Net wor k Wor ki ng Group H. Tschof eni g

I nternet-Draft Noki a Si emens Net wor ks
I nt ended status: Standards Track S.S. Kunar
Expi res: January 6, 2014 S. Keoh
Phi | i ps Research

July 5, 2013

A Hitchhiker’'s GQuide to the (Datagram Transport Layer Security Protoco
for Smart Obj ects and Constrai ned Node Networks
draft-tschofenig-lwg-tls-mninmal-03

Abstract

Transport Layer Security (TLS) is a widely used security protoco
that offers conmmunication security services at the transport |ayer
The initial design of TLS was focused on the protection of
applications running on top of the Transm ssion Control Protocol
(TCP), and was a good match for securing the Hypertext Transfer
Protocol (HTTP). Subsequent standardization efforts lead to the
publication of the Datagram Transport Layer Security (DTLS) protocol
which allows the re-use of the TLS security functionality and the
payl oads to be exchanged on top of the User Datagram Protocol (UDP).

Wth the work on the Constrained Application Protocol (CoAP), as a
speci ali zed web transfer protocol for use with constrai ned nodes and
constrai ned networks, DILS is a preferred conmunication security

pr ot ocol

Smart objects are constrained in various ways (e.g., CPU, nenory,
power consunption) and these linitations may inpose restrictions on
the protocol stack such a device runs. This docunent only | ooks at
the security part of that protocol stacks and the ability to
custoni ze TLS/ DTLS. To offer input for inplenenters and system
architects this document illustrates the costs and benefits of
various TLS/ DTLS features for use with snart objects and constraint
node networ ks.

Requi renents Language
The key words "MJST', "MJST NOT', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119]
Status of this Meno

This Internet-Draft is submtted in full conformance with the

Tschofenig, et al. Expi res January 6, 2014 [Page 1]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on August 29, 2013.
Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Tabl e of Contents

1. Introduction . 3
2. Overview . . 4
3. Design DeC|S|ons . 6
4. Performance Numbers . . . 7
4.1. Pre-Shared Key (PSK) based DTLS |nplenentat|on 7
4.1. 1. Mounww Envi r onnent . . . 7
4.1.2. Code size and Menory Cbnsunptlon 8
4.1.3. Communi cati on Over head - . 8
4.1.4. Message Del ay, Success Rate and BandMAdth . 9
4.2. Certificate based and Ram#publlc key based TLS
i npl ementation10
4.3. 1. Prototype EnV|ronnent e e20
4.3.2. Code size . . . T
4.3.2. Raw Public Key Inplenentatlon T
5. Summary and Conclusions . . . e
6. Security Considerations12
7. | ANA Considerations .13

Tschofenig, et al. Expi res January 6, 2014 [Page 2]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

8. Acknow edgements .13
9. References .13
9.1. Normative References13
9.2. Infornmative References 13
Authors’ Addresses .15

1. Introduction

The | ETF published three versions of Transport Layer Security: TLS
Version 1.0 [RFC2246], TLS Version 1.1 [RFC4346], and TLS Version 1.2
[RFC5246]. Section 1.1 of [RFCA346] explains the differences between
Version 1.0 and Version 1.1; those are small security inprovenents,

i ncluding the usage of an explicit initialization vector to protect
agai nst ci pher-bl ock-chai ning attacks, which all have little to no

i mpact on snmart object inplenentations. Section 1.2 of [RFC5246]
describes the differences between Version 1.1 and Version 1.2. TLS
1.2 introduces a couple of major changes with inpact to size of an

i mpl ementation. In particular, prior TLS versions hard-coded the
MD5/ SHA- 1 conbi nation in the pseudo-random function (PRF). As a
consequence, any TLS Version 1.0 and Version 1.1 inplenentation had
to have MD5 and SHA-1 code even if the renunining cryptographic
primtives used other algorithms. Wth TLS Version 1.2 the tw had
been repl aced with cipher-suite-specified PRFs. In addition, the TLS
extensions definition [RFC6066] and various AES ciphersuites

