external component may further need to collect the LSP information from all the PCEs in the network to get a global view of the LSP states in the network.

In some networks, a centralized controller is used for service placement. Obtaining the TE LSP state information is quite important for making appropriate service placement decisions with the purpose of both meeting the application’s requirements and utilizing the network resource efficiently.

The Network Management System (NMS) may need to provide global visibility of the TE LSPs in the network as part of the network visualization function.

BGP has been extended to distribute link-state and traffic engineering information and share with some external components [I-D.ietf-idr-ls-distribution]. Using the same protocol to collect other network layer information would be desired by the external components, which avoids introducing multiple protocols for network
information collection. This document describes a mechanism to
distribute the TE LSP information to external components using BGP.

2. Carrying LSP State Information in BGP

2.1. LSP Identifier Information

The TE LSP Identifier information is advertised in BGP UPDATE
messages using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes
[RFC4760]. The "Link State NLRI" defined in
[I-D.ietf-idr-ls-distribution] is extended to carry the TE LSP
Identifier information. BGP speakers that wish to exchange TE LSP
information MUST use the BGP Multiprotocol Extensions Capability Code
(1) to advertise the corresponding (AFI, SAFI) pair, as specified in
[RFC4760].

The format of "Link State NLRI" is defined in
[I-D.ietf-idr-ls-distribution]. Two new "NLRI Type" are defined for
TE LSP Identifier Information as following:

- NLRI Type = 5: IPv4 TE LSP NLRI
- NLRI Type = 6: IPv6 TE LSP NLRI

The IPv4 TE LSP NLRI (NLRI Type = 5) is shown in the following
figure:

```
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +--------------------------------------------------+
     | Protocol-ID                                       |
     +--------------------------------------------------+
     | Identifier                                       |
     | (64 bits)                                        |
     +--------------------------------------------------+
     | IPv4 Tunnel Sender Address                        |
     +--------------------------------------------------+
     | Tunnel ID | LSP ID                                          |
     +--------------------------------------------------+
     | IPv4 Tunnel End-point Address                     |
     +--------------------------------------------------+
```

Figure 2. IPv4 TE LSP NLRI

The IPv6 TE LSP NLRI (NLRI Type = 6) is shown in the following
figure:
For IPv4 TE LSP NLRI and IPv6 TE LSP NLRI, the Protocol-ID field is set to 6, which indicates that the NLRI information has been sourced by RSVP-TE.

The Identifier field is used to discriminate between instances with different LSP technology - e.g. one identifier can identify the instance for packet path, and another one is to identify the instance of optical path.

The other fields in the IPv4 TE LSP NLRI and IPv6 TE LSP NLRI are the same as specified in [RFC3209].

2.2. LSP State Information

The LSP State TLV is used to describe the characteristics of the TE LSPs, which is carried in the optional non-transitive BGP Attribute "LINK_STATE Attribute" defined in [I-D.ietf-idr-ls-distribution].
The "Value" field of the LSP State TLV corresponds to the format and semantics of a set of objects defined in [RFC3209], [RFC3473] and [RFC5440] for TE LSPs. Rather than replicating all RSVP-TE related objects in this document the semantics and encodings of existing RSVP-TE objects are re-used. Hence all RSVP-TE LSP objects are regarded as sub-TLVs. The LSP State TLV SHOULD only be used with IPv4/IPv6 TE LSP NLRI.

Currently the TE LSP Objects that can be carried in the LSP State TLV include:

- LSP Attributes (LSPA) Object [RFC5440]
- Explicit Route Object (ERO) [RFC3209]
- Record Route Object (RRO) [RFC3209]
- BANDWIDTH Object [RFC5440]
- METRIC Object [RFC5440]
- Protection Object [RFC3473]
- Admin_Status Object [RFC3473]

Other TE LSP objects may also be carried in LSP state TLV, which is for further study.

3. IANA Considerations

IANA needs to assign one new TLV type for "LSP State TLV" from the TLV registry of Link_State Attribute.

IANA needs to assign one Protocol-ID for ‘RSVP-TE’ from the BGP-TE/LS registry of Protocol-IDs.
4. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See [RFC6952] for details.

5. References

5.1. Normative References

[I-D.ietf-idr-1s-distribution]

5.2. Informative References

[I-D.ietf-pce-stateful-pce]

Authors’ Addresses

Jie Dong
Huawei Technologies
Huawei Building, No. 156 Beiqing Rd.
Beijing 100095
China

Email: jie.dong@huawei.com

Mach(Guoyi) Chen
Huawei Technologies
Huawei Building, No. 156 Beiqing Rd.
Beijing 100095
China

Email: mach.chen@huawei.com

Hannes Gredler
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
US

Email: hannes@juniper.net

Stefano Previdi
Cisco Systems, Inc.
Via Del Serafico, 200
Rome 00142
Italy

Email: sprevidi@cisco.com
North-Bound Distribution of Link-State and TE Information using BGP

draft-ietf-idr-ls-distribution-03

Abstract

In a number of environments, a component external to a network is called upon to perform computations based on the network topology and current state of the connections within the network, including traffic engineering information. This is information typically distributed by IGP routing protocols within the network.

This document describes a mechanism by which links state and traffic engineering information can be collected from networks and shared with external components using the BGP routing protocol. This is achieved using a new BGP Network Layer Reachability Information (NLRI) encoding format. The mechanism is applicable to physical and virtual IGP links. The mechanism described is subject to policy control.

Applications of this technique include Application Layer Traffic Optimization (ALTO) servers, and Path Computation Elements (PCEs).

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-
Table of Contents

1. Introduction ... 5
2. Motivation and Applicability 6
 2.1. MPLS-TE with PCE 6
 2.2. ALTO Server Network API 8
3. Carrying Link State Information in BGP 9
 3.1. TLV Format 9
 3.2. The Link State NLRI 10
 3.2.1. Node Descriptors 13
 3.2.2. Link Descriptors 17
 3.2.3. Prefix Descriptors 18
 3.3. The LINK_STATE Attribute 20
 3.3.1. Node Attribute TLVs 20
 3.3.2. Link Attribute TLVs 23
 3.3.3. Prefix Attribute TLVs 27
 3.4. BGP Next Hop Information 30
 3.5. Inter-AS Links 31
 3.6. Router-ID Anchoring Example: ISO Pseudonode 31
 3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration 32
4. Link to Path Aggregation 32
 4.1. Example: No Link Aggregation 33
 4.2. Example: ASBR to ASBR Path Aggregation 33
 4.3. Example: Multi-AS Path Aggregation 34
5. IANA Considerations 34
6. Manageability Considerations 34
 6.1. Operational Considerations 35
 6.1.1. Operations 35
 6.1.2. Installation and Initial Setup 35
 6.1.3. Migration Path 35
 6.1.4. Requirements on Other Protocols and Functional Components 35
 6.1.5. Impact on Network Operation 35
 6.1.6. Verifying Correct Operation 36
 6.2. Management Considerations 36
 6.2.1. Management Information 36
 6.2.2. Fault Management 36
 6.2.3. Configuration Management 36
 6.2.4. Accounting Management 36
 6.2.5. Performance Management 36
 6.2.6. Security Management 37
7. TLV/Sub-TLV Code Points Summary 37
8. Security Considerations 39
9. Contributors ... 39
10. Acknowledgements 39
11. References ... 40
 11.1. Normative References 40
 11.2. Informative References 41
1. Introduction

The contents of a Link State Database (LSDB) or a Traffic Engineering Database (TED) has the scope of an IGP area. Some applications, such as end-to-end Traffic Engineering (TE), would benefit from visibility outside one area or Autonomous System (AS) in order to make better decisions.

The IETF has defined the Path Computation Element (PCE) [RFC4655] as a mechanism for achieving the computation of end-to-end TE paths that cross the visibility of more than one TED or which require CPU-intensive or coordinated computations. The IETF has also defined the ALTO Server [RFC5693] as an entity that generates an abstracted network topology and provides it to network-aware applications.

Both a PCE and an ALTO Server need to gather information about the topologies and capabilities of the network in order to be able to fulfill their function.

This document describes a mechanism by which Link State and TE information can be collected from networks and shared with external components using the BGP routing protocol [RFC4271]. This is achieved using a new BGP Network Layer Reachability Information (NLRI) encoding format. The mechanism is applicable to physical and virtual links. The mechanism described is subject to policy control.

A router maintains one or more databases for storing link-state information about nodes and links in any given area. Link attributes stored in these databases include: local/remote IP addresses, local/remote interface identifiers, link metric and TE metric, link bandwidth, reservable bandwidth, per CoS class reservation state, preemption and Shared Risk Link Groups (SRLG). The router’s BGP process can retrieve topology from these LSDBs and distribute it to a consumer, either directly or via a peer BGP Speaker (typically a dedicated Route Reflector), using the encoding specified in this document.

The collection of Link State and TE link state information and its distribution to consumers is shown in the following figure.
A BGP Speaker may apply configurable policy to the information that it distributes. Thus, it may distribute the real physical topology from the LSDB or the TED. Alternatively, it may create an abstracted topology, where virtual, aggregated nodes are connected by virtual paths. Aggregated nodes can be created, for example, out of multiple routers in a POP. Abstracted topology can also be a mix of physical and virtual nodes and physical and virtual links. Furthermore, the BGP Speaker can apply policy to determine when information is updated to the consumer so that there is reduction of information flow form the network to the consumers. Mechanisms through which topologies can be aggregated or virtualized are outside the scope of this document.

2. Motivation and Applicability

This section describes use cases from which the requirements can be derived.

2.1. MPLS-TE with PCE

As described in [RFC4655] a PCE can be used to compute MPLS-TE paths within a "domain" (such as an IGP area) or across multiple domains (such as a multi-area AS, or multiple ASes).
Within a single area, the PCE offers enhanced computational power that may not be available on individual routers, sophisticated policy control and algorithms, and coordination of computation across the whole area.

If a router wants to compute a MPLS-TE path across IGP areas its own TED lacks visibility of the complete topology. That means that the router cannot determine the end-to-end path, and cannot even select the right exit router (Area Border Router - ABR) for an optimal path. This is an issue for large-scale networks that need to segment their core networks into distinct areas, but which still want to take advantage of MPLS-TE.

Previous solutions used per-domain path computation [RFC5152]. The source router could only compute the path for the first area because the router only has full topological visibility for the first area along the path, but not for subsequent areas. Per-domain path computation uses a technique called "loose-hop-expansion" [RFC3209], and selects the exit ABR and other ABRs or AS Border Routers (ASBRs) using the IGP computed shortest path topology for the remainder of the path. This may lead to sub-optimal paths, makes alternate/back-up path computation hard, and might result in no TE path being found when one really does exist.

The PCE presents a computation server that may have visibility into more than one IGP area or AS, or may cooperate with other PCEs to perform distributed path computation. The PCE obviously needs access to the TED for the area(s) it serves, but [RFC4655] does not describe how this is achieved. Many implementations make the PCE a passive participant in the IGP so that it can learn the latest state of the network, but this may be sub-optimal when the network is subject to a high degree of churn, or when the PCE is responsible for multiple areas.

The following figure shows how a PCE can get its TED information using the mechanism described in this document.
The mechanism in this document allows the necessary TED information to be collected from the IGP within the network, filtered according to configurable policy, and distributed to the PCE as necessary.

2.2. ALTO Server Network API

An ALTO Server [RFC5693] is an entity that generates an abstracted network topology and provides it to network-aware applications over a web service based API. Example applications are p2p clients or trackers, or CDNs. The abstracted network topology comes in the form of two maps: a Network Map that specifies allocation of prefixes to Partition Identifiers (PIDs), and a Cost Map that specifies the cost between PIDs listed in the Network Map. For more details, see [I-D.ietf-alto-protocol].

ALTO abstract network topologies can be auto-generated from the physical topology of the underlying network. The generation would typically be based on policies and rules set by the operator. Both prefix and TE data are required: prefix data is required to generate ALTO Network Maps, TE (topology) data is required to generate ALTO Cost Maps. Prefix data is carried and originated in BGP, TE data is originated and carried in an IGP. The mechanism defined in this document provides a single interface through which an ALTO Server can retrieve all the necessary prefix and network topology data from the underlying network. Note an ALTO Server can use other mechanisms to get network data, for example, peering with multiple IGP and BGP.
The following figure shows how an ALTO Server can get network topology information from the underlying network using the mechanism described in this document.

```
+--------+    +--------+    +--------+
| Client |<--| ALTO   |<--| BGP with |
+--------+    +--------+    +--------+
|         |    | Protocol|    | ALTO   |
|         |<--| Server  |<--| Link-State NLRI |
+--------+    +--------+    +--------+
|         |    |         |    |         |
| Client |<--|         |    |         |
+--------+    +--------+
```

Figure 3: ALTO Server using network topology information

3. Carrying Link State Information in BGP

This specification contains two parts: definition of a new BGP NLRI that describes links, nodes and prefixes comprising IGP link state information, and definition of a new BGP path attribute (BGP-LS attribute) that carries link, node and prefix properties and attributes, such as the link and prefix metric or auxiliary Router-IDs of nodes, etc.

3.1. TLV Format

Information in the new link state NLRIs and attributes is encoded in Type/Length/Value triplets. The TLV format is shown in Figure 4.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-------------------------------------------+-----+
|              Type             | Length |
+-------------------------------------------+-----+
//                      Value (variable)      //
```

Figure 4: TLV format

The Length field defines the length of the value portion in octets (thus a TLV with no value portion would have a length of zero). The TLV is not padded to four-octet alignment. Unrecognized types are
preserved and propagated. In order to compare NLRIs with unknown TLVs all TLVs MUST be ordered in ascending order. If there are more TLVs of the same type, then the TLVs MUST be ordered in ascending order of the TLV value within the set of TLVs with the same type. All TLVs that are not specified as mandatory are considered optional.

3.2. The Link State NLRI

The MP_REACH and MP_UNREACH attributes are BGP’s containers for carrying opaque information. Each Link State NLRI describes either a node, a link or a prefix.

All non-VPN link, node and prefix information SHALL be encoded using AFI 16388 / SAFI 71. VPN link, node and prefix information SHALL be encoded using AFI 16388 / SAFI 128.

In order for two BGP speakers to exchange Link-State NLRI, they MUST use BGP Capabilities Advertisement to ensure that they both are capable of properly processing such NLRI. This is done as specified in [RFC4760], by using capability code 1 (multi-protocol BGP), with an AFI 16388 / SAFI 71 and AFI 16388 / SAFI 128 for the VPN flavor.

The format of the Link State NLRI is shown in the following figure.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            NLRI Type          |     Total NLRI Length         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
//                  Link-State NLRI (variable)                  //
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 5: Link State AFI 16388 / SAFI 71 NLRI Format
The 'Total NLRI Length' field contains the cumulative length, in octets, of rest of the NLRI not including the NLRI Type field or itself. For VPN applications it also includes the length of the Route Distinguisher.

The 'NLRI Type' field can contain one of the following values:

- Type = 1: Node NLRI
- Type = 2: Link NLRI
- Type = 3: IPv4 Topology Prefix NLRI
- Type = 4: IPv6 Topology Prefix NLRI

The Node NLRI (NLRI Type = 1) is shown in the following figure.

The Link NLRI (NLRI Type = 2) is shown in the following figure.
The 'Protocol-ID' field can contain one of the following values:

Protocol-ID = 0: Unknown, The source of NLRI information could not be determined

Protocol-ID = 1: IS-IS Level 1, The NLRI information has been sourced by IS-IS Level 1

Protocol-ID = 2: IS-IS Level 2, The NLRI information has been sourced by IS-IS Level 2
Protocol-ID = 3: OSPF, The NLRI information has been sourced by OSPF

Protocol-ID = 4: Direct, The NLRI information has been sourced from local interface state

Protocol-ID = 5: Static, The NLRI information has been sourced by static configuration

Both OSPF and IS-IS may run multiple routing protocol instances over the same link. See [RFC6822] and [RFC6549]. These instances define independent "routing universes". The 64-Bit ‘Identifier’ field is used to identify the "routing universe" where the NLRI belongs. The NLRIs representing IGP objects (nodes, links or prefixes) from the same routing universe MUST have the same ‘Identifier’ value; NLRIs with different ‘Identifier’ values MUST be considered to be from different routing universes. Table 1 lists the ‘Identifier’ values that are defined as well-known in this draft.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Routing Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>L3 packet topology</td>
</tr>
<tr>
<td>1</td>
<td>L1 optical topology</td>
</tr>
</tbody>
</table>

Table 1: Well-known Instance Identifiers

Each Node Descriptor and Link Descriptor consists of one or more TLVs described in the following sections.

3.2.1. Node Descriptors

Each link is anchored by a pair of Router-IDs that are used by the underlying IGP, namely, 48 Bit ISO System-ID for IS-IS and 32 bit Router-ID for OSPFv2 and OSPFv3. An IGP may use one or more additional auxiliary Router-IDs, mainly for traffic engineering purposes. For example, IS-IS may have one or more IPv4 and IPv6 TE Router-IDs [RFC5305], [RFC6119]. These auxiliary Router-IDs MUST be included in the link attribute described in Section 3.3.2.

It is desirable that the Router-ID assignments inside the Node Descriptor are globally unique. However there may be Router-ID spaces (e.g. ISO) where no global registry exists, or worse, Router-IDs have been allocated following private-IP RFC 1918 [RFC1918] allocation. We use Autonomous System (AS) Number and BGP-LS Identifier in order to disambiguate the Router-IDs, as described in Section 3.2.1.1.
3.2.1.1. Globally Unique Node/Link/Prefix Identifiers

One problem that needs to be addressed is the ability to identify an IGP node globally (by "global", we mean within the BGP-LS database collected by all BGP-LS speakers that talk to each other). This can be expressed through the following two requirements:

(A) The same node must not be represented by two keys (otherwise one node will look like two nodes).

(B) Two different nodes must not be represented by the same key (otherwise, two nodes will look like one node).

We define an "IGP domain" to be the set of nodes (hence, by extension links and prefixes), within which, each node has a unique IGP representation by using the combination of Area-ID, Router-ID, Protocol, Topology-ID, and Instance ID. The problem is that BGP may receive node/link/prefix information from multiple independent "IGP domains" and we need to distinguish between them. Moreover, we can’t assume there is always one and only one IGP domain per AS. During IGP transitions it may happen that two redundant IGPs are in place.

In section Section 3.2.1.4 a set of sub-TLVs is described, which allows to specify a flexible key for any given Node/Link information such that global uniqueness of the NLRI is ensured.

3.2.1.2. Local Node Descriptors

The Local Node Descriptors TLV contains Node Descriptors for the node anchoring the local end of the link. This is a mandatory TLV in all three types of NLRIs. The length of this TLV is variable. The value contains one or more Node Descriptor Sub-TLVs defined in Section 3.2.1.4.