[RFC3268] got nmerged into the TLS Version 1.2 specification

Al'l three TLS specifications |ist a nmandatory-to-inpl enent

ci phersuite: for TLS Version 1.0 this was

TLS DHE DSS W TH 3DES EDE CBC SHA, for TLS Version 1.1 it was

TLS RSA W TH 3DES EDE CBC SHA, and for TLS Version 1.2 it is

TLS RSA WTH AES 128 CBC SHA. There is, however, an inportant
qualification to these conpliance statenents, nanely that they are
only valid in the absence of an application profile standard

speci fying ot herwi se. The snart object environnment may, for exanple,
represent a situation for such an application profile which defines a
cryptosuite that reduces nenory and conputation requirenments w thout
sacrificing security.

Al'l TLS versions offer a separation between authentication and key
exchange, and bul k data protection. The forner is nore costly
performance- and nessage-w se. The details of the authentication and
key exchange, using the TLS Handshake, vary with the chosen

ci phersuite. Wth new ciphersuites the TLS feature-set can easily be
enhanced, in case the already |arge collection of ciphersuites, see
[TLS-1 ANA], does not match the requirenments.

Tschofenig, et al. Expi res January 6, 2014 [Page 3]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

Once the TLS Handshake has been successfully conpl eted the necessary
keying material and paraneters are setup for usage with the TLS
Record Layer, which is responsible for bulk data protection. The
provi ded security of the TLS Record Layer depends al so, but not only,
on the chosen ciphersuite algorithms; NULL encryption ciphersuites,
|ike those specified in RFC 4785 [RFC4785], offer only integrity-

wi t hout confidentiality-protection. Exanple ciphersuites for the TLS
Record Layer are RC4A with SHA-1, AES-128 with SHA-1, AES-256 with
SHA-1, RC4 with SHA-1, R4 with MD5 It is worth nentioning that TLS
may al so be used without the TLS Record Layer. This has, for exanple,
been exercised with the work on the framework for establishing a
Secure Real -time Transport Protocol (SRTP) security context using the
Dat agram Transport Layer Security (DTLS [RFC4347]) protocol (DTLS-
SRTP [RFC5763]) .

It is fair to say that TLS and consequently DTLS offers a fair degree
of flexibility. What specific security features of TLS are required
for a specific smart object application scenario depends on various
factors, including the conmunication architecture and the threats
that shall be nitigated

The goal of this docunent is to provide guidance on how to use

exi sting DTLS/ TLS extensions for smart objects and to explain their
costs in terns of code size, conputational effort, comrunication

over head, and (maybe) energy consunption. The docunent does not try
to be exhaustive, as the list of TLS/ DTLS extensions is enhanced on a
frequent basis. Instead we focus on extensions that those working in
the smart object conmunity often found valuable in their practica
experience. A non-goal is to propose new extensions to DILS/TLS to
provi de even better performance characteristics in specific

envi ronment s.

2. Overview

A security solution to be deployed is strongly influenced by the
communi cation rel ationshi ps [RFC4101] between the entities. Having a
good understandi ng of these relationships will be essential to define
the threats and decide on how to custom ze the security solution

Sone of these considerations are described in [I1-D.gilger-smart-

obj ect - security-workshop].

Consi der the following scenario where a smart-neter transnits its
energy readings to other parties. The public utility has to ensure
that the nmeter readings it obtained can be attributed to a specific
meter in a household. It is sinply not acceptable for public utility
to have any neter readings tanpered in transit or by a rogue endpoint
(particularly if the attack |eads to a di sadvantage, for exanple
financial loss, for the utility). Users in a household may want to

Tschofenig, et al. Expi res January 6, 2014 [Page 4]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

ensure that only certain authorized parties are able to read their
nmeter; privacy concerns cone to mnd.

In this exanple, a smart-neter may only ever need to talk to servers
of a specific utility or even only to a single pre-configured server
Clearly, sonme information has to be pre-provisioned into the device
to ensure the desired behavior to talk only to selected servers. The
meter may cone pre-configured with the domain nanme and certificate
belonging to the utility. The device may, however, also be
configured to accept one or nultiple server certificates. It may
even be pre-provisioned with the server’s raw public key, or a shared
secret instead of relying on certificates.

Lowering the flexibility decreases the inplenentation overhead. |If
shared secrets are used with TLS-PSK [RFC4279] or raw public keys are
used with TLS [I-D.ietf-tls-oob-pubkey], fewer |ines of code are
needed than enpl oying X 509 certificate, as will be explained | ater
in this docunent. A decision for constraining the client-side TLS

i npl ementation, for exanple by offering only a single ciphersuite,
has to be made in awareness of what functionality will be available
on the TLS server-side. 1In certain conmunication environments it may
be easy to influence both communication partners while in other cases
the existing deploynent needs to be taken into consideration

To illustrate another exanple, consider an Internet radio, which
allows a user to connect to available radio stations. A device |ike
this will be nore demandi ng than an | P-enabl ed wei ghi ng scal e t hat
only connects to the single web server offered by the device

manuf acturer. A threat assessnment nay even |lead to the concl usion
that TLS support is not necessary at all in this particular case.

Consi der the followi ng extension to our earlier scenario where the
smart-neter is attached to a home WLAN network and the inter-working
with WLAN security nechani sns need to be taken care of. On top of
the link |ayer authentication, a transport |ayer or application |ayer
security nechani smneeds to be inplemented. Quite likely the
security nechanisns will be different due to the different credential
requirenents. VWile there is a possibility for re-use of
cryptographic libraries (such as the SHA-1, MD5, or HVAC) the overall
code footprint will very likely be |arger.

Furt hernmore, security technology that will be depl oyed by end-user
consumner nmarket products and large enterprise custoner products will
need to be custom zed conpletely different. Wile the security
bui |l di ng bl ocks may be reused, there is certainly a big difference
between in terms of the architecture, the threats and effort that
will be spent securing the system

Tschofenig, et al. Expi res January 6, 2014 [Page 5]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

3. Design Decisions

To evaluate the required TLS functionality a couple of high |eve
desi gn deci sions have to be nade:

o0 What type of protection for the data traffic is required? 1Is
confidentiality protection in addition to integrity protection
required? Many TLS ciphersuites also provide a variant for NULL

encryption [RFC4279]. If confidentiality protection is required,
a carefully chosen set of algorithns may have a positive inpact on
the code si ze. Re-use of crypto-libraries (within TLS but al so

among the entire protocol stack) will also help to reduce the
overal | code size

o What functionality is available in hardware? For exanple, certain
hardware platforns of fer support for a random nunber generator as
wel | as cryptographic algorithns (e.g., AES). These functions can
be re-used and allow to reduce the amount of required code. Using
har dware support not only reduces the conputation tine but can
al so save energy due to the optim zed inplenentation

0o What credentials for client and server authentication are
required: passwords, pre-shared secrets, certificates, raw public
keys (or a mixture of them)? Is nutual authentication required? Is
X509 certificate handling necessary? If not, then the ASN. 1
library as well as the certificate parsing and processing can be
omtted. |If pre-shared secrets are used then the big integer
i npl ementation can be onitted

o What TLS version and what TLS features, such as session
resunption, can or have to be used? |In the case of DILS, generic
fragmentation and reordering requires large buffers to reassenbl e
t he messages, which mght be too heavy for sone devices

0 Is it possible to design only the client-side TLS stack, or
necessary to provide the server-side inplementation as well?
Handshake nessages sent are different sizes for the client and
server which creates energy consunption differences (due to the
fact that nore power is spent during transm ssion than while
receiving data in wrel ess devices).