```
0                   1                   2                   3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
//              Node Descriptor Sub-TLVs (variable)            //
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 10: Local Node Descriptors TLV format
3.2.1.3. Remote Node Descriptors

The Remote Node Descriptors contains Node Descriptors for the node anchoring the remote end of the link. This is a mandatory TLV for link NLRIs. The length of this TLV is variable. The value contains one or more Node Descriptor Sub-TLVs defined in Section 3.2.1.4.

```
+-------+-----+-----+-----+
| 0 1 2 3 | 4 5 6 7 | 8 9 0 1 |
+-------+-----+-----+-----+
      | Type                  |
+-------+----------------------+
      | Length                |
+-------+----------------------+
      | Node Descriptor Sub-TLVs (variable) |
+-------+----------------------+
```

Figure 11: Remote Node Descriptors TLV format

3.2.1.4. Node Descriptor Sub-TLVs

The Node Descriptor Sub-TLV type codepoints and lengths are listed in the following table:

```
+-----------------+--------------------+----------+
| Sub-TLV Code Point | Description       | Length   |
+-----------------+--------------------+----------+
| 512             | Autonomous System  | 4        |
| 513             | BGP-LS Identifier  | 4        |
| 514             | Area-ID            | 4        |
| 515             | IGP Router-ID      | Variable |
+-----------------+--------------------+----------+
```

Table 2: Node Descriptor Sub-TLVs

The sub-TLV values in Node Descriptor TLVs are defined as follows:

Autonomous System: opaque value (32 Bit AS Number)

BGP-LS Identifier: opaque value (32 Bit ID). In conjunction with ASN, uniquely identifies the BGP-LS domain. The combination of ASN and BGP-LS ID MUST be globally unique. All BGP-LS speakers within an IGP flooding-set (set of IGP nodes within which an LSP/LSA is flooded) MUST use the same ASN, BGP-LS ID tuple. If an IGP domain consists of multiple flooding-sets, then all BGP-LS speakers within the IGP domain SHOULD use the same ASN, BGP-LS ID tuple. The ASN, BGP Router-ID tuple (which is globally unique [RFC6286]) of one of the BGP-LS speakers within the flooding-set...
(or IGP domain) may be used for all BGP-LS speakers in that flooding-set (or IGP domain).

Area ID: It is used to identify the 32 Bit area to which the NLRI belongs. Area Identifier allows the different NLRIs of the same router to be discriminated.

IGP Router ID: opaque value. This is a mandatory TLV. For an IS-IS non-Pseudonode, this contains 6 octet ISO node-ID (ISO system-ID). For an IS-IS Pseudonode corresponding to a LAN, this contains 6 octet ISO node-ID of the "Designated Intermediate System" (DIS) followed by one octet nonzero PSN identifier (7 octet in total). For an OSPFv2 or OSPFv3 non-"Pseudonode", this contains 4 octet Router-ID. For an OSPFv2 "Pseudonode" representing a LAN, this contains 4 octet Router-ID of the designated router (DR) followed by 4 octet IPv4 address of the DR’s interface to the LAN (8 octet in total). Similarly, for an OSPFv3 "Pseudonode", this contains 4 octet Router-ID of the DR followed by 4 octet interface identifier of the DR’s interface to the LAN (8 octet in total). The TLV size in combination with protocol identifier enables the decoder to determine the type of the node.

There can be at most one instance of each sub-TLV type present in any Node Descriptor. The TLV ordering within a Node descriptor MUST be kept in order of increasing numeric value of type. This needs to be done in order to compare NLRIs, even when an implementation encounters an unknown sub-TLV. Using stable sorting an implementation can do binary comparison of NLRIs and hence allow incremental deployment of new key sub-TLVs.

3.2.1.5. Multi-Topology ID

The Multi-Topology ID (MT-ID) TLV carries one or more IS-IS or OSPF Multi-Topology IDs for a link, node or prefix.

Semantics of the IS-IS MT-ID are defined in RFC5120, Section 7.2 [RFC5120]. Semantics of the OSPF MT-ID are defined in RFC4915, Section 3.7 [RFC4915]. If the value in the MT-ID TLV is derived from OSPF, then the upper 9 bits MUST be set to 0. Bits R are reserved, SHOULD be set to 0 when originated and ignored on receipt.

The format of the MT-ID TLV is shown in the following figure.
where Type is 263, Length is 2*n and n is the number of MT-IDs carried in the TLV.

The MT-ID TLV MAY be present in a Link Descriptor, a Prefix Descriptor, or in the BGP-LS attribute of a node NLRI. In Link or Prefix Descriptor, only one MT-ID TLV containing only the MT-ID of the topology where the link or the prefix belongs is allowed. In the BGP-LS attribute of a node NLRI, one MT-ID TLV containing the array of MT-IDs of all topologies where the node belongs can be present.

3.2.2. Link Descriptors

The 'Link Descriptor' field is a set of Type/Length/Value (TLV) triplets. The format of each TLV is shown in Section 3.1. The 'Link descriptor' TLVs uniquely identify a link among multiple parallel links between a pair of anchor routers. A link described by the Link descriptor TLVs actually is a "half-link", a unidirectional representation of a logical link. In order to fully describe a single logical link two originating routers advertise a half-link each, i.e. two link NLRIs are advertised for a given point-to-point link.

The format and semantics of the 'value' fields in most 'Link Descriptor' TLVs correspond to the format and semantics of value fields in IS-IS Extended IS Reachability sub-TLVs, defined in [RFC5305], [RFC5307] and [RFC6119]. Although the encodings for 'Link Descriptor' TLVs were originally defined for IS-IS, the TLVs can carry data sourced either by IS-IS or OSPF.

The following TLVs are valid as Link Descriptors in the Link NLRI:
Table 3: Link Descriptor TLVs

<table>
<thead>
<tr>
<th>TLV Code</th>
<th>Description</th>
<th>IS-IS TLV/Sub-TLV</th>
<th>Value defined in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>258</td>
<td>Link Local/Remote</td>
<td>22/4</td>
<td>[RFC5307]/1.1</td>
</tr>
<tr>
<td>259</td>
<td>Identifiers</td>
<td>22/6</td>
<td>[RFC5305]/3.2</td>
</tr>
<tr>
<td>260</td>
<td>IPv4 interface address</td>
<td>22/8</td>
<td>[RFC5305]/3.3</td>
</tr>
<tr>
<td>261</td>
<td>IPv6 interface address</td>
<td>22/12</td>
<td>[RFC6119]/4.2</td>
</tr>
<tr>
<td>262</td>
<td>IPv6 neighbor address</td>
<td>22/13</td>
<td>[RFC6119]/4.3</td>
</tr>
<tr>
<td>263</td>
<td>Multi-Topology Identifier</td>
<td>---</td>
<td>Section 3.2.1.5</td>
</tr>
</tbody>
</table>

3.2.3. Prefix Descriptors

The 'Prefix Descriptor' field is a set of Type/Length/Value (TLV) triplets. 'Prefix Descriptor' TLVs uniquely identify an IPv4 or IPv6 Prefix originated by a Node. The following TLVs are valid as Prefix Descriptors in the IPv4/IPv6 Prefix NLRI:

<table>
<thead>
<tr>
<th>TLV Code</th>
<th>Description</th>
<th>Length</th>
<th>Value defined in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>Multi-Topology Identifier</td>
<td>variable</td>
<td>Section 3.2.1.5</td>
</tr>
<tr>
<td>264</td>
<td>OSPF Route Type Information</td>
<td>1</td>
<td>Section 3.2.3.1</td>
</tr>
<tr>
<td>265</td>
<td>IP Reachability Information</td>
<td>variable</td>
<td>Section 3.2.3.2</td>
</tr>
</tbody>
</table>

Table 4: Prefix Descriptor TLVs

3.2.3.1. OSPF Route Type

OSPF Route Type is an optional TLV that MAY be present in Prefix NLRIIs. It is used to identify the OSPF route-type of the prefix. It is used when an OSPF prefix is advertised in the OSPF domain with multiple different route-types. The Route Type TLV allows to discriminate these advertisements. The format of the OSPF Route Type TLV is shown in the following figure.
Figure 13: OSPF Route Type TLV Format

where the Type and Length fields of the TLV are defined in Table 4. The OSPF Route Type field values are defined in the OSPF protocol, and can be one of the following:

Intra-Area (0x1)
Inter-Area (0x2)
External 1 (0x3)
External 2 (0x4)
NSSA 1 (0x5)
NSSA 2 (0x6)

3.2.3.2. IP Reachability Information

The IP Reachability Information is a mandatory TLV that contains one IP address prefix (IPv4 or IPv6) originally advertised in the IGP topology. Its purpose is to glue a particular BGP service NLRI via virtue of its BGP next-hop to a given Node in the LSDB. A router SHOULD advertise an IP Prefix NLRI for each of its BGP Next-hops. The format of the IP Reachability Information TLV is shown in the following figure:

Figure 14: IP Reachability Information TLV Format

The Type and Length fields of the TLV are defined in Table 4. The following two fields determine the address-family reachability
information. The 'Prefix Length' field contains the length of the prefix in bits. The 'IP Prefix' field contains the most significant octets of the prefix; i.e., 1 octet for prefix length 1 up to 8, 2 octets for prefix length 9 to 16, 3 octets for prefix length 17 up to 24 and 4 octets for prefix length 25 up to 32, etc.

3.3. The LINK_STATE Attribute

This is an optional, non-transitive BGP attribute that is used to carry link, node and prefix parameters and attributes. It is defined as a set of Type/Length/Value (TLV) triplets, described in the following section. This attribute SHOULD only be included with Link State NLRIs. This attribute MUST be ignored for all other address-families.

3.3.1. Node Attribute TLVs

Node attribute TLVs are the TLVs that may be encoded in the BGP-LS attribute with a node NLRI. The following node attribute TLVs are defined:

<table>
<thead>
<tr>
<th>TLV Code</th>
<th>Description</th>
<th>Length</th>
<th>Value defined in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>Multi-Topology Identifier</td>
<td>variable</td>
<td>Section 3.2.1.5</td>
</tr>
<tr>
<td>1024</td>
<td>Node Flag Bits</td>
<td>1</td>
<td>Section 3.3.1.1</td>
</tr>
<tr>
<td>1025</td>
<td>Opaque Node Properties</td>
<td>variable</td>
<td>Section 3.3.1.5</td>
</tr>
<tr>
<td>1026</td>
<td>Node Name</td>
<td>variable</td>
<td>Section 3.3.1.3</td>
</tr>
<tr>
<td>1027</td>
<td>IS-IS Area Identifier</td>
<td>variable</td>
<td>Section 3.3.1.2</td>
</tr>
<tr>
<td>1028</td>
<td>IPv4 Router-ID of Local Node</td>
<td>4</td>
<td>[RFC5305]/4.3</td>
</tr>
<tr>
<td>1029</td>
<td>IPv6 Router-ID of Local Node</td>
<td>16</td>
<td>[RFC6119]/4.1</td>
</tr>
</tbody>
</table>

Table 5: Node Attribute TLVs

3.3.1.1. Node Flag Bits TLV

The Node Flag Bits TLV carries a bit mask describing node attributes. The value is a variable length bit array of flags, where each bit represents a node capability.
3.3.1.2. IS-IS Area Identifier TLV

An IS-IS node can be part of one or more IS-IS areas. Each of these area addresses is carried in the IS-IS Area Identifier TLV. If more than one Area Addresses are present, multiple TLVs are used to encode them. The IS-IS Area Identifier TLV may be present in the LINK_STATE attribute only with the Link State Node NLRI.

3.3.1.3. Node Name TLV

The Node Name TLV is optional. Its structure and encoding has been borrowed from [RFC5301]. The value field identifies the symbolic name of the router node. This symbolic name can be the FQDN for the router, it can be a subset of the FQDN, or it can be any string.
operators want to use for the router. The use of FQDN or a subset of it is strongly recommended.

The Value field is encoded in 7-bit ASCII. If a user-interface for configuring or displaying this field permits Unicode characters, that user-interface is responsible for applying the ToASCII and/or ToUnicode algorithm as described in [RFC3490] to achieve the correct format for transmission or display.

Altough [RFC5301] is a IS-IS specific extension, usage of the Node Name TLV is possible for all protocols. How a router derives and injects node names for e.g. OSPF nodes, is outside of the scope of this document.

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\text{Type} & | & \text{Length} & | & \text{Name} & (\text{variable})
\end{array}
\]

Figure 17: Node Name format

3.3.1.4. Local IPv4/IPv6 Router-ID

The local IPv4/IPv6 Router-ID TLVs are used to describe auxiliary Router-IDs that the IGP might be using, e.g., for TE and migration purposes like correlating a Node-ID between different protocols. If there is more than one auxiliary Router-ID of a given type, then each one is encoded in its own TLV.

3.3.1.5. Opaque Node Attribute TLV

The Opaque Node attribute TLV is an envelope that transparently carries optional node attribute TLVs advertised by a router. An originating router shall use this TLV for encoding information specific to the protocol advertised in the NLRI header Protocol-ID field or new protocol extensions to the protocol as advertised in the NLRI header Protocol-ID field for which there is no protocol neutral representation in the BGP link-state NLRI. A router for example could use this extension in order to advertise the native protocols node attribute TLVs, such as the OSPF Router Informational Capabilities TLV defined in [RFC4970], or the IGP TE Node Capability Descriptor TLV described in [RFC5073].
3.3.2. Link Attribute TLVs

Link attribute TLVs are TLVs that may be encoded in the BGP-LS attribute with a link NLRI. Each ‘Link Attribute’ is a Type/Length/Value (TLV) triplet formatted as defined in Section 3.1. The format and semantics of the ‘value’ fields in some ‘Link Attribute’ TLVs correspond to the format and semantics of value fields in IS-IS Extended IS Reachability sub-TLVs, defined in [RFC5305] and [RFC5307]. Other ‘Link Attribute’ TLVs are defined in this document. Although the encodings for ‘Link Attribute’ TLVs were originally defined for IS-IS, the TLVs can carry data sourced either by IS-IS or OSPF.

The following ‘Link Attribute’ TLVs are are valid in the LINK_STATE attribute:

<table>
<thead>
<tr>
<th>TLV Code</th>
<th>Description</th>
<th>IS-IS TLV/Sub-TLV</th>
<th>Defined in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1028</td>
<td>IPv4 Router-ID of Local Node</td>
<td>134/---</td>
<td>[RFC5305]/4.3</td>
</tr>
<tr>
<td>1029</td>
<td>IPv6 Router-ID of Local Node</td>
<td>140/---</td>
<td>[RFC6119]/4.1</td>
</tr>
<tr>
<td>1030</td>
<td>IPv4 Router-ID of Remote Node</td>
<td>134/---</td>
<td>[RFC5305]/4.3</td>
</tr>
<tr>
<td>1031</td>
<td>IPv6 Router-ID of Remote Node</td>
<td>140/---</td>
<td>[RFC6119]/4.1</td>
</tr>
<tr>
<td>1088</td>
<td>Administrative group (color)</td>
<td>22/3</td>
<td>[RFC5305]/3.1</td>
</tr>
<tr>
<td>1089</td>
<td>Maximum link bandwidth</td>
<td>22/9</td>
<td>[RFC5305]/3.3</td>
</tr>
<tr>
<td>1090</td>
<td>Max. reservable link bandwidth</td>
<td>22/10</td>
<td>[RFC5305]/3.5</td>
</tr>
<tr>
<td>1091</td>
<td>Unreserved bandwidth</td>
<td>22/11</td>
<td>[RFC5305]/3.6</td>
</tr>
<tr>
<td>1092</td>
<td>TE Default Metric</td>
<td>22/18</td>
<td>[RFC5305]/3.7</td>
</tr>
</tbody>
</table>
3.3.2.1. IPv4/IPv6 Router-ID

The local/remote IPv4/IPv6 Router-ID TLVs are used to describe auxiliary Router-IDs that the IGP might be using, e.g., for TE purposes. All auxiliary Router-IDs of both the local and the remote node MUST be included in the link attribute of each link NLRI. If there are more than one auxiliary Router-ID of a given type, then multiple TLVs are used to encode them.