0 Wiich side will be nore powerful? Resource-constrained sensor
nodes runni ng CoAPS ni ght be server only, while nodes running
HTTPS are nost like clients only that post their information to a
normal Web server. The constrained side will nost likely only
i npl ement a single ciphersuite. Flexibility is given to a nore
power ful counterpart that supports many different ciphersuite for
various connected devi ces.

Tschofenig, et al. Expi res January 6, 2014 [Page 6]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

4.

4.

4.

0 Is it possible to hardwire credentials into the code rather than
| oadi ng them from storage? |If so, then no file handling or
parsing of the credentials is needed and the credentials are
already available in a formthat they can be used within the TLS
i mpl enent ati on.

Per f or mance Nunbers

In this section we sunmarize performance neasurenments avail abl e from
certain inplenentation experiences. This section is not supposed to
be exhaustive as we do not have all measurenents avail able. The
performances are grouped according to extensions (TLS-PSK, raw public
key and certificate based) and further grouped by perfornmance
measures (nenory, code size, conmunication overhead, etc.). Were
possi ble we extract the different building blocks found in TLS and
present their performance neasures individually.

1. Pre-Shared Key (PSK) based DTLS inpl enentation

This section provides performance nunbers for a prototype
i mpl ement ati on of DTLS-PSK described in [I-D. keoh-1wi g-dtls-iot] and
eval uates the nenory and comruni cati on over heads.

1.1. Prototype Environment

The prototype is witten in C and runs as an application on Conti ki
OS 2.5 [Dunkel s-contiki], an event-driven open source operating
system for constrai ned devices. They were tested in the Cooja

simul ator and then ported to run on Redbee Econotag hardware, which
features a 32-bit CPU, 128 KB of ROM 128 KB of RAM and an | EEE

802. 15. 4 enabl ed radio with an AES hardware coprocessor. The
prot ot ype conprises all necessary functionality to adapt to the roles
as a dommi n manager or a joining device.

The prototype is based on the "TinyDTLS" [Bergmann-Tinydtls] library
and includes nost of the extensions and the adaptation as foll ows:

(1) The cooki e nechani smwas disabled in order to fit nessages to the
avai |l abl e packet sizes and hence reducing the total nunber of
messages when perform ng the DTLS handshake.

(2) Separate delivery was used instead of flight grouping of nessages
and redesigned the retransm ssion nechani sm accordingly.

(3) The "TinyDILS" AES-CCM nodul e was nodified to use the AES
har dwar e coprocessor.

The follow ng subsections further analyze the nenory and

Tschofenig, et al. Expi res January 6, 2014 [Page 7]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

conmmuni cati on over head of the sol ution

4.1.2. Code size and Menory Consunption

Table 1 presents the codesize and nenory consunption of the prototype
differentiating (i) the state nachine for the handshake, (ii) the
cryptographic prinmitives, and (iii) the DILS record |ayer mechani sm

The use of DILS appears to incur large nmenory footprint both in ROM
and RAM for two reasons. First, DILS handshake defines nmany nessage
types and this adds nore conplexity to its corresponding state

machi ne. The logic for nessage re-ordering and retransm ssion al so
contributes to the conplexity of the DILS state nachi ne. Second, DTLS
uses SHA2- based crypto suites which is not available fromthe
hardware crypto co-processor.

- T +
[[DTLS [
| R R +
[| ROM | RAM |
O Fommnaann Fommnaann +
| State Machine | 8.15 | 1.9 |
| Cryptography | 3.3 | 1.5 |
| Key Managenent | 1.0 | 0.0

| DTLS Record Layer | 3.7 | 0.5 |

Table 1: Menory Requirenents in KB

4.1.3. Conmuni cation Over head

The communi cation overhead is evaluated in this section. In
particul ar, the message overhead and the nunber of exchanged bytes
under ideal condition wthout any packet |oss is exani ned.

Tabl e 2 sumuari zes the required nunber of round trips, nunmber of
messages and the total exchanged bytes for the DTLS-based handshake
carried out in ideal conditions, i.e., in a network w thout packet

| osses. DTLS handshake is considered conplex as it involves the
exchange of 12 messages to conpl ete the handshake. Further, DTLS runs

on top the transport layer, i.e., UDP, and hence this directly
i ncreases the overhead due to | ower |ayer per-packet protoco
headers.