3.3.2.2. MPLS Protocol Mask TLV

The MPLS Protocol TLV carries a bit mask describing which MPLS signaling protocols are enabled. The length of this TLV is 1. The value is a bit array of 8 flags, where each bit represents an MPLS Protocol capability.

```
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |     Length    |
+---------------+--------------|
|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|1|1|1|2|2|2|2|2|2|2|2|2|3|3|3|3|3|3|3|3|3|
```

Figure 19: MPLS Protocol TLV

The following bits are defined:
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L'</td>
<td>Label Distribution Protocol (LDP)</td>
<td>[RFC5036]</td>
</tr>
<tr>
<td>'R'</td>
<td>Extension to RSVP for LSP Tunnels</td>
<td>[RFC3209]</td>
</tr>
<tr>
<td></td>
<td>(RSVP-TE)</td>
<td></td>
</tr>
<tr>
<td>'Reserved'</td>
<td>Reserved for future use</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: MPLS Protocol Mask TLV Codes

3.3.2.3. Metric TLV

The IGP Metric TLV carries the metric for this link. The length of this TLV is variable, depending on the metric width of the underlying protocol. IS-IS small metrics have a length of 1 octet (the two most significant bits are ignored). OSPF metrics have a length of two octects. IS-IS wide-metrics have a length of three octets.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// IGP Link Metric (variable length) ///
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 20: Metric TLV format

3.3.2.4. Shared Risk Link Group TLV

The Shared Risk Link Group (SRLG) TLV carries the Shared Risk Link Group information (see Section 2.3, "Shared Risk Link Group Information", of [RFC4202]). It contains a data structure consisting of a (variable) list of SRLG values, where each element in the list has 4 octets, as shown in Figure 21. The length of this TLV is 4 * (number of SRLG values).
The Opaque link attribute TLV is an envelope that transparently carries optional link attribute TLVs advertised by a router. An originating router shall use this TLV for encoding information specific to the protocol advertised in the NLRI header Protocol-ID field or new protocol extensions to the protocol as advertised in the NLRI header Protocol-ID field for which there is no protocol neutral representation in the BGP link-state NLRI.

3.3.2.6. Link Name TLV

The Link Name TLV is optional. The value field identifies the symbolic name of the router link. This symbolic name can be the FQDN for the link, it can be a subset of the FQDN, or it can be any string operators want to use for the link. The use of FQDN or a subset of it is strongly recommended.
The Value field is encoded in 7-bit ASCII. If a user-interface for configuring or displaying this field permits Unicode characters, that user-interface is responsible for applying the ToASCII and/or ToUnicode algorithm as described in [RFC3490] to achieve the correct format for transmission or display.

How a router derives and injects link names is outside of the scope of this document.

```
+-----------------+-----------------+----------+
|     Type        |     Length      |
+-----------------+-----------------+----------+
+-----------------+-----------------+----------+
//                      //                      //
+-----------------+-----------------+----------+
//                      //                      //
```

Figure 23: Link Name format

3.3.3. Prefix Attribute TLVs

Prefixes are learned from the IGP topology (IS-IS or OSPF) with a set of IGP attributes (such as metric, route tags, etc.) that MUST be reflected into the LINK_STATE attribute. This section describes the different attributes related to the IPv4/IPv6 prefixes. Prefix Attributes TLVs SHOULD be used when advertising NLRI types 3 and 4 only. The following attributes TLVs are defined:

```
+---------------+----------------------+----------+-----------------+
|    TLV Code   | Description          |   Length | Reference       |
|     Point     |                      |          |                 |
+---------------+----------------------+----------+-----------------+
|      1152     | IGP Flags            |        1 | Section 3.3.3.1 |
|      1153     | Route Tag            |      4*n | Section 3.3.3.2 |
|      1154     | Extended Tag         |      8*n | Section 3.3.3.3 |
|      1155     | Prefix Metric        |        4 | Section 3.3.3.4 |
|      1156     | OSPF Forwarding      |        4 | Section 3.3.3.5 |
|               | Address              |          |                 |
|      1157     | Opaque Prefix        | variable | Section 3.3.3.6 |
|               | Attribute            |          |                 |
+---------------+----------------------+----------+-----------------+
```

Table 9: Prefix Attribute TLVs
3.3.3.1. IGP Flags TLV

IGP Flags TLV contains IS-IS and OSPF flags and bits originally assigned to the prefix. The IGP Flags TLV is encoded as follows:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|D|   Reserved  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 24: IGP Flag TLV format

The value field contains bits defined according to the table below:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>'D'</td>
<td>IS-IS Up/Down Bit</td>
<td>[RFC5305]</td>
</tr>
<tr>
<td>Reserved</td>
<td>Reserved for future use.</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: IGP Flag Bits Definitions

3.3.3.2. Route Tag

Route Tag TLV carries original IGP TAGs (IS-IS [RFC5130] or OSPF) of the prefix and is encoded as follows:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//                    Route Tags (one or more)                 //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 25: IGP Route TAG TLV format

Length is a multiple of 4.

The value field contains one or more Route Tags as learned in the IGP topology.
3.3.3.3. Extended Route Tag

Extended Route Tag TLV carries IS-IS Extended Route TAGs of the prefix [RFC5130] and is encoded as follows:

```
+-------------------+-------------------+
| Type              | Length            |
+-------------------+-------------------+
// Extended Route Tag (one or more) //
+-------------------+-------------------+
```

Figure 26: Extended IGP Route TAG TLV format

Length is a multiple of 8.

The ‘Extended Route Tag’ field contains one or more Extended Route Tags as learned in the IGP topology.

3.3.3.4. Prefix Metric TLV

Prefix Metric TLV carries the metric of the prefix as known in the IGP topology [RFC5305]. The attribute is mandatory and can only appear once.

```
+-------------------+-------------------+
| Type              | Metric            |
+-------------------+-------------------+
```

Figure 27: Prefix Metric TLV Format

Length is 4.

3.3.3.5. OSPF Forwarding Address TLV

OSPF Forwarding Address TLV [RFC2328] carries the OSPF forwarding address as known in the original OSPF advertisement. Forwarding address can be either IPv4 or IPv6.
3.3.3.6. Opaque Prefix Attribute TLV

The Opaque Prefix attribute TLV is an envelope that transparently carries optional prefix attribute TLVs advertised by a router. An originating router shall use this TLV for encoding information specific to the protocol advertised in the NLRI header Protocol-ID field or new protocol extensions to the protocol as advertised in the NLRI header Protocol-ID field for which there is no protocol neutral representation in the BGP link-state NLRI.

The format of the TLV is as follows:

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|              Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
//              Opaque Prefix Attributes  (variable)           //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Figure 29: Opaque Prefix Attribute TLV Format

Type is as specified in Table 9 and Length is variable.

3.4. BGP Next Hop Information

BGP link-state information for both IPv4 and IPv6 networks can be carried over either an IPv4 BGP session, or an IPv6 BGP session. If IPv4 BGP session is used, then the next hop in the MP_REACH_NLRI SHOULD be an IPv4 address. Similarly, if IPv6 BGP session is used, then the next hop in the MP_REACH_NLRI SHOULD be an IPv6 address. Usually the next hop will be set to the local end-point address of the BGP session. The next hop address MUST be encoded as described in [RFC4760]. The length field of the next hop address will specify the next hop address-family. If the next hop length is 4, then the
next hop is an IPv4 address; if the next hop length is 16, then it is
a global IPv6 address and if the next hop length is 32, then there is
one global IPv6 address followed by a link-local IPv6 address. The
link-local IPv6 address should be used as described in [RFC2545].
For VPN SAFI, as per custom, an 8 byte route-distinguisher set to all
zero is prepended to the next hop.

The BGP Next Hop attribute is used by each BGP-LS speaker to validate
the NLRI it receives. However, this specification doesn’t mandate
any rule regarding the re-write of the BGP Next Hop attribute.

3.5. Inter-AS Links

The main source of TE information is the IGP, which is not active on
inter-AS links. In some cases, the IGP may have information of
inter-AS links ([RFC5392], [RFC5316]). In other cases, for injecting
a non-IGP enabled link into the BGP link-state RIB, an implementation
MUST support configuration of either 'Static' or 'Direct' links.

3.6. Router-ID Anchoring Example: ISO Pseudonode

Encoding of a broadcast LAN in IS-IS provides a good example of how
Router-IDs are encoded. Consider Figure 30. This represents a
Broadcast LAN between a pair of routers. The "real" (=non
pseudonode) routers have both an IPv4 Router-ID and IS-IS Node-ID.
The pseudonode does not have an IPv4 Router-ID. Node1 is the DIS for
the LAN. Two unidirectional links (Node1, Pseudonode 1) and
(Pseudonode1, Node2) are being generated.

The link NRLI of (Node1, Pseudonode1) is encoded as follows: the IGP
Router-ID TLV of the local node descriptor is 6 octets long
containing ISO-ID of Node1, 1920.0000.2001; the IGP Router-ID TLV of
the remote node descriptor is 7 octets long containing the ISO-ID of
Pseudonode1, 1920.0000.2001.02. The BGP-LS attribute of this link
contains one local IPv4 Router-ID TLV (TLV type 1028) containing
192.0.2.1, the IPv4 Router-ID of Node1.

The link NRLI of (Pseudonode1, Node2) is encoded as follows: the IGP
Router-ID TLV of the local node descriptor is 7 octets long
containing the ISO-ID of Pseudonode1, 1920.0000.2001.02; the IGP
Router-ID TLV of the remote node descriptor is 6 octets long
containing ISO-ID of Node2, 1920.0000.2002. The BGP-LS attribute of
this link contains one remote IPv4 Router-ID TLV (TLV type 1030)
containing 192.0.2.2, the IPv4 Router-ID of Node2.
3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration

Graceful migration from one IGP to another requires coordinated operation of both protocols during the migration period. Such a coordination requires identifying a given physical link in both IGPs. The IPv4 Router-ID provides that "glue" which is present in the node descriptors of the OSPF link NLRI and in the link attribute of the IS-IS link NLRI.

Consider a point-to-point link between two routers, A and B, that initially were OSPFv2-only routers and then IS-IS is enabled on them. Node A has IPv4 Router-ID and ISO-ID; node B has IPv4 Router-ID, IPv6 Router-ID and ISO-ID. Each protocol generates one link NLRI for the link (A, B), both of which are carried by BGP-LS. The OSPFv2 link NLRI for the link is encoded with the IPv4 Router-ID of nodes A and B in the local and remote node descriptors, respectively. The IS-IS link NLRI for the link is encoded with the ISO-ID of nodes A and B in the local and remote node descriptors, respectively. In addition, the BGP-LS attribute of the IS-IS link NLRI contains the the TLV type 1028 containing the IPv4 Router-ID of node A; TLV type 1030 containing the IPv4 Router-ID of node B and TLV type 1031 containing the IPv6 Router-ID of node B. In this case, by using IPv4 Router-ID, the link (A, B) can be identified in both IS-IS and OSPF protocol.

4. Link to Path Aggregation

Distribution of all links available in the global Internet is certainly possible, however not desirable from a scaling and privacy point of view. Therefore an implementation may support link to path aggregation. Rather than advertising all specific links of a domain, an ASBR may advertise an "aggregate link" between a non-adjacent pair of nodes. The "aggregate link" represents the aggregated set of link properties between a pair of non-adjacent nodes. The actual methods to compute the path properties (of bandwidth, metric) are outside the scope of this document. The decision whether to advertise all specific links or aggregated links is an operator’s policy choice. To highlight the varying levels of exposure, the following deployment examples are discussed.
4.1. Example: No Link Aggregation

Consider Figure 31. Both AS1 and AS2 operators want to protect their inter-AS (R1, R3), (R2, R4) links using RSVP-FRR LSPs. If R1 wants to compute its link-protection LSP to R3 it needs to "see" an alternate path to R3. Therefore the AS2 operator exposes its topology. All BGP TE enabled routers in AS1 "see" the full topology of AS and therefore can compute a backup path. Note that the decision if the direct link between (R3, R4) or the (R4, R5, R3) path is used is made by the computing router.

```
   AS1     :     AS2
       :     
      R1-----R3     
       :     \    |
       :     :    
       :     R5   |
      /     :     |
       :     
      R2-----R4

Figure 31: No link aggregation
```

4.2. Example: ASBR to ASBR Path Aggregation

The brief difference between the "no-link aggregation" example and this example is that no specific link gets exposed. Consider Figure 32. The only link which gets advertised by AS2 is an "aggregate" link between R3 and R4. This is enough to tell AS1 that there is a backup path. However the actual links being used are hidden from the topology.

```
   AS1     :     AS2
       :     
      R1-----R3     
       :     \    |
       :     :    
       :     
      /     :     |
       :     
      R2-----R4

Figure 32: ASBR link aggregation
```
4.3. Example: Multi-AS Path Aggregation

Service providers in control of multiple ASes may even decide to not expose their internal inter-AS links. Consider Figure 33. AS3 is modeled as a single node which connects to the border routers of the aggregated domain.

```
+---------+    +---------+    +---------+
| AS1     | :   | AS2     | :   | AS3     |
|         | :   |         | :   |         |
+---------+    +---------+    +---------+
| R1------R3----- | | VR0 |
| :         | :   | /     |
| R2------R4----- | |     |
```

Figure 33: Multi-AS aggregation

5. IANA Considerations

This document requests a code point from the registry of Address Family Numbers. As per early allocation procedure this is AFI 16388.

This document requests a code point from the registry of Subsequent Address Family Numbers. As per early allocation procedure this is SAFI 71.

This document requests a code point from the BGP Path Attributes registry.

This document requests creation of a new registry for node anchor, link descriptor and link attribute TLVs. Values 0-255 are reserved. Values 256-65535 will be used for Codepoints. The registry will be initialized as shown in Table 11. Allocations within the registry will require documentation of the proposed use of the allocated value and approval by the Designated Expert assigned by the IESG (see [RFC5226]).

Note to RFC Editor: this section may be removed on publication as an RFC.

6. Manageability Considerations

This section is structured as recommended in [RFC5706].
6.1. Operational Considerations

6.1.1. Operations

Existing BGP operational procedures apply. No new operation procedures are defined in this document. It is noted that the NLRI information present in this document purely carries application level data that has no immediate corresponding forwarding state impact. As such, any churn in reachability information has different impact than regular BGP updates which need to change forwarding state for an entire router. Furthermore it is anticipated that distribution of this NLRI will be handled by dedicated route-reflectors providing a level of isolation and fault-containment between different NLRI types.

6.1.2. Installation and Initial Setup

Configuration parameters defined in Section 6.2.3 SHOULD be initialized to the following default values:

- The Link-State NLRI capability is turned off for all neighbors.
- The maximum rate at which Link State NLRIs will be advertised/withdrawn from neighbors is set to 200 updates per second.

6.1.3. Migration Path

The proposed extension is only activated between BGP peers after capability negotiation. Moreover, the extensions can be turned on/off an individual peer basis (see Section 6.2.3), so the extension can be gradually rolled out in the network.

6.1.4. Requirements on Other Protocols and Functional Components

The protocol extension defined in this document does not put new requirements on other protocols or functional components.

6.1.5. Impact on Network Operation

Frequency of Link-State NLRI updates could interfere with regular BGP prefix distribution. A network operator MAY use a dedicated Route-Reflector infrastructure to distribute Link-State NLRIs.

Distribution of Link-State NLRIs SHOULD be limited to a single admin domain, which can consist of multiple areas within an AS or multiple ASes.
6.1.6. Verifying Correct Operation

Existing BGP procedures apply. In addition, an implementation SHOULD allow an operator to:

- List neighbors with whom the Speaker is exchanging Link-State NLRIs

6.2. Management Considerations

6.2.1. Management Information

6.2.2. Fault Management

TBD.

6.2.3. Configuration Management

An implementation SHOULD allow the operator to specify neighbors to which Link-State NLRIs will be advertised and from which Link-State NLRIs will be accepted.

An implementation SHOULD allow the operator to specify the maximum rate at which Link State NLRIs will be advertised/withdrawn from neighbors.

An implementation SHOULD allow the operator to specify the maximum number of Link State NLRIs stored in router’s RIB.

An implementation SHOULD allow the operator to create abstracted topologies that are advertised to neighbors; Create different abstractions for different neighbors.

An implementation SHOULD allow the operator to configure a 64-bit instance ID.

An implementation SHOULD allow the operator to configure a pair of ASN and BGP-LS identifier per flooding set the node participates in.

6.2.4. Accounting Management

Not Applicable.

6.2.5. Performance Management

An implementation SHOULD provide the following statistics:
o Total number of Link-State NLRI updates sent/received
o Number of Link-State NLRI updates sent/received, per neighbor
o Number of errored received Link-State NLRI updates, per neighbor
o Total number of locally originated Link-State NLRIs

6.2.6. Security Management

An operator SHOULD define ACLs to limit inbound updates as follows:

o Drop all updates from Consumer peers

7. TLV/Sub-TLV Code Points Summary

This section contains the global table of all TLVs/Sub-TLVs defined in this document.
<table>
<thead>
<tr>
<th>TLV Code Point</th>
<th>Description</th>
<th>IS-IS TLV/Sub-TLV</th>
<th>Value defined in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>Local Node Descriptors</td>
<td>---</td>
<td>Section 3.2.1.2</td>
</tr>
<tr>
<td>257</td>
<td>Remote Node Descriptors</td>
<td>---</td>
<td>Section 3.2.1.3</td>
</tr>
<tr>
<td>258</td>
<td>Link Local/Remote Identifiers</td>
<td>22/4</td>
<td>[RFC5307]/1.1</td>
</tr>
<tr>
<td>259</td>
<td>IPv4 interface address</td>
<td>22/6</td>
<td>[RFC5305]/3.2</td>
</tr>
<tr>
<td>260</td>
<td>IPv4 neighbor address</td>
<td>22/8</td>
<td>[RFC5305]/3.3</td>
</tr>
<tr>
<td>261</td>
<td>IPv6 interface address</td>
<td>22/12</td>
<td>[RFC6119]/4.2</td>
</tr>
<tr>
<td>262</td>
<td>IPv6 neighbor address</td>
<td>22/13</td>
<td>[RFC6119]/4.3</td>
</tr>
<tr>
<td>263</td>
<td>Multi-Topology ID</td>
<td>---</td>
<td>Section 3.2.1.5</td>
</tr>
<tr>
<td>264</td>
<td>OSPF Route Type Information</td>
<td>---</td>
<td>Section 3.2.3</td>
</tr>
<tr>
<td>265</td>
<td>IP Reachability Information</td>
<td>---</td>
<td>Section 3.2.3</td>
</tr>
<tr>
<td>512</td>
<td>Autonomous System</td>
<td>---</td>
<td>Section 3.2.1.4</td>
</tr>
<tr>
<td>513</td>
<td>BGP-LS Identifier</td>
<td>---</td>
<td>Section 3.2.1.4</td>
</tr>
<tr>
<td>514</td>
<td>Area ID</td>
<td>---</td>
<td>Section 3.2.1.4</td>
</tr>
<tr>
<td>515</td>
<td>IGP Router-ID</td>
<td>---</td>
<td>Section 3.2.1.4</td>
</tr>
<tr>
<td>1024</td>
<td>Node Flag Bits</td>
<td>---</td>
<td>Section 3.3.1.1</td>
</tr>
<tr>
<td>1025</td>
<td>Opaque Node Properties</td>
<td>---</td>
<td>Section 3.3.1.5</td>
</tr>
<tr>
<td>1026</td>
<td>Node Name</td>
<td>variable</td>
<td>Section 3.3.1.3</td>
</tr>
<tr>
<td>1027</td>
<td>IS-IS Area Identifier</td>
<td>variable</td>
<td>Section 3.3.1.2</td>
</tr>
<tr>
<td>1028</td>
<td>IPv4 Router-ID of Local Node</td>
<td>134/---</td>
<td>[RFC5305]/4.3</td>
</tr>
<tr>
<td>1029</td>
<td>IPv6 Router-ID of Local Node</td>
<td>140/---</td>
<td>[RFC6119]/4.1</td>
</tr>
<tr>
<td>1030</td>
<td>IPv4 Router-ID of Remote Node</td>
<td>134/---</td>
<td>[RFC5305]/4.3</td>
</tr>
<tr>
<td>1031</td>
<td>IPv6 Router-ID of Remote Node</td>
<td>140/---</td>
<td>[RFC6119]/4.1</td>
</tr>
<tr>
<td>1088</td>
<td>Administrative group (color)</td>
<td>22/3</td>
<td>[RFC5305]/3.1</td>
</tr>
<tr>
<td>1089</td>
<td>Maximum link bandwidth</td>
<td>22/9</td>
<td>[RFC5305]/3.3</td>
</tr>
<tr>
<td>1090</td>
<td>Max. reservable link bandwidth</td>
<td>22/10</td>
<td>[RFC5305]/3.5</td>
</tr>
<tr>
<td>1091</td>
<td>Unreserved bandwidth</td>
<td>22/11</td>
<td>[RFC5305]/3.6</td>
</tr>
</tbody>
</table>
8. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See [I-D.ietf-karp-routing-tcp-analysis] for details.

A BGP Speaker SHOULD NOT accept updates from a Consumer peer.

An operator SHOULD employ a mechanism to protect a BGP Speaker against DDOS attacks from Consumers.

9. Contributors

We would like to thank Robert Varga for the significant contribution he gave to this document.

10. Acknowledgements

We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les Ginsberg, Liem Nguyen, Manish Bhardwaj, Mike Shand, Peter Psenak, Rex Fernando, Richard Woundy, Steven Luong, Tamas Mondal, Waqas Alam, Vipin Kumar, Naiming Shen, Balaji Rajagopalan and Yakov Rekhter for
their comments.

11. References

11.1. Normative References

11.2. Informative References

[I-D.ietf-alto-protocol]
Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol",
draft-ietf-alto-protocol-13 (work in progress),
September 2012.

[I-D.ietf-karp-routing-tcp-analysis]
Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP and MSDP Issues According to KARP Design
Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in progress),
April 2013.

Element (PCE)-Based Architecture", RFC 4655, August 2006.

Authors’ Addresses

Hannes Gredler
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
US

Email: hannes@juniper.net
Abstract

Consider a content provider that wants to deliver a particular content to a set of customers/subscribers, where the provider and the subscribers are connected by an IP service provider. This document covers two areas needed to accomplish this:

1. Providing the content provider with the information of whether it can use the multicast connectivity service provided by the IP service provider to deliver a particular content to a particular set of subscribers, and

2. Providing the content provider with a mechanism to restrict delivery of a given content to a particular set of the subscribers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 15, 2014.

Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Specification of Requirements 3
 1.1. Introduction ... 3
 1.2. Overview of Operations ... 4
2. IANA Considerations .. 5
3. Security Considerations ... 5
4. Acknowledgements .. 6
5. Normative References .. 6
Authors’ Addresses ... 6
1. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.1. Introduction

Consider a content provider that wants to deliver a particular content to a set of customers/subscribers, where the provider and the subscribers are connected by an IP service provider. This document covers two areas needed to accomplish this:

1. Providing the content provider with the information of whether it can use the multicast connectivity service provided by the IP service provider to deliver a particular content to a particular set of subscribers, and

2. Providing the content provider with a mechanism to restrict delivery of a given content to a particular set of the subscribers.

For the purpose of this document we assume that a content provider consists of one or more Content Servers, and one or more Content Distribution Controllers. While this document assumes communication between Content Servers and Content Distribution Controllers, the procedures for implementing such communication is outside the scope of this document.

Content Servers are connected to one or more IP service provider (ISP) that can offer both multicast and unicast connectivity service to the subscribers of the content provider. Content provider uses this ISP(s) to deliver content to its subscribers.

Subscribers are connected to the Edge Routers (ERs) of the ISP. Note that the multicast connectivity service provided by the ISP extends all the way to the ERs. Such service could be provided by either deploying IP multicast natively, or with some tunneling mechanism like AMT, or by a combination of both within the ISP. However, between the ERs and the subscribers there may, or may not be multicast connectivity.

In the case where a particular subscriber of a given content provider does not have multicast connectivity to its ER, the content provider would use IP unicast service provided by the ISP to transmit the particular content to that subscriber.

A subscriber may want to access a particular content that is not
available to that subscriber due to policy reasons. When that subscriber would have received that content via unicast connectivity, the Content Distribution Controller, or the Content Servers, or both may enforce the policy to not deliver the content. However, when the content would be delivered via multicast connectivity it may be possible for the subscriber to receive the content by illicitly participating in the multicast signaling for that content.

To prevent a subversion of the intent of this content delivery policy, a mechanism is provided to make this policy available to devices participating in multicast signaling.

1.2. Overview of Operations

An ISP, using the procedures described in Multicast Distribution Reachability Signaling [MDRS], provides a content provider, and specifically Content Distribution Controller(s) of that content provider, with the information of whether a particular subscriber of that content provider has multicast connectivity to an ER of that ISP with the information of whether a particular group of subscribers can receive multicast content.

For each content provided by a content provider, the content provider maintains a list of subscribers who are either excluded or allowed to receive the content. For the purpose of maintaining this list this document assumes that subscribers are grouped into "zones" based on IP addresses, so that exclusion/inclusion uniformly applies to all the subscribers within a given zone. Procedures by which subscribers are grouped into zones are outside the scope of this document. However, this document assumes that this grouping is done consistently by both the content provider and the ISP(s) that the content provider uses for delivering its content.

To enforce the exclusion/inclusion policies, the content provider uses procedures described in Multicast Distribution Control Signaling [MDCS].

For each content provided by a content provider, the content provider selects a particular multicast channel (S, G) for distributing this content using multicast connectivity service. Procedures by which the content provider selects a particular multicast channel, and maintains the mapping are outside the scope of this document.

Subscribers are connected to the Edge Routers (ERs) of the ISP. Note that when multicast connectivity service provided is by the ISP, that service extends all the way to the ERs. Such service could be provided by either deploying IP multicast natively, or with some tunneling mechanism like AMT, or a combination of both within the
ISP. However, between the ERs and the subscribers there may, or may not be multicast connectivity.

When a subscriber wants to receive the particular content from its content provider, the subscriber issues a request for this content to the Content Distribution Controller of the provider. When the Content Distribution Controller receives the request, the Content Distribution Controller uses the information carried in the request (e.g., IP address of the subscriber) to determine the zone of the subscriber, and based on that zone to determine whether the subscriber can receive this content.

If the Content Distribution Controller determines that the subscriber can receive the content, then based on the information provided by the multicast distribution reachability signaling the Content Distribution Controller determines whether the subscriber can receive this content using multicast connectivity service, and if yes, then returns to the subscriber the multicast channel selected for distributing the content.

If the Content Distribution Controller determines that the subscriber can receive the content, but can not receive the content using multicast connectivity service, the Content Distribution Controller returns to the subscriber the information needed to receive this content using unicast connectivity service.

If the content would have been delivered to the subscriber via multicast connectivity, but the Content Distribution Controller had determined the subscriber was not permitted access to this content, then this policy may need to be enforced by the Edge Routers or upstream multicast routers to prevent illicit access of this content. This policy is enforced by utilizing filtering information distributed using Multicast Distribution Control Signaling [MDCS].

Specification of the procedures for communication between subscribers and Content Distribution Controllers are outside the scope of this document.

2. IANA Considerations

This document introduces no IANA Considerations.

3. Security Considerations

TBD
4. Acknowledgements

The authors would like to thank Han Nguyen for his contributions to this document.

5. Normative References

Authors’ Addresses

Huajin Jeng
AT&T
Email: hj2387@att.com

Jeffrey Haas
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US
Email: jhaas@juniper.net

Yakov Rekhter
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US
Email: yakov@juniper.net
Abstract

This document describes a mechanism whereby the BGP Flow Specification NLRI format may be utilized to distribute multicast Control Plane filters. This mechanism is called Multicast Distribution Control Signaling (MDCS).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 15, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Specification of Requirements 3
 2.1. Multicast Distribution Control Signaling 3
 2.2. An example of configuration on ERs 6
3. Summary of Updates to BGP Flowspec 7
4. IANA Considerations ... 7
5. Security Considerations 7
6. Acknowledgements .. 7
7. References .. 7
 7.1. Normative References 7
 7.2. Informative References 8
Authors’ Addresses .. 8
1. Introduction

Consider a content provider that wants to deliver a particular content to a set of customers/subscribers, where the provider and the subscribers are connected by an IP service provider and the content is distributed using multicast connectivity. The content provider may wish to restrict delivery of the content to a subset of the subscribers in a centralized fashion.

For the purpose of this document we assume that a content provider consists of one or more Content Servers, and one or more Content Distribution Controllers. While this document assumes communication between Content Servers and Content Distribution Controllers, the procedures for implementing such communication is outside the scope of this document.

Content Servers are connected to one or more IP service providers (ISPs) that are offering multicast delivery of the content to the subscribers of the content provider. Content providers use these ISPs to deliver content to their subscribers.

Subscribers are connected to the Edge Routers (ERs) of the ISP. Note that the multicast connectivity service provided by the ISP extends all the way to the ERs. Such service could be provided by either deploying IP multicast natively, or with some tunneling mechanism like AMT, or by a combination of both within the ISP. However, between the ERs and the subscribers there may, or may not be multicast connectivity.

For further information, see [geo-dist].

2. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2.1. Multicast Distribution Control Signaling

Multicast distribution control signaling is intended to enforce exclusion/inclusion policies of a content provider, and specifically to prevent a subscriber from accessing a particular multicast channel carrying a particular content provided by the content provider if the subscriber obtained the information about this channel through some illegitimate means.

Multicast distribution control signaling for a particular content is
originated by Content Distribution Controller(s), and uses BGP Flow Spec [RFC5575] as follows:

For a particular content carried over a particular (S, G) multicast flow the Content Distribution Controller responsible for that content originates a BGP Flow Spec route. This route is carried using BGP multi-protocol capabilities [RFC4760] with AFI 1 (for IPv4) or 2 (for IPv6), and the MCAST-FLOWSPEC SAFI. The NLRI of the route carries S in the Source Prefix component (with length of 32 for IPv4 or 128 for IPv6), and G in the Destination Prefix component (with length of 32 for IPv4 or 128 for IPv6).

This route is ultimately propagated to the ER of the ISP connected to the content provider.

An ER that receives BGP Flow Spec routes carrying the multicast distribution control information applies it to PIM and/or IGMP messages the ER receives from the subscribers connected to that ER. (Note that such IGMP messages may be encapsulated in MDT messages.) Specifically, the ER, based on the information received in the BGP Flow Spec routes, decides whether to accept (or reject) a particular PIM or IGMP Join received on one of its subscriber’s ports, as follows:

As a Content Distribution Controller originates a BGP Flow Spec route for a particular (S, G) multicast flow, such a route will carry one or more Route Targets [RFC4360], which will ultimately control inclusion/exclusion of that flow on individual ports of ERs that receive this route.

Each subscriber port on an ER is associated with one or more zones. For each zone that a port belongs to, the port is provisioned with two sets of RTs associated with that zone - the inclusion set is for allowing to accept PIM or IGMP Join for some content (or to be more precise for the (S, G) flow that carries that content), and the exclusion set is for disallowing to accept PIM or IGMP Joins for some other content. All those RTs (of all subscribers ports) control import of BGP Flow Spec routes by the ER.

Note that the RTs associated with the subscriber port are ordered. This permits configurations that accommodate include or exclude policies of zones of differing geographic size or overlap. See below for an example.

If the RTs carried by a given BGP Flow Spec route carrying multicast distribution control signaling match the inclusion set of RTs associated with a given port on an ER, then PIM or IGMP Joins for the (S, G) carried in the route and received from the subscriber(s)
connected to that port SHOULD be accepted by the ER. If the RTs
carried by the route match the exclusion set, then PIM or IGMP Joins
for the (S, G) carried in the route MUST NOT be accepted when
received from the subscriber(s) connected to that port. (See example
section below.)

Each subscriber port on an ER is provisioned with the default
inclusion/exclusion policy that controls acceptance (or rejection) of
PIM or IGMP Join messages in the absence of any multicast
distribution control signaling. In the former case, in the absence
of any multicast distribution signaling, subscribers connected to
that port may receive any multicast flow. In the latter case, in the
absence of any multicast distribution control signaling, subscribers
connected to that port may receive no multicast flows. BGP Flow Spec
routes that carry multicast distribution control signaling modify
such default behavior.

Once a Content Distribution Controller determines that a particular
(S, G) multicast stream no longer used to carry a particular content,
the Content Distribution Controller withdraws the BGP Flow Spec
route that carries multicast distribution control information for that
content.

Note that while [RFC5575] uses the information carried in BGP Flow
Spec routes for the purpose of Data Plane filtering, this document
uses this information for the purpose of filtering multicast Control
Plane traffic (PIM or IGMP).

To constrain the distribution of BGP Flow Spec routes that carry
multicast distribution control information to only the relevant ERs,
the ERs MAY originate Route Target Constraint (RTC) routes that carry
the RTs that control import of the BGP Flow Spec routes on these ERs.

To constrain the import of these RTC routes to only the Content
Distribution Controllers, the Content Distribution Controllers are
configured with one or more RTs. These RTs control import by the
Content Distribution Controller(s) of the RTC routes originated by
the ERs. Furthermore, the Content Distribution Controllers MAY
themselves originate RTC routes that carry the import RT(s)
configured on these Content Distribution Controllers, and that
control import of RTC routes by these Content Distribution
Controllers.

This document assumes that if a given content provider has multiple
Content Distribution Controllers, then all of these Controllers are
provisioned with the same RT(s) that control import of the RTC routes
originated by the ERs. Furthermore, this document assumes that if a
given ISP is providing (multicast) connectivity service to more than
one content provider, then the RTC routes originated by any of the
ERs of that ISP MUST carry the set union of the import RTs used by
the Content Distribution Controllers of all of these content
providers.

RTs carried by routes with AFI 1 and MCAST-FLOWSPEC SAFI SHOULD NOT
be re-used by routes with any other AFI and/or SAFI. Likewise, RTs
carried by routes with AFI 2 and MCAST-FLOWSPEC SAFI SHOULD NOT be
re-used by routes with any other AFI and/or SAFI. Furthermore, RTs
carried by routes with AFI 1 and SAFI 132 (AFI/SAFI used by RTC
routes) SHOULD NOT be re-used by routes with any other AFI and/or
SAFI.

Note that while [RFC4684] uses RTC routes to constrain distribution
of VPN-IP routes [RFC4364], this document uses RTC routes to
constrain distribution of BGP Flow Spec routes, and also to
(recursively) constrain distribution of RTC routes themselves.