Tschofenig, et al. Expi res January 6, 2014 [Page 8]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

oo e e e e e e e ao oo - F +
[| DTLS |
Fom e e e e e e e e e e ee oo Fom e e e - - +
| No. of Message [12 |
| No. of round trips | 4
oo e e e e e e eeee oo - o m e e oo +
| 802.15.4 headers | 168B
| 6LowWPAN headers | 480B
| UDP headers | 96B |
| Application | 487B
o m e e e e e e e eeee oo n Fom e e e oo +
| TOTAL | 1231B |
oo e e e e e e e ao oo - F +

Tabl e 2: Conmuni cati on over head for Network
Access and Miulticast Key Managenent

4.1.4. Message Del ay, Success Rate and Bandwi dth

Section 5.3 provided an evaluation of the protocol in an idea
condition, thus establishing the the baseline protocol overhead. The
prot ot ype was further exam ned and sinul ated the protocol behavior by
tuning the packet loss ratio. In particular, the inpact of packet

| oss on nessage del ay, success rate and nunber of nessages exchanged
i n the handshake were exam ned.

Fi gure 4 shows the percentage of successful handshakes as a function
of timeouts and packet |oss ratios. As expected, a higher packet |oss
ratio and snaller tineout (15s tineout) result in a failure
probability of conpleting the DILS handshake. Wen the packet |oss
ratio reaches 0.5, practically no DTLS handshake woul d be

successf ul
100 | +
P | +
E 80| ++
R | ++
C 60 | +
E | +
N 40 | +
T [++
A 20 | +
G | +++++
E (0 R ++++++++- - >

00.10.20.30.40.5
packet loss ratio (15s tineout)

Figure 1: Average % of successful handshakes

Tschofenig, et al. Expi res January 6, 2014 [Page 9]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

Del ays in network access and communi cation are intol erable since they
| ead to higher resource consunption. As the solution relies on PSK

t he handshake protocol only incurs a short delay of a few

m | liseconds when there is no packet |oss. However, as the packet

|l oss ratio increases, the delay in conpleting the handshake becones
significant because | oss packets nust be retransmitted. Cur

i mpl erent ati on shows that with a packet loss ratio of 0.5, the the
times to performnetwork access and multicast key nanagenent coul d
take up to 24s.

Finally, another inportant criterion is the nunber of nessages
exchanged in the presence of packet |oss. A successful handshake
could incur up to 35 or nore nessages to be transmitted when the
packet |loss ratio reaches 0.5. This is mainly because the DTLS
retransm ssion is conplex and often requires re-sending nmultiple
messages even when only a single nessage has been |ost.

4.2. Certificate based and Raw public key based TLS inpl enentati on

4.3.1. Prototype Environnent
The follow ng code was conpil ed under Ubuntu Linux using the -Gs
conpiler flag setting for a 64-bit AMD nachine using a nodified
versi on of the axTLS enbedded SSL i npl enent ati on.

4.3.2. Code size

For the cryptographi c support functions these are the binary sizes:

o e e e e e e e i o e oo +
| Cryptographic functions | Code size |
B B +
MD5	4,856 bytes
SHA1	2,432 bytes
HMAC	2,928 bytes
RSA	3,984 bytes
Big Integer Inplenmentation	8,328 bytes
AES	7,096 bytes
RC4	1,496 bytes
Random Nunber Gener at or	4,840 bytes
o m e e e e e e e i o e oo +

Tabl e 3: Code-size for cryptographic functions

The TLS library with certificate support consists of the foll ow ng
parts:

x509 rel ated code: 2,776 bytes
The x509 rel ated code provides functions to parse certificates, to

Tschofenig, et al. Expi res January 6, 2014 [Page 10]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

copy theminto the programinternal data structures and to perform
certificate related processing functions, like certificate
verification.