2.2. An example of configuration on ERs

Consider an ER in Manhattan that has a port that is provisioned with
the following import RTs:

 <include-manhattan, exclude-manhattan, include-nyc, exclude-
nyc, include-east, exclude-east, include-usa, exclude-usa>

When the ER receives a Flow Spec route with <exclude-nyc, include-
manhattan, include-usa> RTs, the ER first try to match "include-
manhattan" or "exclude-manhattan" (the first ones on the list) - and
the result is "include-manhattan". Therefore, the (S, G) carried in
the Flow Spec route is allowed on that port of the ER.

Consider another ER in Boston that has a port that is provisioned
with the following import RTs:

 <include-cambridge, exclude-cambridge, include-bos, exclude-
bos, include-east, exclude-east, include-usa, exclude-usa>

The above mentioned Flow Spec route will be imported (due to the
include-usa RT), and will result in the (S, G) carried in the flow
Spec route to be allowed on that port of the ER.

Now consider a different Flow Spec route with the <exclude-usa,
include-bos, include-nyc, exclude-manhattan> RTs. The (S, G) carried
in the route will be disallowed in Manhattan, allowed in Boston, and
allowed in Queens (as the route will match the "include-nyc" RT).
3. Summary of Updates to BGP Flowspec

As described above, this document makes small changes to the BGP Flow Specification mechanism when carried using the MCAST-FLOWSPEC SAFI:

- Destination addresses will contain a multicast group rather than a unicast destination.
- Flow specification routes for this SAFI are used for filtering multicast Control Plane traffic rather than the matching multicast traffic itself.
- Flow specification routes for this SAFI will carry one or more Route Target extended communities.
- Flow specification component types not applicable to signaling multicast Control Plane traffic MUST be ignored. E.g.: ICMP type, ICMP code, TCP flags, Fragment.

4. IANA Considerations

This document defines a new BGP Subsequent Address Family Identifier (SAFI) value, MCAST-FLOWSPEC. The authors request assignment of a value from the First Come, First Served portion of this registry.

5. Security Considerations

TBD

6. Acknowledgements

The authors would like to thank Han Nguyen for his contributions to this document.

7. References

7.1. Normative References

7.2. Informative References

Authors’ Addresses

Huajin Jeng
AT&T

Email: hj2387@att.com

Jeffrey Haas
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US

Email: jhaas@juniper.net
Abstract

This document describes a mechanism whereby a subscriber’s Internet service provider may signal in BGP the ability of the subscriber network to receive content using multicast connectivity. This mechanism is called Multicast Distribution Reachability Signaling (MDRS).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 15, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Specification of Requirements 3
 2.1. Multicast Distribution Reachability Signaling 4
3. IANA Considerations ... 5
4. Security Considerations .. 5
5. Acknowledgements .. 5
6. Normative References .. 5
Authors’ Addresses ... 5
1. Introduction

Consider a content provider that wants to deliver a particular content to a set of customers/subscribers, where the provider and the subscribers are connected by an IP service provider. This content provider can deliver its content via unicast connectivity or, if supported by the subscriber network, multicast connectivity. A mechanism is required to determine if the subscriber network supports delivery of content to subscribers via multicast connectivity.

This document describes a mechanism whereby the subscriber’s Internet service provider may signal in BGP the ability of the subscriber network to receive the content using multicast connectivity. This mechanism is called Multicast Distribution Reachability Signaling (MDRS).

For the purpose of this document we assume that a content provider consists of one or more Content Servers, and one or more Content Distribution Controllers. While this document assumes communication between Content Servers and Content Distribution Controllers, the procedures for implementing such communication is outside the scope of this document.

Content Servers are connected to one or more IP service providers (ISPs) that can offer both multicast and unicast connectivity service to the subscribers of the content provider. Content providers use these ISPs to deliver content to their subscribers.

Subscribers are connected to the Egress Routers (ERs) of the ISP. Note that the multicast connectivity service provided by the ISP extends all the way to the ERs. Such service could be provided by either deploying IP multicast natively, or with some tunneling mechanism like AMT, or by a combination of both within the ISP. However, between the ERs and the subscribers there may, or may not be multicast connectivity.

In the case where a particular subscriber of a given content provider does not have multicast connectivity to its ER, the content provider would use IP unicast service provided by the ISP to transmit the particular content to that subscriber.

2. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
2.1. Multicast Distribution Reachability Signaling

Multicast distribution reachability signaling is responsible for giving a content provider, and specifically Content Distribution Controller(s) of the content provider the information of whether a particular subscriber of that content provider has multicast connectivity to an ER of an ISP that the content provider uses for distributing its content.

This document assumes that each ER can determine the multicast reachability status for each of the subscriber connected to that ER. Procedures by which an ER accomplishes this are outside the scope of this document.

To indicate whether a given ER has multicast reachability to a subscriber (be that either a native multicast or AMT) this document uses BGP as follows. An ER originates into IBGP routes for the subscribers connected to that ER for which the ER has multicast reachability. These routes are carried using BGP multi-protocol capabilities [RFC4760] with AFI 1 or 2, and the MCAST-REACH SAFI. The NLRI field in the MP_REACH_NLRI/MP_UNREACH_NLRI attribute of these routes contains subscribers’ IP addresses encoded as IP address prefixes. The value of the AFI field in the MP_REACH_NLRI/MP_UNREACH_NLRI attribute determines whether subscribers’ addresses are IPv4 or IPv6 (AFI 1 indicates IPv4 addresses, AFI 2 indicates IPv6 addresses).

A Content Distribution Controller, when it receives such routes, uses them to determine whether the content could be delivered to the subscribers via the ISP who owns the ERs using the multicast connectivity service provided by the ISP.

To constrain the flow of BGP routes that carry multicast distribution reachability information such routes carry a particular Route Target (RT) Extended Community [RFC4360], and Content Distribution Controller(s) are provisioned to import routes with such a RT.

RTs carried by routes with AFI 1 and MCAST-REACH SAFI SHOULD NOT be re-used by routes with any other AFI and/or SAFI. Likewise, RTs carried by routes with AFI 2 and MCAST-REACH SAFI SHOULD NOT be re-used by routes with any other AFI and/or SAFI.

To facilitate such constrained distribution of multicast distribution reachability information one MAY use Constrained Route Distribution [RFC4684].
3. IANA Considerations

This document defines a new BGP Subsequent Address Family Identifier (SAFI) value, MCAST-REACH. The authors request assignment of a value from the First Come, First Served portion of this registry.

4. Security Considerations

TBD

5. Acknowledgements

The authors would like to thank Han Nguyen for his contributions to this document.

6. Normative References

Authors’ Addresses

Huajin Jeng
AT&T

Phone:
Email: hj2387@att.com
Jeffrey Haas
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US
Email: jhaas@juniper.net

Yakov Rekhter
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US
Email: yakov@juniper.net

Jeffrey (Zhaohui) Zhang
Juniper Networks
1194 N. Mathida Ave.
Sunnyvale, CA 94089
US
Email: zzhang@juniper.net
Support for Long-lived BGP Graceful Restart
draft-uttaro-idr-bgp-persistence-02

Abstract

In this document we introduce a new BGP capability termed "Long-lived Graceful Restart Capability" so that stale routes can be retained for a longer time upon session failure. In addition a new BGP community "LLGR_STALE" is introduced for marking stale routes retained for a longer time. We also specify that such long-lived stale routes be treated as the least-preferred, and their advertisements be limited to BGP speakers that have advertised the new capability. Use of this extension is not advisable in all cases, and we provide guidelines to help determine if it is.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 13, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Requirements Language 4
2. Definitions ... 4
3. Protocol Extensions .. 5
 3.1. Long-lived Graceful Restart Capability 5
 3.2. LLGR_STALE Community 6
 3.3. NO_LLGR Community .. 6
4. Operation .. 7
 4.1. Use of Graceful Restart Capability 7
 4.2. Session Resets ... 7
 4.3. Processing LLGR_STALE Routes 9
 4.4. Route Selection ... 10
 4.5. Multicast VPN ... 10
 4.6. Errors ... 10
 4.7. Optional Partial Deployment Procedure 10
 4.8. Procedures When BGP is the PE-CE Protocol in a VPN 11
5. Deployment Considerations 12
 5.1. When BGP is the PE-CE Protocol in a VPN 13
 5.2. Risks of Depreferencing Routes 13
6. Security Considerations ... 14
7. Examples of Operation ... 16
8. Acknowledgements .. 18
9. Contributors .. 18
10. IANA Considerations .. 19
11. References ... 19
 11.1. Normative References 19
 11.2. Informative References 20
Authors’ Addresses .. 20
1. Introduction

Historically, routing protocols in general and BGP in particular have been designed with a focus on correctness, where a key part of "correctness" is for each network element’s forwarding state to converge toward the current state of the network as quickly as possible. For this reason, the protocol was designed to remove state advertised by routers which went down (from a BGP perspective) as quickly as possible. Over time, this has been relaxed somewhat, notably by BGP Graceful Restart [RFC4724]; however, the paradigm has remained one of attempting to rapidly remove "stale" state from the network.

Over time, two phenomena have arisen that call into question the underlying assumptions of this paradigm. The first is the widespread adoption of tunneled forwarding infrastructures, for example MPLS. Such infrastructures eliminate the risk of some types of forwarding loops that can arise in hop-by-hop forwarding, and thus reduce one of the motivations for strong consistency between forwarding elements. The second is the increasing use of BGP as a transport for data less closely associated with packet forwarding than was originally the case. Examples include the use of BGP for autodiscovery (VPLS [RFC4761]) and filter programming (FLOWSPEC [RFC5575]). In these cases, BGP data takes on a character more akin to configuration than to traditional routing.

The observations above motivate a desire to offer network operators the ability to choose to retain BGP data for a longer period than has hitherto been possible when the BGP control plane fails for some reason. Although the semantics of BGP Graceful Restart [RFC4724] are close to those desired, several gaps exist, most notably in maximum time for which "stale" information can be retained -- Graceful Restart imposes a 4095 second upper bound.

In this document we introduce a new BGP capability termed "Long-lived Graceful Restart Capability" so that stale information can be retained for a longer time across a session reset. We also introduce a new BGP community, "LLGR_STALE", to mark such information. Such stale information is to be treated as least-preferred, and its advertisement limited to BGP speakers that support the new capability. Where possible, we reference the semantics of BGP Graceful Restart [RFC4724] rather than specifying similar semantics in this document.

The expected deployment model for this extension is that it will only be invoked for certain address families. This is discussed in more detail in the Deployment Considerations section (Section 5). When used, its use may be combined with that of traditional Graceful Restart.
Restart, in which case it is invoked only after the traditional Graceful Restart interval has elapsed, or it may be invoked immediately. Apart from the potential to greatly extend the timer, the most obvious difference between Long-Lived and traditional Graceful Restart is that in the Long-Lived version, routes are "depreferenced", that is, treated as least-preferred, whereas in the traditional version, route preference is not affected. The design choice to treat Long-Lived Stale routes as least-preferred was informed by the expectation that they might be retained for a (potentially) almost unbounded period of time, whereas in the traditional Graceful Restart case, stale routes are retained for only a brief interval. In the GR case, the tradeoff between advertising new route status (at the cost of routing churn) and not advertising it (at the cost of suboptimal or incorrect route selection) is resolved in favor of not advertising, and in the LLGR case, it is resolved in favor of advertising new state.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions

Depreference, Depreferenced: A route is said to be depreferenced if it has its route selection preference reduced in reaction to some event.

GR: Abbreviation for "Graceful Restart" [RFC4724], also sometimes referred to herein as "conventional Graceful Restart" or "conventional GR" to distinguish it from the "Long-lived Graceful Restart" defined by this document.

Helper: Or "helper router". During Graceful Restart or Long-lived Graceful Restart, the router that detects a session failure and applies the listed procedures. [RFC4724] refers to this as the "receiving speaker".

LLGR: Abbreviation for "Long-lived Graceful Restart".

LLST: Abbreviation for "Long-lived Stale Time".

Route: We use "route" to mean any information encoded as a BGP NLRI and set of path attributes. As discussed above, the connection between such routes and installation of forwarding state may be quite remote.
3. Protocol Extensions

A new BGP capability and two new BGP communities are introduced.

3.1. Long-lived Graceful Restart Capability

The "Long-lived Graceful Restart Capability" is a new BGP capability [RFC5492] that can be used by a BGP speaker to indicate its ability to preserve its state according to the procedures of this document. This capability MUST be advertised in conjunction with the Graceful Restart capability [RFC4724], see the "Use of Graceful Restart Capability" section (Section 4.1).

The capability value consists of one or more tuples <AFI, SAFI, Flags, Long-lived Stale Time> as follows:

```
+--------------------------------------------------+
| Address Family Identifier (16 bits)              |
+--------------------------------------------------+
| Subsequent Address Family Identifier (8 bits)    |
+--------------------------------------------------+
| Flags for Address Family (8 bits)                |
+--------------------------------------------------+
| Long-lived Stale Time (24 bits)                  |
+--------------------------------------------------+
| ...                                              |
+--------------------------------------------------+
| Address Family Identifier (16 bits)              |
+--------------------------------------------------+
| Subsequent Address Family Identifier (8 bits)    |
+--------------------------------------------------+
| Flags for Address Family (8 bits)                |
+--------------------------------------------------+
| Long-lived Stale Time (24 bits)                  |
```

The meaning of the fields are as follows:

Address Family Identifier (AFI), Subsequent Address Family Identifier (SAFI):

The AFI and SAFI, taken in combination, indicate that the BGP speaker has the ability to preserve its forwarding state for the address family during a subsequent BGP restart. Routes may be explicitly associated with a particular AFI and SAFI using the encoding of [RFC4760] or implicitly associated with <AFI=IPv4, SAFI=Unicast> if using the encoding of [RFC4271].
Flags for Address Family:

This field contains bit flags relating to routes that were advertised with the given AFI and SAFI.

```
0 1 2 3 4 5 6 7
+-----+-
|F|   Reserved |
+-----+-
```

The most significant bit is used to indicate whether the state for routes that were advertised with the given AFI and SAFI has indeed been preserved during the previous BGP restart. When set (value 1), the bit indicates that the state has been preserved. This bit is called the "F bit" since it was historically used to indicate preservation of Forwarding State. Use of the F bit is detailed in the Session Resets section (Section 4.2).

The remaining bits are reserved and MUST be set to zero by the sender and ignored by the receiver.

Long-lived Stale Time:

This time (in seconds) specifies how long stale information (for the AFI/SAFI) may be retained (possibly in conjunction with the period specified by the "Restart Time" in the Graceful Restart Capability, if present).

3.2. LLGR_STALE Community

We introduce a new BGP community [RFC1997] "LLGR_STALE" (value: TBD). It can be used to mark stale routes retained for a longer period of time. Such long-lived stale routes are to be handled according to the procedures specified in the Operation section (Section 4).

An implementation MAY allow users to configure policies that accept, reject, or modify routes based on the presence or absence of this community.

3.3. NO_LLGR Community

We introduce a new BGP community "NO_LLGR" (value: TBD). It can be used to mark routes which a BGP speaker does not want treated according to these procedures, as detailed in the Operation section (Section 4).
An implementation MAY allow users to configure policies that accept, reject, or modify routes based on the presence or absence of this community.

4. Operation

A BGP speaker MAY use BGP Capabilities Advertisements [RFC5492] to advertise the "Long-lived Graceful Restart Capability" to indicate its ability to retain state and perform related procedures specified in this document. The setting of the parameters for an AFI/SAFI depends on the properties of the BGP speaker, network scale, and local configuration.

In the presence of the "Long-lived Graceful Restart Capability", the procedures specified in [RFC4724] and [I-D.ietf-idr-bgp-gr-notification] continue to apply unless explicitly revised by this document.

4.1. Use of Graceful Restart Capability

The Graceful Restart capability MUST be advertised in conjunction with the LLGR capability. If it is not so advertised, the LLGR capability MUST be disregarded. The purpose for mandating that both be used in conjunction is to enable reuse of certain base mechanisms that are common to both "flavors", notably origination, collection and processing of EoR, as well as the finite state machine modifications and connection reset logic introduced by GR.

We observe that if support for conventional Graceful Restart is not desired for the session, the conventional GR phase can be skipped by omitting all AFI/SAFI from the GR capability, advertising a Restart Time of zero, or both. The Session Resets section (Section 4.2) discusses the interaction of conventional and long-lived GR.

4.2. Session Resets

BGP Graceful Restart [RFC4724], updated by [I-D.ietf-idr-bgp-gr-notification], defines conditions under which a BGP session can reset and have its associated routes retained. If such a reset occurs for a session for which the LLGR Capability has also been exchanged, the following procedures apply.

If the Graceful Restart Capability that was received does not list all AFI/SAFI supported by the session, then for those non-listed AFI/SAFI the GR "Restart Time" shall be deemed zero. Similarly, if the received LLGR Capability does not list all AFI/SAFI supported by the session, then for those non-listed AFI/SAFI the "Long-lived Stale
The following text in Section 4.2 of the GR specification [RFC4724] no longer applies:

If the session does not get re-established within the "Restart Time" that the peer advertised previously, the Receiving Speaker MUST delete all the stale routes from the peer that it is retaining.

and the following procedures are specified instead:

After the session goes down and before the session is re-established, the stale routes for an AFI/SAFI MUST be retained. The interval for which they are retained is limited by the sum of the "Restart Time" in the received Graceful Restart Capability and the "Long-lived Stale Time" in the received Long-lived Graceful Restart Capability. These timers MAY be modified by local configuration.

If the value of the "Restart Time" or the "Long-lived Stale Time" is zero, the duration of the corresponding period would be zero seconds. So, for example, if the "Restart Time" is zero and the "Long-lived Stale Time" is nonzero, only the procedures particular to LLGR would apply. Conversely, if the "Long-lived Stale Time" is zero and the "Restart Time" is nonzero, only the procedures of GR would apply. If both are zero, none of these procedures would apply, only those of the base BGP specification (although EoR would still be used as detailed in [RFC4724]). And finally, if both are nonzero, then the procedures would be applied serially -- first those of GR, then those of LLGR. We observe that during the first interval, while the procedures of GR are in effect, route preference would not be affected, while during the second interval, while LLGR procedures are in effect, routes would be treated as least-preferred as specified elsewhere in this document.

Once the "Restart Time" period ends (including the case that the "Restart Time" is zero), the LLGR period is said to have begun and the following procedures MUST be performed:

- The helper router MUST start a timer for the "Long-lived Stale Time". If the timer for the "Long-lived Stale Time" expires before the session is re-established, the helper MUST delete all the stale routes from the neighbor that it is retaining.

- The helper router MUST attach the LLGR_STALE community for the stale routes being retained. Note that this requirement implies that the routes would need to be readvertised, to disseminate the modified community.
o If any of the routes from the peer have been marked with the
NO_LLGR community, either as sent by the peer, or as the result of
a configured policy, they MUST NOT be retained, but MUST be
removed as per the normal operation of [RFC4271].

o The helper router MUST perform the procedures listed under
Section 4.3.

Once the session is re-established, the procedures specified in
[RFC4724] apply for the stale routes irrespective of whether the
stale routes are retained during the "Restart Time" period or the
"Long-lived Stale Time" period. However, in the case of consecutive
restarts (i.e., the session goes down before the EoR is received) the
previously marked stale routes MUST NOT be deleted before the timer
for the "Long-lived Stale Time" expires.

Similarly to [RFC4724], once the session is re-established, if the F
bit for a specific address family is not set in the newly received
LLGR Capability, or if a specific address family is not included in
the newly received LLGR Capability, or if the LLGR and accompanying
GR Capability are not received in the re-established session at all,
then the Helper MUST immediately remove all the stale routes from the
peer that it is retaining for that address family.

If a "Long-lived Stale Time" timer is running for a peer, it MUST NOT
be updated (other than by manual operator intervention) until the
peer has established and synchronized a new session. The session is
termed "synchronized" once the EoR has been received from the peer.

The value of the "Long-lived Stale Time" in the capability received
from a neighbor MAY be reduced by local configuration.

While the session is down, the expiration of the "Long-lived Stale
Time" timer is treated analogously to the expiration of the "Restart
Time" timer in Graceful Restart. However, the timer continues to run
once the session has re-established. The timer is not stopped, nor
updated, until EoR is received from the peer. If the timer expires
during synchronization with the peer, any stale routes that the peer
has not refreshed, are removed. If the session subsequently resets
prior to becoming synchronized, any remaining routes should be
removed immediately.

4.3. Processing LLGR_STALE Routes

A BGP speaker that has advertised the "Long-lived Graceful Restart
Capability" to a neighbor MUST perform the following upon receiving a
route from that neighbor with the "LLGR_STALE" community, or upon
attaching the "LLGR_STALE" community itself per Section 4.2:
o Treat the route as the least-preferred in route selection (see below). See the Risks of Depreferencing Routes section (Section 5.2) for a discussion of potential risks inherent in doing this.

o The route SHOULD NOT be advertised to any neighbor from which the Long-lived Graceful Restart Capability has not been received. The exception is described in the Optional Partial Deployment Procedure section (Section 4.7). Note that this requirement implies that such routes should be withdrawn from any such neighbor.

o The "LLGR_STALE" community MUST NOT be removed when the route is further advertised.

4.4. Route Selection

In this document, when we refer to treating a route as least-preferred, this means the route MUST be treated as less preferred than any other route that is not so treated. When performing route selection between two routes both of which are least-preferred, normal tie-breaking applies. Note that this would only be expected to happen if the only routes available for selection were least-preferred -- in all other cases, such routes would have been eliminated from consideration.

4.5. Multicast VPN

Special consideration is required if LLGR is to be applied to the Multicast VPN SAFI [RFC6514]. Considerations for Multicast VPNs will be covered in a future revision of this document.

4.6. Errors

If the LLGR capability is received without an accompanying GR capability, the LLGR capability MUST be ignored, that is, the implementation MUST behave as though no LLGR capability had been received.

4.7. Optional Partial Deployment Procedure

Ideally, all routers in an Autonomous System would support this specification before it was enabled. However, to facilitate incremental deployment, stale routes MAY be advertised to neighbors that have not advertised the Long-lived Graceful Restart Capability under the following conditions:
o The neighbors MUST be internal (IBGP or Confederation) neighbors.

o The NO_EXPORT community [RFC1997] MUST be attached to the stale routes.

o The stale routes MUST have their LOCAL_PREF set to zero. See the Risks of Depreferencing Routes section (Section 5.2) for a discussion of potential risks inherent in doing this.

If this strategy for partial deployment is used, the network operator should set LOCAL_PREF to zero for all LLGR routes throughout the Autonomous System. This trades off a small reduction in flexibility (ordering may not be preserved between competing LLGR routes) for consistency between routers which do, and do not, support this specification. Since consistency of route selection can be important for preventing forwarding loops, the latter consideration dominates.

4.8. Procedures When BGP is the PE-CE Protocol in a VPN

In VPN deployments, for example [RFC4364], BGP is often used as a PE-CE protocol. It may be a practical necessity in such deployments to accommodate interoperation with CEs that cannot easily be upgraded to support specifications such as this one. This leads to a problem: in this specification, we take pains to ensure that "stale" routing information will not leak beyond the perimeter of routers that support these procedures, so that it can be depreferred as expected, and we provide a workaround (Section 4.7) for the case where one or more IBGP routers are not upgraded. However, in the VPN PE-CE case, the protocol in use is EBGP, and our workaround does not work since it relies on the use of LOCAL_PREF, an IBGP-only path attribute.

We observe that the principal motivation for restricting the propagation of "stale" routing information is the desire to prevent it from spreading without limit once it exits the "safe" perimeter. We further observe that VPN deployments are typically topologically constrained, making this concern moot. For this reason, an implementation MAY advertise stale routes over a PE-CE session, when explicitly configured to do so. That is, the second rule listed in Section 4.3 MAY be disregarded in such cases. All other rules continue to apply. Finally, if this exception is used, the implementation SHOULD by default attach the NO_EXPORT community to the routes in question, as an additional protection against stale routes spreading without limit. Attachment of the NO_EXPORT community MAY be disabled by explicit configuration, to accommodate exceptional cases.

See further discussion in Section 5.1.
5. Deployment Considerations

The deployment considerations discussed in [RFC4724] apply to this document. In addition, network operators are cautioned to carefully consider the potential disadvantages of deploying these procedures for a given AFI/SAFI. Most notably, if used for an AFI/SAFI that conveys traditional reachability information, use of a long-lived stale route could result in a loss of connectivity for the covered prefix. This specification takes pains to mitigate this risk where possible, by making such routes least-preferred and by restricting the scope of such routes to routers that support these procedures (or, optionally, a single Autonomous System, see "Optional Partial Deployment Procedure", above). However, according to the normal rules of IP forwarding, a stale more-specific route, that has no non-stale alternate paths available, will still be used instead of a non-stale less-specific route. Networks in which the deployment of these procedures would be especially concerning include those which do not use "tunneled" forwarding (in other words, those using traditional hop-by-hop forwarding).

Implementations MUST NOT enable these procedures by default. They MUST require affirmative configuration per AFI/SAFI in order to enable them.

The procedures of this document do not alter the route resolvability requirement of [RFC4271] Section 9.1.2.1. Because of this, it will commonly be the case that "stale" IBGP routes will only continue to be used if the router depicted in the next hop remains resolvable, even if its BGP component is down. Details of IGP fault-tolerance strategies are beyond the scope of this document. In addition to the foregoing, it may be advisable to check the viability of the next hop through other means, see for example [I-D.ietf-idr-bgp-bestpath-selection-criteria]. This may be especially useful in cases where the next hop is known directly at the network layer, notably EBGP.

As discussed in this document, after a BGP session goes down and before the session is re-established, stale routes may be retained for up to two consecutive periods, controlled by the "Restart Time" and the "Long-lived Stale Time", respectively. During the first period routing churn would be prevented but with potential blackholing of traffic. During the second period potential blackholing of traffic may be reduced but routing churn would be visible throughout the network. The setting of the relevant parameters for a particular application should take into account the tradeoffs, the network dynamics and potential failure scenarios. If needed, the first period can be bypassed either by local configuration or by setting the "Restart Time" in the Graceful
Restart Capability to zero and/or not listing the AFI/SAFI in that Capability.

The setting of the F bit (and the "Forwarding State" bit of the accompanying GR capability) depends in part on deployment considerations. The F bit can be understood as an indication that the Helper should flush associated routes (if the bit is left clear). As discussed in the Introduction, an important use case for LLGR is for routes that are more akin to configuration than to traditional routing. For such routes, it may make sense to always set the F bit, regardless of other considerations. Likewise, for control-plane-only entities such as dedicated route reflectors, that do not participate in the forwarding plane, it makes sense to always set the F bit. Overall, the rule of thumb is that if loss of state on the restarting router can reasonably be expected to cause a forwarding loop or black hole, the F bit should be set scrupulously according to whether state has been retained. Specifics of when the F bit is, and is not, set is implementation-dependent and may also be controlled by configuration.

5.1. When BGP is the PE-CE Protocol in a VPN

As discussed in Section 4.8, it may be necessary to advertise stale routes to a CE in some VPN deployments, even if the CE does not support this specification. In that case, the network operator configuring their PE to advertise such routes should notify the operator of the CE receiving the routes, and the CE should be configured to depreference the routes. Typical BGP implementations will be able to do this by matching on the LLGR_STALE community, and setting the LOCAL_PREF for matching routes to zero, similar to the procedure described in Section 4.7.

5.2. Risks of Depreferencing Routes

Depreferencing EBGP routes is considered safe, no different from the common practice of applying a routing policy to an EBGP session. However, the same is not always true of IBGP.

Consistent route selection is a fundamental tenet of IBGP correctness and safe operation in hop-by-hop routed networks. When routers within an AS apply different criteria in selecting routes, they can arrive at inconsistent route selections, potentially with the consequence of forming forwarding loops unless some form of tunneled forwarding is used to prevent "core" routers from making a (potentially inconsistent) forwarding decision based on the IP header.

This specification uses the state of a peering session as an input to
the selection criteria, depreferencing routes that are associated with a session that has gone down but have not yet aged out. Since different routers within an AS might have different notions as to whether their respective sessions with a given peer are up or down, they might apply different selection criteria to routes from that peer. This could result in a forwarding loop forming between such routers.

For an example of such a forwarding loop, consider the following simple topology:

```
A ---- B ---- C ------------------------- D
  ^                                         ^
  |                                         |
  R1                                        R2
```

In this example, A - D are routers with a full mesh of IBGP sessions between them. The short links have unit cost, the long link has cost 5. Routers A and D are AS border routers, each advertising some route, R, into the AS -- these are denoted R1 and R2 in the diagram. In ordinary operation, it can be seen that routers B and C will select R1 for forwarding, and will forward toward A.

Suppose that the session between A and B goes down for some reason, and stays down long enough for LLGR processing to be invoked on B. Then on B, route R1 will be depreferenced, leading to the selection of R2 by B. However, C will continue to prefer R1. It can be seen that in this case, a forwarding loop for packets destined to R would form between B and C. (We note that other forwarding loop scenarios can be constructed for traditional GR, but are generally considered less severe since GR can remain in effect for a much more limited interval.)

The potential benefits of this specification can outweigh the risks discussed above, as long as care is exercised in deployment. The cardinal rule to be followed is, if a given set of routes are being used within an AS for hop-by-hop forwarding, it is NOT RECOMMENDED to enable LLGR procedures. If tunneled forwarding (such as MPLS) is used within the AS, or if routes are being used for purposes other than hop-by-hop forwarding, less caution is needed, though the operator should still carefully consider the consequences of enabling LLGR.

6. Security Considerations

The security implications of the LLGR mechanism defined within in this document are akin to those incurred by the maintenance of stale
routing information within a network. This is particularly relevant when considering the maintenance of routing information that is utilised for service segregation - such as MPLS label entries.

For MPLS VPN services, the effectiveness of the traffic isolation between VPNs relies on the correctness of the MPLS labels between ingress and egress PEs. In particular, when an egress PE withdraws a label L1 allocated to a VPN1 route, this label MUST not be assigned to a VPN route of a different VPN until all ingress PEs stop using the old VPN1 route using L1.

Such a corner case may happen today, if the propagation of VPN routes by BGP messages between PEs takes more time than the label re-allocation delay on a PE. Given that we can generally bound worst case BGP propagation time to a few minutes (for example 2-5), the security breach will not occur if PEs are designed to not reallocate a previous used and withdrawn label before a few minutes.

The problem is made worse with BGP GR between PEs as VPN routes can be stalled for a longer period of time (for example 20 minutes).

This is further aggravated by the BGP LLGR extension proposed in this document as VPN routes can be stalled for a much longer period of time (for example 2 hours, 1 day).

Therefore, to avoid VPN breach, before enabling BGP LLGR, SPs needs to check how fast a given label can be reused by a PE, taking into account:

- The load of the BGP route churn on a PE (in term of number of VPN label advertised and churn rate).

- The label allocation policy on the PE (possibly depending upon the size of pool of the VPN labels (which can be restricted by hardware consideration or others MPLS usages), the label allocation scheme (for example per route or per VRF/CE), the re-allocation policy (for example least recently used label...)

Note that [RFC4781] which defines Graceful Restart Mechanism for BGP with MPLS is also applicable to BGP LLGR.

In addition to these considerations, the LLGR mechanism described within this document is considered to be complex to exploit maliciously - in order to inject packets into a topology, there is a requirement to engineer a specific LLGR state between two PE devices, whilst engineering label reallocation to occur in a manner that results in the two topologies overlapping. Such allocation is particularly difficult to engineer (since it is typically an internal
mechanism of an LSR).

7. Examples of Operation

For illustrative purposes, we present a few examples of how this specification might be used in practice. These examples are neither exhaustive nor normative.

Consider the following scenario: A border router, ASBR1, has an IBGP peering with a route reflector, RR1, from which it learns routes. It has an EBGP peering with an external peer, EXT, to which it advertises those routes. The external peer has advertised the GR and LLGR Capabilities to ASBR1. ASBR1 is configured to support GR and LLGR on its session with RR1 and EXT. RR1 advertises a GR Restart Time of 1 (second) and a LLST of 3600 (seconds):

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>ASBR1’s IBGP session with RR fails. ASBR1 retains RR’s routes according to the rules of GR [RFC4724]</td>
</tr>
<tr>
<td>t+1</td>
<td>GR Restart Time expires. ASBR1 transitions RR’s routes to long-lived stale by attaching the LLGR_STALE community and depreferencing them. However, since it has no backup routes, it continues to make use of them. It re-announces them to EXT with the LLGR_STALE community attached.</td>
</tr>
<tr>
<td>t+1+3600</td>
<td>LLST expires. ASBR1 removes RR’s stale routes from its own RIB and sends BGP updates to withdraw them from EXT.</td>
</tr>
</tbody>
</table>

Next, imagine the same scenario but suppose RR1 advertised a GR Restart Time of zero, effectively disabling GR. Equally, ASBR1 could have used local configuration to override RR1’s offered Restart Time, setting it to a locally-configured value of zero:
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASBR1’s IBGP session with RR fails. ASBR1 transitions RR’s routes to</td>
</tr>
<tr>
<td>t</td>
<td>long-lived stale by attaching the LLGR_STALE community and depreferencing them. However, since it has no backup routes, it continues to make use of them. It re-announces them to EXT with the LLGR_STALE community attached.</td>
</tr>
<tr>
<td>t+0+3600</td>
<td>LLST expires. ASBR1 removes RR’s stale routes from its own RIB and sends BGP updates to withdraw them from EXT.</td>
</tr>
</tbody>
</table>

Next, imagine the original scenario, but consider that the ASBR1-RR1 session comes back up and becomes synchronized 180 seconds after the failure was detected:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>ASBR1’s IBGP session with RR fails. ASBR1 retains RR’s routes according to the rules of GR [RFC4724]</td>
</tr>
<tr>
<td>t+1</td>
<td>GR Restart Time expires. ASBR1 transitions RR’s routes to long-lived stale by attaching the LLGR_STALE community and depreferencing them. However, since it has no backup routes, it continues to make use of them. It re-announces them to EXT with the LLGR_STALE community attached.</td>
</tr>
<tr>
<td>t+1+179</td>
<td>Session is reestablished and resynchronized. ASBR1 removes the LLGR_STALE community from RR1’s routes and re-announces them to EXT with the LLGR_STALE community removed.</td>
</tr>
</tbody>
</table>

Finally, imagine the original scenario, but consider that EXT has not advertised the LLGR Capability to ASBR1:
Acknowledgements

We would like to thank Roberto Fragassi, John Medamana, Han Nguyen, Jeffrey Haas, Nabil Bitar, Nicolai Leymann, Pranav Mehta, Saikat Ray, Martin Djernaes and Eric Rosen for their valuable inputs and contributions to the discussions and solutions.