ASN1 Parser: 5,512 bytes
The ASN1 library contains the necessary code to parse ASNl dat a.

Generic TLS Library: 15,928 bytes

This library is separated fromthe TLS client specific code to offer
those functions that are conmon with the client and the server-side
i npl ementation. This includes code for the naster secret generation
certificate validation and identity verification, conputing the

fini shed message, ciphersuite related functions, encrypting and
decrypting data, sending and receiving TLS nessages (e.g., finish
message, alert nessages, certificate nessage, session resunption).

TLS Cient Library: 4,584 bytes

The TLS client-specific code includes functions that are only
executed by the client based on the supported ciphersuites, such as
est abli shing the connection with the TLS server, sending the
ClientHell o handshake nmessage, parsing the ServerHell o handshake
message, processing the ServerHel | oDone nessage, sending the

Cl i ent KeyExchange nessage, processing the CertificateRequest nessage.

OS W apper Functions: 2,776 bytes

These functions aimto rmake devel opment easier (e.g., for failure
handling with menory allocation and vari ous header definitions) but
are not absol utely necessary.

OpenSSL W apper Functions: 931 bytes

The OpenSSL APl calls are familiar to many progranmers and therefore
these wrapper functions are provided to sinplify application

devel opnment. This library is also not absolutely necessary.

Certificate Processing Functions: 4,456 bytes

These functions provide the ability to load certificates fromfiles
(or to use a default key as a static data structure enbedded during
compile time), to parse them and popul ate correspondi ng data
structures.

4.3.2. Raw Public Key Inplenentation

O course, the use of raw public keys does not only inpact the code
size but also the size of the exchanged nessages. Wen using raw
public keys (instead of certificates) the "certificate" size was
reduced from 475 bytes to 163 bytes (using an RSA-based public key).
Not e that the SubjectPublicKeylnfo block does not only contain the

Tschofenig, et al. Expi res January 6, 2014 [Page 11]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

raw keys, nanely the public exponent and the nodulus, but also a
smal | ASN. 1 header preanble.

For the raw public key inplenentation the foll owi ng conponents where
needed (in addition to a subset of the cryptographic support
functions):

M ni mal ASNLl Parser: 3,232 bytes

The necessary support fromthe ASNL |ibrary now only contains
functions for parsing of the ASNL conponents of the

Subj ect Publ i cKeyl nfo bl ock.

Generic TLS Library: 16,288 bytes

This size of this library was slightly enlarged since additiona
functionality for |oading keys into the bigint data structure was
added. On the other hand, code was renoved that relates to
certificate processing and functions to retrieve certificate related
data (e.g., to fetch the X509 distinguished nane or the subject

al ternative nane).

TLS Cient Library: 4,528 bytes

The TLS client-specific code now contains additional code for the raw
public key support, for exanple in the ClientHello nessage. Most
functions were left unnodified.

5. Sunmmary and Concl usi ons

TLS/ DTLS can be tailored to fit the needs of a specific depl oynent
environnment. This custom zation property allows it to be tailored to
many use cases including smart objects. The conmmuni cati on nodel and
the security goals will, however, ultimately decide the resulting
code size; this is not only true for TLS but for every security
solution. More flexibility and nore features will ultimately translate
to a bigger footprint.

There are, however, cases where the security goals ask for a security
solution other than TLS. Wth the w de range of enbedded
applications it is inpractical to design for a single security
architecture or even a single communication architecture.

6. Security Considerations
Thi s docunment di scusses various design aspects for reducing the

footprint of (D)TLS inplenmentations. As such, it is entirely about
security.

Tschofenig, et al. Expi res January 6, 2014 [Page 12]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

7. | ANA Consi derations
Thi s docunent does not contain actions for |ANA

8. Acknow edgenents
The authors would like to thank the participants of the Smart Object
Security workshop, March 2012. The authors greatly acknow edge the
prototyping and inplementation efforts by Pedro Mreno-Sanchez and
Franci sco Vidal - Meca who worked as interns at Philips Research.