Contributors

- **Clarence Filsfils**
 Cisco Systems
 Brussels 1000
 Belgium
 Email: cf@cisco.com

- **Pradosh Mohapatra**
 Cumulus Networks
 Email: pmohapat@cumulusnetworks.com

- **Yakov Rekhter**
 Juniper Networks
 Email: yakov@juniper.net
10. IANA Considerations

This document defines a new BGP capability – Long-lived Graceful Restart Capability. The Capability Code needs to be assigned by IANA.

This document introduces a new BGP community "LLGR_STALE" for marking the long-lived stale routes, and another community "NO_LLGR" to indicate that stale routes should not be retained. These community values need to be assigned by IANA.

11. References

11.1. Normative References

[I-D.ietf-idr-bgp-gr-notification]

11.2. Informative References

Authors' Addresses

James Uttaro
AT&T
200 S. Laurel Avenue
Middletown, NJ 07748
USA

Email: ju1738@att.com
Enke Chen
Cisco Systems
170 W. Tasman Drive
San Jose, CA 95134
USA

Email: enkechen@cisco.com

Bruno Decraene
Orange
38-40 Rue de General Leclerc
92794 Issy Moulineaux cedex 9
France

Email: bruno.decraene@orange.com

John G. Scudder
Juniper Networks
1194 N. Mathilda Ave
Sunnyvale, CA 94089
USA

Email: jgs@juniper.net
Abstract

The notional premise that different Autonomous Systems belong to different administrative authorities may not always hold. A single administrative authority may instantiate services on and across multiple ASes. A customer accessing those services can reasonably expect that attributes such as LOCAL_PREF that influence routing be applicable even across different ASes. This document describes a mechanism to do so.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 10, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
1. Introduction

One of the basic assumptions of Internet deployment is that different Autonomous Systems (ASes) belong to different administrative authorities that use independent policies. Therefore, attributes such as LOCAL_PREF are not sent across AS boundary. As networks have evolved, such an assumption may not always hold. A single administrative authority such as a Service Provider (SP) may own equipments in multiple ASes and may instantiate services on and across multiple ASes. As a result, an SP customer’s end-points may be connected to multiple ASes even though the customer expects the SP...
network to behave as a single "domain". For instance, a customer utilizing LOCAL_PREF to influence routing expects that the expressed routing preference be preserved at all of their endpoints whether or not they are connected to same or different ASes. This expectation is reasonable since the ASes, being under the same administrative authority, use consistent policies and LOCAL_PREF set in one AS would be comparable in another AS (when designed to be so). To facilitate such control, this document proposes an approach where non-transitive attributes are tunneled across ASes and are interpreted at traffic ingress points.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Terminology

One Administrative Domain (OAD):

A collection of autonomous systems (ASes) that are managed by a single administrative entity. They do not appear any different to ASes that belong to a separate administration.

2. Motivation

2.1. One Administrative Domain

Today a large SP network often consists of multiple ASes, for instance, reflecting the SP’s internal management structure. The SP
provides services across those ASes to its customers. Some of the sites of a given customer may be connected to one AS whereas some of the other sites of the same customer may be connected to another AS. However, for these customers, the SP network is a single entity. In many instances, the customer desires the routing behavior between two of its sites be uniform whether or not these sites are in the same AS or in different ASes.

Figure 1 provides a typical example of a VPN customer. A customer site with equipment, CE1, is dual-homed to the provider in AS1. A second site of the customer with CE2 is also connected to AS1. A third site of the same customer with CE3 is connected to AS2. CE1 advertises a route. The customer sets different LOCAL_PREF for its two links to the provider network and thereby chooses one of the links as the primary path. CE2 receives the LOCAL_PREFs and correctly uses the preferred link for forwarding. However, CE3 doesn’t receive the LOCAL_PREFs since LOCAL_PREF is not sent across ASes. So CE3 might start to load balance the traffic to CE1 over both links, or might use the non-preferred link solely.

In this scenario, the two ASes are contiguous and under the same administrative domain. So it is desirable that the SP customer be able to use the simple mechanism of setting LOCAL_PREF to influence routing decisions irrespective of the internal design of the provider network. In other words, it is desirable to make the OAD behave essentially as one AS.

The SP may be able to solve the issue by mapping LOCAL_PREF to a community in AS1, allowing the community to go across the AS boundary and finally reverse mapping the community to LOCAL_PREF in AS2. However, an approach like that is narrow in scope and is difficult to manage in a large network.
Multiple ASes under the same administrative authority may not always be contiguous. Figure 2 shows a scenario where two ASes, AS1 and AS2, that belong to the same provider, are separated by an AS that is owned by a third party. Such a scenario may arise due to merger of two SPs. While the mechanism proposed in this draft would work in the same way, caution must be exercised in exposing internal parameters of the provider network to a 3rd party transit AS.

We acknowledge that one can consider fixing the problem described here by merging the ASes into one AS (i.e., by renumbering them to one ASN). However, in many cases that is not a viable option. Instead, the solution described here allows an OAD consisting of multiple ASes to essentially behave as a single AS.
3. ATTR_SET_STACK attribute

```
+---------------------------------------------+
| Attr Flags (O|T) Code = TBD                       |
+---------------------------------------------+
| Length                                       |
+---------------------------------------------+
| Attr Flags (O|T) Code = 128                       ^|
| Length (for the outer attrs)                |
+---------------------------------------------+
| Origin AS (provider network)                |
+---------------------------------------------+
| . Path Attributes (variable) . v            |
+---------------------------------------------+
//                                           //
//                                           //
+---------------------------------------------+
| Attr Flags (O|T) Code = 128                       ^|
| Length (for inner attributes)               |
+---------------------------------------------+
| Origin AS (customer network)                |
+---------------------------------------------+
| . Path Attributes (variable) . v            |
+---------------------------------------------+
```

```
Figure 3: ATTR_SET_STACK
```

The problem described in Section 2 arises because non-transitive attributes that crucially influence routing decisions are dropped at AS boundaries. The key idea is to carry these non-transitive attributes to the traffic ingress point. BGP already supports attribute tunneling by using the ATTR_SET attribute that transperantly carries multiple attributes that need to be preserved across AS boundaries ([RFC6368]). However, ATTR_SET can carry only one set of attributes. As shown in the examples later on, a solution for the present problem needs to carry two sets of attributes, (i) the attribute set for the edge (PE to CE connection, to address the
problem described in [RFC6368]), and (ii) the attribute set for the
core (PE to RR connection). Moreover, a mechanism is needed to
differentiate the set of attributes for the core from the set of
attributes for the edge. Such distinction is needed even if, say,
only the attributes for the core is present.

Towards this end, this document generalizes the attribute tunneling
mechanism by introducing a new attribute called ATTR_SET_STACK that
carries multiple ATTR_SETs by stacking them. This approach allows
adding multiple ATTR_SETs as well as preserves the sequence in which
they must be used. The attribute is defined as shown in Figure 3.

The 'Length' field of ATTR_SET_STACK includes the cumulative length,
in octet, of all the ATTR_SET attributes.

In this document we define the rules for stacking two ATTR_SET
attributes, which are sufficient for the purpose of OAD. We keep the
rules open to future additions to support applications that may
require more than two ATTR_SET attributes.

Rules:

- When an AS border router (ASBR) advertises a route that doesn’t
 have an ATTR_SET_STACK attribute to another AS, if allowed by the
 policy, the ASBR

 * Creates an ATTR_SET_STACK attribute,

 * "Pushes" any existing ATTR_SET attribute in the ATTR_SET_STACK
 attribute.

 * Encodes the current attributes in an ATTR_SET and "pushes" this
 ATTR_SET in the ATTR_SET_STACK attribute.

Thus, when there are edge attributes to tunnel, the ASBR creates
an ATTR_SET_STACK attribute with two ATTR_SET attributes in it
with the ATTR_SET for the edge attributes at the bottom. When
only core attributes are to be tunneled, it creates an
ATTR_SET_STACK attribute with one ATTR_SET attribute in it
carrying the core (set by PE) attributes.

- An ingress PE that imports the route "pops" the top ATTR_SET
 attributes from the ATTR_SET_STACK. If permitted by the local
 policy, it uses the attributes from it in its best path selection
 process.
When an ingress PE advertises an imported route to a CE, only the bottom ATTR_SET element is advertised to it (without any ATTR_SET_STACK attribute wrapper).

If a router receives a route with an ATTR_SET_STACK attribute, and it propagates that route to one of its peers, then if the peer is trusted, the peer receives the route with the same ATTR_SET_STACK attribute; otherwise the ATTR_SET_STACK is removed from the route.

Note that the creation of ATTR_SET_STACK is controlled by local policy (discussed later) and SHOULD be done only for trusted peer ASes.

4. Example Scenarios

In this section, we provide some examples of customer accessing VPN service from a provider to illustrate the difference between the existing behavior and the OAD behavior.

4.1. Single provider scenario

This is a simpler case of a customer connected to only one provider network and there is no edge attribute set.

```
Provider OAD
------------
AS1                     AS2
(RD1)A/B, Lbl1
+------ PE1
|     / LP=200\ 
| CE1  /       
|     /    ASBR1 ... ASBR2
|     /       
|     /       PE2
|     /       (RD2)A/B, Lbl2
|     /       
|     /       PE3
|     /       
|     /       CE2
```

Figure 4: Option C Network (existing behavior)
As shown in Figure 4, the provider network consisting of two ASes connected by option C technique ([RFC4364]). The customer site with CE1 is dual-homed and advertises prefix A/B to PE1 and PE2. Customer prefers the PE1-CE1 link. This preference is expressed by setting LOCAL_PREF to 200 on the route advertised by PE1 whereas PE2 sets LOCAL_PREF to 150. The second customer site with CE2 is connected to PE3 in AS2. Each PE uses a unique RD. So PE3 receives two prefixes: (RD1)A/B and (RD2)A/B, and imports them into (RD3)A/B. Therefore, the prefix (RD3)A/B has two paths. The first path is with nexthop PE1 (in option C, the nexthops remain unchanged), and the second path is with nexthop PE2.

Existing behavior:
When RR1 sends the routes to RR2, since they are in different ASes, RR1 does not send LOCAL_PREFs to RR2. So when RR2 sends the routes to PE3, it sends default LOCAL_PREF (shown as 100). I.e., PE3 loses the route preferences that were set in AS1.

OAD behavior:
When OAD behavior is turned on on RR1 (and RR2 is added as a trusted peer), when RR1 sends the routes to RR2, it creates an ATTR_SET_STACK attribute with one ATTR_SET in it that contains the LOCAL_PREF of the route. When PE3 imports the routes into (RD3)A/B, it extracts the LOCAL_PREFs from the ATTR_SET_STACK (which contains only one ATTR_SET attribute). Therefore, PE3 has both the LOCAL_PREF set by PE1 and PE2 (coming from the ATTR_SET_STACK) and the (default) LOCAL_PREF set by RR2. As

Figure 5: Option C Network (OAD behavior)
per the policy set on PE2, the LOCAL_PREFs coming from AS1 can be used by PE2 for computing best path and hence honor the routing preferences set by the customer. This behavior is depicted in Figure 5.

Figure 6: Option B Network (existing behavior)

Figure 7: Option B Network (OAD behavior)

Figure 6 shows the same provider network when its two ASes are
connected by option B ([RFC4364]). Similar to the option C case, on PE3, the prefix (RD3)A/B has two paths, but both with nexthop ASBR2.
The VPN label of each route is changed by ASBR2, which allows the packet to ultimately reach PE1 or PE2.

Existing behavior:
Similar to option C, ASBR1 does not send LOCAL_PREFs to ASBR2. So PE3 loses the route preferences that were set in AS1.

OAD behavior:
When OAD behavior is turned on on ASBR1 (and ASBR2 is added as a trusted peer), when ASBR1 sends the routes to ASBR2, it creates an ATTR_SET_STACK attribute with one ATTR_SET in it that contains the LOCAL_PREF of the route. This way PE3 receives both the LOCAL_PREF set by PE1 and PE2 (coming from the ATTR_SET_STACK) and the (default) LOCAL_PREF set by ASBR2. Therefore PE2 can honor the routing preferences set by the customer.

4.2. Dual provider scenario

Provider 1

AS1 AS2

PE1(Lbl1)
+---+ +---+
|A/B| LP=100 |A/B| LP=100
+---+ +---+
/ / / /
LP=200 LP=200
/ / / /
RR1 RR2 -- PE3
+/---+
|PE2(Lbl2)
+---+
/ / / /
LP=150 LP=100
/ / / /
PE2 PE2
/ / /
CE1 CE2

Figure 8: OAD Network in Dual Provider Setup

This example considers the scenario when there is both an edge ATTR_SET and a core ATTR_SET. The scenario is shown in Figure 8 where a customer utilizes enterprise VPN service from both Provider 1 and Provider 2. Provider 1 runs an OAD consisting of two ASes, AS1.
and AS2, connected by interAS Option B or Option C techniques. To Provider 1, the customer connects one site at AS1 via CE1 and another site at AS2 via CE2. At AS1, CE1 is dual-homed connecting to PE1 and PE2 as IBGP ([RFC6368]) and prefers PE1.

CE1 originates a route, A/B, that it advertises to CE2 via both Provider 1 and Provider 2. CE1 prefers Provider 1 by setting the LOCAL_PREF attribute to 100 towards Provider 1 and to 90 towards Provider 2. Within Provider 1, since PE1 is preferred by the customer, PE1 advertises A/B to RR1 with LOCAL_PREF 200 (and label Lbl1) and PE2 advertises A/B with LOCAL_PREF 150 (and label Lbl2). RR1 preserves both routes since PE1 and PE2 uses different route-distinguishers for the customer VPN route.

In Provider 1’s OAD, PE3 receives two routes for A/B: the first one with label Lbl1’ and a next-hop that takes the packet to PE1, and the second one with label Lbl2’ and a next-hop that takes the packet to PE2.

CE2 receives one route each from Provider 1 (at AS2) and Provider 2. By using the mechanism described in [RFC6368], CE2 sees the LOCAL_PREF attributes set by CE1 and chooses Provider 1’s path and sends traffic to PE3.

Existing behavior:
PE3 does not have any visibility into the LOCAL_PREFs that PE1 or PE2 has set (as LOCAL_PREF is non-transitive attribute) and may choose the path with Lbl2’ as its bestpath and send traffic to PE2 violating the intent of the customer to receive traffic via PE1.

OAD behavior:
When OAD is turned on, PE3 receives the ATTR_SET_STACK attribute containing two ATTR_SETs: (i) the top ATTR_SET containing the core attributes (set by PE1 or PE2), (ii) the bottom ATTR_SET containing the edge attributes that comes from the CE. PE3 extracts the top ATTR_SET for its own best path computation and sends the bottom ATTR_SET to CE2. This way PE3 is able to honor the preferences set in AS1.

5. Configuration Management

An implementation MUST allow the operator to identify the neighbors that belong to the same OAD, and/or are trusted.

An implementation MUST allow the operator to specify whether the attributes from the ATTR_SET (within an ATTR_SET_STACK) are to be used for best path computation. Note that attributes MUST not be
mixed; i.e., either only the attributes from an ATTR_SET are used, or no attribute from an ATTR_SET are used.

6. Operational Considerations

When non-transitive attributes such as LOCAL_PREF are tunneled across AS boundary, the values used for these attributes must be consistent across different ASes in an OAD.

When the originator sends an ATTR_SET_STACK attribute to a 3rd party peer AS, even if the peer AS is a transit AS with respect to the provider network, the peer AS may extract the ATTR_SETs and use them for its own calculations (e.g., if the customer also has a site connected to the 3rd party AS). If the routing policies of the 3rd party AS is not consistent with the originator AS, routing inconsistencies may occur. Therefore, ATTR_SET_STACK attribute may be sent to a peer AS only if the peer AS is trusted. In this context, a trusted AS is either in the same OAD, or it is contractually bound to treat the ATTR_SET_STACK attribute as an opaque attribute, or its routing policy is consistent with the originator AS.

A route carrying an ATTR_SET attribute potentially has two sets of non-transitive attributes for possible use: (i) those in the ATTR_SET, and (ii) those carried by the route. The non-transitive attributes are given a "global" scope when those in the ATTR_SET are used. Sometimes, however, a "local" scope may be preferred in some ASes in a given OAD, in which case the non-transitive attributes carried by the route are used. Local policy must govern which set of attributes should be used.

7. Acknowledgments

8. IANA Considerations

IANA shall assign a value from the "BGP Path Attributes" registry, to be called "ATTR_SET_STACK", with this document as the reference.

9. Security Considerations

The proposed mechanism allows non-transitive attributes to be sent across AS boundary. Sending the non-transitive attributes to non-trusted peers can create routing inconsistencies and other vulnerabilities and MUST not be done.

Procedures and protocol extensions defined in this document do not otherwise affect the BGP security model.
10. Normative References

Authors’ Addresses

James Uttaro
AT&T
200 S. Laurel Avenue
Middletown, NJ 07748
USA

Email: uttaro@att.com

Saikat Ray
Cisco Systems
170 W. Tasman Drive
San Jose, CA 95134
USA

Email: sairay@cisco.com

Pradosh Mohapatra
Cumulus Networks
140C S. Whisman Rd
Mountain View, CA 94041
USA

Email: pmohapat@cumulusnetworks.com
BGP attribute for North-Bound Distribution of Traffic Engineering (TE) performance Metric
draft-wu-idr-te-pm-bgp-00

Abstract

In order to populate network performance information like link latency, latency variation and packet loss into TED and ALTO server, this document describes extensions to BGP protocol, that can be used to distribute network performance information (such as link delay, delay variation, packet loss, residual bandwidth, and available bandwidth, link utilization, channel throughput).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 13, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
1. Introduction

As specified in [RFC4655], a Path Computation Element (PCE) is an entity that is capable of computing a network path or route based on a network graph, and of applying computational constraints during the computation. In order to compute an end-to-end path, the PCE needs to have a unified view of the overall topology. [I.D-ietf-idr-1s-distribution] describes a mechanism by which links state and traffic engineering information can be collected from networks and shared with external components using the BGP routing protocol. This mechanism can be used by both PCE and ALTO server to gather information about the topologies and capabilities of the network.

With the growth of network virtualization technology, the needs for inter-connecting between various overlay technologies (e.g. Enterprise BGP/MPLS IP VPNs) in the Wide Area Network (WAN) become important. The Network performance or QoS requirements such as latency, limited bandwidth, packet loss, and jitter, are all critical factors that must be taken into account in path computation and selection to establish segment overlay tunnel between overlay nodes and stitch them together to compute end-to-end path.
In order to populate network performance information like link latency, latency variation and packet loss into TED and ALTO server, this document describes extensions to BGP protocol, that can be used to distribute network performance information (such as link delay, delay variation, packet loss, residual bandwidth, and available bandwidth, link utilization, channel throughput).

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [RFC2119].

3. Use Cases

3.1. MPLS-TE with PCE

The following figure shows how a PCE can get its TE performance information beyond that contained in the LINK_STATE attributes [I.D -ietf-idr- ls-distribution] using the mechanism described in this document.

![Diagram of external PCE node using a TED synchronization mechanism](image)

Figure 1: External PCE node using a TED synchronization mechanism

3.2. ALTO Server Network API
The following figure shows how an ALTO Server can get TE performance information from the underlying network beyond that contained in the LINK_STATE attributes [I.D-ietf-idr-ls-distribution] using the mechanism described in this document.

![Figure 2: ALTO Server using network performance information](image)

4. Carrying TE Performance information in BGP

This document proposes new BGP TE performance TLVs that can be announced as attribute in the BGP-LS NLRI (defined in [I.D-ietf-idr-ls-distribution]) to distribute network performance information. The extensions in this document build on the ones provided in BGP-LS [I.D-ietf-idr-ls-distribution] and BGP-4 [RFC4271].

BGP-LS NLRI defined in [I.D-ietf-idr-ls-distribution] has nested TLVs which allow the BGP-LS NLRI to be readily extended. This document proposes several additional TLVs as its attributes:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1</td>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>TBD2</td>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>TBD3</td>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>TBD4</td>
<td>Unidirectional Residual Bandwidth</td>
</tr>
<tr>
<td>TBD5</td>
<td>Unidirectional Available Bandwidth</td>
</tr>
<tr>
<td>TBD6</td>
<td>Link Utilization</td>
</tr>
<tr>
<td>TBD7</td>
<td>Channel Throughput</td>
</tr>
</tbody>
</table>
As can be seen in the list above, the TLVs described in this document carry different types of network performance information. Many (but not all) of the TLVs include a bit called the Anomalous (or "A") bit. When the A bit is clear (or when the TLV does not include an A bit), the TLV describes steady state link performance. This information could conceivably be used to construct a steady state performance topology for initial tunnel path computation, or to verify alternative failover paths.

When network performance downgrades and falls below configurable link-local thresholds a TLV with the A bit set is advertised. These TLVs could be used by the receiving node to determine whether to redirect failing traffic to a backup path, or whether to calculate an entirely new path. If link performance improves later and exceeds a configurable minimum value (i.e., threshold), that TLV can be re-advertised with the Anomalous bit cleared. In this case, a receiving node can conceivably do whatever re-optimization (or failback) it wishes to do (including nothing).

Note that when a TLV does not include the A bit, that sub-TLV cannot be used for failover purposes. The A bit was intentionally omitted from some TLVs to help mitigate oscillations.

Consistent with existing ISIS TE specifications [RFC5305][ISIS-TE-METRIC], the bandwidth advertisements defined in this document MUST be encoded as IEEE floating point values. The delay and delay variation advertisements defined in this draft MUST be encoded as integer values. Delay values MUST be quantified in units of microseconds, packet loss MUST be quantified as a percentage of packets sent, and bandwidth MUST be sent as bytes per second. All values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time.

5. Attribute TLV Details

Link attribute TLVs are TLVs that may be encoded in the BGP-LS attribute with a link NLRI. Each 'Link Attribute' is a Type/Length/Value (TLV) triplet formatted as defined in Section 3.1 of [I-D.ietf-idr-ls-distribution]. The format and semantics of the 'value' fields in some 'Link Attribute' TLVs correspond to the format and semantics of value fields in IS-IS Extended IS Reachability sub-TLVs, defined in [RFC5305] and . Although the encodings for 'Link Attribute' TLVs were originally defined for IS-IS, the TLVs can carry data sourced either by IS-IS or OSPF.

The following 'Link Attribute' TLVs are valid in the LINK_STATE attribute:
Table 1: Link Attribute TLVs

5.1. Link Utilization TLV

This TLV advertises the average link utilization between two directly connected IS-IS neighbors. The link utilization advertised by this sub-TLV MUST be the utilization percentage per interval from the local neighbor to the remote one. The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Type              |                  Length    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Link Utilization                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where:
5.2. Channel Throughput TLV

This TLV advertises the average Channel Throughput between two directly connected IS-IS neighbors. The channel throughput advertised by this sub-TLV MUST be the throughput between the local neighbor and the remote one. The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Type              |            Length          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Throughput Offered                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Throughput Delivered                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where:

Type: TBA
Length: 8

Throughput offered: This 24-bit field carries the average throughput offered over a configurable interval. Throughput offered can be calculated by counting the number of units successfully transmitted in the interval (See section 2.3 of [RFC6374]). If there is no value to send (unmeasured and not statically specified), then
the sub-TLV should not be sent or be withdrawn.

Throughput delivered: This 24-bit field carries the average throughput delivered over a configurable interval. Throughput delivered can be calculated by counting the number of units successfully received in the interval (See section 2.3 of [RFC6374]). If there is no value to send (unmeasured and not statically specified), then the sub-TLV should not be sent or be withdrawn.

6. Security Considerations

This document does not introduce security issues beyond those discussed in [I-D.ietf-idr-ls-distribution] and [RFC4271].

7. IANA Considerations

IANA maintains the registry for the TLVs. BGP TE Performance TLV will require one new type code per TLV defined in this document.

8. References

8.1. Normative References

[I-D.ietf-idr-ls-distribution]

[ISIS-TE-METRIC]

8.2. Informative References

Authors’ Addresses

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

Email: sunseawq@huawei.com

Danhua Wang
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

Email: wangdanhua@huawei.com
As the BGP is deployed in a single Autonomous System for network convergence such as Seamless MPLS, it is desirable for BGP to carry more information to help select routing more intelligently. It can reduce the cost proposed by complex policy control design on BGP routes and adapt to network change easily. This document proposed a new path attribute for BGP routes that can record the next hop path for the route to help BGP route selection and network management.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 16, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

[I-D.ietf-mpls-seamless-mpls] describes an architecture which can be used to extend MPLS networks to integrate access and aggregation networks into a single MPLS domain ("Seamless MPLS"). As the mobile backhaul service is deployed widely, the requirement of the integration of mobile backhaul networks and core networks has been proposed. For the reason of scalability, the Seamless MPLS network tends to be divided into multiple IGP areas for access, aggregation, and core networks and IBGP runs among Area Border Routers (ABRs) which should act as inline RRs to reflect the labeled BGP routes or BGP VPN routes to remote BGP peers with next hop self (NHS).

As the BGP is used in a single Autonomous System for network convergence, it is desirable for BGP to carry more information to help select routing more intelligently. It can reduce the cost proposed by complex policy control design on BGP routes and adapt to network change easily.

This document proposes a new path attribute that can record the next hop path of the route to help BGP route election and network management.
2. Motivation

2.1. Complexity of Route Selection

In the Seamless MPLS network, Area Border Routers (ABRs) which run IBGP should act as inline RRs to reflect the labeled BGP routes or BGP VPN routes to remote BGP peers with next hop self (NHS). Each ABR should process route selection which needs complex route policy to control the BGP route distribution in the Seamless MPLS network, as shown below:

```
+-------+       +-------+       +-------+
/       |         /       |         /       |
/       |         /       |         /       |
|       |         |       |         |       |
|       |         |       |         |       |
|       |         |       |         |       |
|       |         |       |         |       |
|       |         |       |         |       |
|       |         |       |         |       |
```

Figure 1 Seamless MPLS Network with Multiple IGP Areas

Just like Figure 1 shown, PE1 and PE2 are BGP VPN service end-point. IBGP peers runs contiguously between ABRs in different IGP areas, and each ABR works as inline RR. When labeled BGP routes or BGP VPN routes originated from PE1 is distributed to the other service end-point PE2, the route can be reflected by the ABRs one by one with next hop self (NHS).

The inline RR will distribute the route to all of the IBGP peers except the IBGP peer from which the route was received. As a result, an ABR may receive routes of the same prefix from different IBGP peers with different next hop. Traditionally the BGP RR should select the best route to reflect to other IBGP peers. But in this network the route selection process will be more complex which needs to introduce complex route policy.

Here is an example for complex route policy. ABR-b may receive routes of the same prefix originated from PE1 from different three IBGP peers, ABR-a, ABR-a’, ABR-c, and ABR-c’. The route policy should guarantee that the route from ABR-a or ABR-a’ is selected as...
the best one. At the same time, routes of the same prefix originated from PE2 may be received from ABR-a, ABR-a’, ABR-c, and ABR-c’. The route policy should guarantee that the route from ABR-c or ABR-c’ is selected as the best one. To satisfy the different best route selection requirements, each IBGP speaker has to configure complex route policy.

2.2. New Role of BGP in Seamless MPLS Network

When Seamless MPLS makes integration of mobile backhaul networks and core networks, BGP in Seamless MPLS network act more like an "Interior Gateway Protocol (IGP)". As the whole Seamless MPLS network is in a single AS for uniform administration, the security requirement proposed for traditional BGP can be reduced. At the same time some path attributes for BGP route such as AS_PATH is no use in this scenario. As the BGP is deployed from implementing network convergence, it is desirable for BGP to carry more information to help select route more intelligently. It can simplify policy control design on BGP routes and adapt to network change easily. Moreover the additional path information may facilitate the network operation and maintenance. [I-D.ietf-idr-aigp] is the example which can help BGP route selection by advertising IGP metric information with BGP route. In this document, we propose a new method to record next hop list for the BGP route, which can be used for automatic BGP route selection and facilitating network operation and maintenance. The new attribute, NEXTHOP_PATH ATTRIBUTE, is defined for the BGP route to record the next hop path. It can work as AS_PATH ATTRIBUTE.

3. Definition of NEXTHOP_PATH ATTRIBUTE

The NEXTHOP_PATH ATTRIBUTE is an optional transitive BGP Path Attribute. The NEXTHOP_PATH ATTRIBUTE type is defined as below (refer to [RFC4271]):

```
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-----------------------------+
| Attr. Flags |Attr. Type Code|
+-----------------------------+
```

Figure 2 NEXTHOP_PATH ATTRIBUTE Type definition

Attr. Flags

SHOULD be optional transitive

Attr. Type Code
NEXTHOP_PATH is composed of a sequence of next hop path segments. Each next hop path segment is represented by a triple \(<\text{path segment type}, \text{path segment length}, \text{path segment value}\>\). The format of the next hop path segment is shown in the figure 3.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type        |   Length                      |  Reserved     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Next Hop                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3 NH_SEQUENCE_V4 TLV

- Type: A single octet encoding the TLV Type. The Type of "NH_SEQUENCE_V4" is defined in this document, which needs to be allocated by IANA. The procedure for next hop path segment usage for IPv6 or other extensions will be described in the future version.

- Length: Two octets encoding the length in octets of the TLV, including the type and length fields. The length is encoded as an unsigned binary integer.

- Reserved: A single octet that must be zero now.

- NextHop: four octets encoding for the route next hop address.

4. Process of NEXTHOP_PATH ATTRIBUTE

The NEXTHOP_PATH ATTRIBUTE defined here is an optional transitive BGP Path Attribute, the process of this attribute MUST accord with the procedures in [RFC4271].

4.1. Creating and Modifying the NEXTHOP_PATH Attribute

When a BGP speaker distributes a route to its BGP peer within UPDATE message, the NEXTHOP_PATH ATTRIBUTE should be processed based on different route states:

1. If the route is originated in this BGP peaker

 * If the NEXTHOP_PATH ATTRIBUTE is supported, the NEXTHOP_PATH ATTRIBUTE SHOULD be originated including the BGP speaker’s own next hop address in a next hop path segment. In this case,
the next hop address of the originating BGP speaker will be the only entry of the next hop path segment, and this path segment will be the only segment in NEXTHOP_PATH ATTRIBUTE.

* If the NEXTHOP_PATH ATTRIBUTE is not supported, the route will be distributed without NEXTHOP_PATH ATTRIBUTE.

2. if the route is received from one BGP speaker’s UPDATE message

* If the NEXTHOP_PATH ATTRIBUTE is NULL and the local BGP speaker support NEXTHOP_PATH ATTRIBUTE, when the route is propagated to another IBGP speaker with next hop self (NHS), the NEXTHOP_PATH ATTRIBUTE SHOULD be originated including the BGP speaker’s own next hop address in a next hop path segment. In this case, the next hop address of this BGP speaker will be the only entry to the next hop path segment, and this path segment will be the only segment in NEXTHOP_PATH ATTRIBUTE.

* If the NEXTHOP_PATH ATTRIBUTE is non-NULL and the local BGP speaker support NEXTHOP_PATH ATTRIBUTE, when the route is propagated to another IBGP speaker with next hop self (NHS), the BGP speaker MUST append its own next hop address as the last one of the next hop path segments.

* If the NEXTHOP_PATH ATTRIBUTE is NULL and the local BGP speaker support NEXTHOP_PATH ATTRIBUTE, when the route is propagated to another BGP speaker without changing the next hop by the BGP speaker, the BGP speaker MUST NOT originate the NEXTHOP_PATH ATTRIBUTE.

* If the NEXTHOP_PATH ATTRIBUTE is non-NULL and the local BGP speaker support NEXTHOP_PATH ATTRIBUTE, when the route is propagated to another BGP speaker without changing the next hop by the BGP speaker, the BGP speaker MUST NOT change the next hop path sequence.

* If the BGP speaker does not support NEXTHOP_PATH ATTRIBUTE, it SHOULD keep the NEXTHOP_PATH ATTRIBUTE unchanged whether the route is distribute with next hop self or not.

4.2. Decision Process

Support for the NEXTHOP_PATH ATTRIBUTE involves several modifications to the tie breaking procedures of the "phase 2" decision of BGP route selection, described in section 9.1.2.2 of [RFC4271].

If the NEXTHOP_PATH ATTRIBUTE of a BGP route contains a next hop path loop, the BGP route MUST be excluded from the Phase 2 decision.
function. The next hop path loop detection is done by scanning the full next hop path (as specified in the NEXTHOP_PATH ATTRIBUTE), and checking if the local BGP speaker appears in the next hop path.

The NEXTHOP_PATH ATTRIBUTE can be used for BGP route selection. The priority of the NEXTHOP_PATH ATTRIBUTE for route selection is the same as the AS_PATH attribute.

When a route is received from different IBGP speakers, if the best route cannot acquired through the higher priority rules, the NEXTHOP_PATH ATTRIBUTE SHOULD be used for route selection, and the route with least nexthops will be selected. If the lengths of the next hop lists are the same, the rest rules SHOULD be used for route selection.

5. IANA Considerations

IANA need to assign the codepoint in the "BGP Path Attributes" registry to the NEXTHOP_PATH ATTRIBUTE.

IANA shall create a registry for "next hop path segment". The type field consists of a single octet, with possible values from 0 to 255. The allocation policy for this field is to be "Standards Action with Early Allocation". A new Type should be defined as "NH_SEQUENCE_V4".

6. Security Considerations

Note that, the NEXTHOP_PATH ATTRIBUTE is defined as a optional transitive BGP Path attribute. Both the IBGP and EBGP speaker can use this attribute. When an ASBR propagates the route receive from a IBGP peer to an EBGP peer, the NEXTHOP_PATH ATTRIBUTE will be distribute to the EBGP Speaker which may be controlled by other Service Provider. If the EBGP speaker can support the NEXTHOP_PATH ATTRIBUTE, it can parse the NEXTHOP_PATH ATTRIBUTE to get the inner network architecture of the other network.

In order to prevent this possible security problem, the NEXTHOP_PATH ATTRIBUTE capability should be disabled for specific BGP speaker, such as EBGP. This can reduce the security risk.

7. Normative References

[I-D.ietf-idr-aigp]

[I-D.ietf-mpls-seamless-mpls]

Authors’ Addresses

Zhenbin Li
Huawei Technologies
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

Email: lizhenbin@huawei.com

Li Zhang
Huawei Technologies
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

Email: monica.zhangli@huawei.com