9. References

9.1. Normative References
[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFCA346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFCA347] Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security", RFC 4347, April 2006.
[SHA] National Institute of Standards and Technol ogy, , "Secure Hash
St andard", FIPS 180-2, Aug 2002.

9.2. Informative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.
[RFC5763] Fischl, J., Tschofenig, H, and E. Rescorla, "Framework
for Establishing a Secure Real -tinme Transport Protocol (SRTP)
Security Context Using Datagram Transport Layer Security (DTLS)",
RFC 5763, May 2010.
[RFCA785] Blunmenthal, U and P. Goel, "Pre-Shared Key (PSK)
C phersuites with NULL Encryption for Transport Layer Security
(TLS)", RFC 4785, January 2007.

[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)

Tschofenig, et al. Expi res January 6, 2014 [Page 13]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

Ext ensi ons: Extension Definitions", RFC 6066, January 2011.

[RFC3268] Chown, P., "Advanced Encryption Standard (AES)
Ci phersuites for Transport Layer Security (TLS)", RFC 3268, June
2002.

[RFC4101] Rescorla, E. and | AB, "Witing Protocol Mdels", RFC 4101,
June 2005.

[RFC4279] FEronen, P., Ed., and H Tschofenig, Ed., "Pre-Shared Key
Ci phersuites for Transport Layer Security (TLS)", RFC 4279, Decenber
2005.

[TLS-1 ANA] | ANA, "Transport Layer Security (TLS) Paraneters:
http://ww. iana. org/assignnments/tls-paraneters/tls-paraneters.xm",
Cct 2012.

[I-D.ietf-tls-oob-pubkey] Wuters, P., Tschofenig, H, Glnore, J.,
Weiler, S., and T. Kivinen, "Qut-of-Band Public Key Validation for

Transport Layer Security (TLS)", draft-ietf-tls-oob-pubkey-07 (work
in progress) February 2013.

[1-D. keoh-Iw g-dtls-iot] Keoh, S., Kumar, S., and Garcia-Mrchon, O,
"Securing the | P-based Internet of Things with DTLS", draft-keoh-
Iwi g-dtls-iot-01, February 2013.

[I-D.gilger-smart-object-security-workshop] Glger, J., and
Tschofenig, H, "Report fromthe 'Smart Object Security Wrkshop’,
March 23, 2012, Paris, France", draft-gilger-smart-object-security-
wor kshop- 01. t xt, February 2013.

[Dunkel s- Conti ki] Dunkels, A, Gonvall, B., and Voigt, T. "Contiki -
A Lightwei ght and Fl exi bl e Operating System for Tiny Networked
Sensors", In Proceedings of the 29th Annual |EEE International

Conf erence on Local Computer Networks, |EEE, 2004.

[Bergmann- Ti nydt|ls] Bergmann, O. "TinyDILS - A Basic DILS Server
Tenpl ate", http://tinydtls.sourceforge.net, 2012.

Tschofenig, et al. Expi res January 6, 2014 [Page 14]

Internet-Draft Hi tchhiker's GQuide to TLS / DILS July 5, 2013

Aut hors’ Addr esses

Hannes Tschof eni g

Noki a Si enens Net wor ks
Li nnoitustie 6

Espoo, 02600

Fi nl and

Phone: +358 (50) 4871445
Enmai | : Hannes. Tschof eni g@nx. net
URI : http://ww.tschofenig.priv.at

Sandeep S. Kumar
Phi | i ps Research

H gh Tech Canpus 34
Ei ndhoven 5656 AE
NL

Emai | : sandeep. kurmar @hi | i ps. com
Sye Loong Keoh

Phi | i ps Research

H gh Tech Canpus 34

Ei ndhoven 5656 AE

NL

Emai | : sye. | oong. keoh@hi | i ps. com

Tschofenig, et al. Expi res January 6, 2014 [Page 15]

