
Network Working Group E. Ivov
Internet-Draft Jitsi
Intended status: Standards Track E.K. Rescorla
Expires: September 12, 2013 RTFM, Inc.
 J. Uberti
 Google
 March 11, 2013

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol
 draft-ivov-mmusic-trickle-ice-01

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) protocol that allows ICE agents to send and
 receive candidates incrementally rather than exchanging complete
 lists. With such incremental provisioning, ICE agents can begin
 connectivity checks while they are still gathering candidates and
 considerably shorten the time necessary for ICE processing to
 complete.

 The above mechanism is also referred to as "trickle ICE".

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ivov, et al. Expires September 12, 2013 [Page 1]

Internet-Draft Trickle ICE March 2013

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Incompatibility with Standard ICE 5
 4. Determining Support for Trickle ICE 6
 4.1. Unilateral Use of Trickle ICE (Half Trickle) 7
 5. Sending the Initial Offer 8
 5.1. Encoding the SDP . 9
 6. Receiving the Initial Offer 9
 6.1. Sending the Initial Answer 10
 6.2. Forming check lists and beginning connectivity
 checks . 10
 6.3. Encoding the SDP . 11
 7. Receiving the Initial Answer 11
 8. Performing Connectivity Checks 11
 8.1. Check List and Timer State Updates 11
 9. Discovering and Sending Additional Local Candidates 12
 9.1. Pairing newly learned candidates and updating
 check lists . 12
 9.2. Encoding the SDP for Additional Candidates 14
 9.3. Announcing End of Candidates 14
 9.4. Receiving an End Of Candidates Notification 16
 10. Receiving Additional Remote Candidates 16
 11. Concluding ICE Processing 16
 12. Subsequent Offer/Answer Exchanges 17
 13. Interaction with ICE Lite 17
 14. Example Flow . 18
 15. Security Considerations 19
 16. Acknowledgements . 19
 17. References . 19
 17.1. Normative References 19
 17.2. Informative References 19
 Appendix A. Open issues . 21
 A.1. MID/Stream Indices in SDP 21
 A.2. Starting checks . 21
 Appendix B. Changes From Earlier Versions 21
 B.1. Changes From draft-ivov-00 21

Ivov, et al. Expires September 12, 2013 [Page 2]

Internet-Draft Trickle ICE March 2013

 B.2. Changes From draft-rescorla-01 22
 B.3. Changes From draft-rescorla-00 23
 Authors’ Addresses . 23

1. Introduction

 The Interactive Connectivity Establishment (ICE) protocol [RFC5245]
 describes mechanisms for gathering, candidates, prioritizing them,
 choosing default ones, exchanging them with the remote party, pairing
 them and ordering them into check lists. Once all of the above have
 been completed, and only then, the participating agents can begin a
 phase of connectivity checks and eventually select the pair of
 candidates that will be used in the following session.

 While the above sequence has the advantage of being relatively
 straightforward to implement and debug once deployed, it may also
 prove to be rather lengthy. Gathering candidates or candidate
 harvesting would often involve things like querying STUN [RFC5389]
 servers, discovering UPnP devices, and allocating relayed candidates
 at TURN [RFC5766] servers. All of these can be delayed for a
 noticeable amount of time and while they can be run in parallel, they
 still need to respect the pacing requirements from [RFC5245], which
 is likely to delay them even further. Some or all of the above would
 also have to be completed by the remote agent. Both agents would
 next perform connectivity checks and only then would they be ready to
 begin streaming media.

 All of the above could lead to relatively lengthy session
 establishment times and degraded user experience.

 The purpose of this document is to define an alternative mode of
 operation for ICE implementations, also known as "trickle ICE", where
 candidates can be exchanged incrementally. This would allow ICE
 agents to exchange host candidates as soon as a session has been
 initiated. Connectivity checks for a media stream would also start
 as soon as the first candidates for that stream have become
 available.

 Trickle ICE allows reducing session establishment times in cases
 where connectivity is confirmed for the first exchanged candidates
 (e.g. where the host candidates for one of the agents are directly
 reachable from the second agent). Even when this is not the case,
 running candidate harvesting for both agents and connectivity checks
 all in parallel allows to considerably reduce ICE processing times.

Ivov, et al. Expires September 12, 2013 [Page 3]

Internet-Draft Trickle ICE March 2013

 It is worth pointing out that before being introduced to the IETF,
 trickle ICE had already been included in specifications such as XMPP
 Jingle [XEP-0176] and it has been in use in various implementations
 and deployments.

 In addition to the basics of trickle ICE, this document also
 describes how support for trickle ICE needs to be discovered, how
 regular ICE processing needs to be modified when building and
 updating check lists, and how trickle ICE implementations should
 interoperate with agents that only implement [RFC5245] processing.

 This specification does not define usage of trickle ICE with any
 specific signalling protocol, contrary to [RFC5245] which contains a
 usage for ICE with SIP. Such usages would have to be specified in
 separate documents such as for example
 [I-D.ivov-mmusic-trickle-ice-sip].

 Trickle ICE does however reuse and build upon the SDP syntax defined
 by vanilla ICE.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined by the
 protocol for Interactive Connectivity Establishment in [RFC5245].

 Vanilla ICE: The Interactive Connectivity Establishment protocol as
 defined in [RFC5245].

 Candidate Harvester: A module used by an ICE agent to obtain local
 candidates. Candidate harvesters use different mechanisms for
 discovering local candidates. Some of them would typically make
 use of protocols such as STUN or TURN. Others may also employ
 techniques that are not referenced within [RFC5245]. UPnP based
 port allocation and XMPP Jingle Relay Nodes [XEP-0278] are among
 the possible examples.

 Trickled Candidates: Candidates that a trickle ICE agent is sending
 subsequently to but within the context defined by an offer or an
 answer. Trickled candidates can be sent in parallel with
 candidate harvesting and connectivity checks.

 Trickling/Trickle (v.): The act of sending trickled candidates.

Ivov, et al. Expires September 12, 2013 [Page 4]

Internet-Draft Trickle ICE March 2013

 Half Trickle: A trickle ICE mode of operation where the offerer
 gathers its first generation of candidates strictly before
 creating and sending the offer. Once sent, that offer can be
 processed by vanilla ICE agents and does not require support for
 this specification. It also allows trickle ICE capable answerers
 to still gather candidates and perform connectivity checks in a
 non-blocking way, thus roughly offering "half" the advantages of
 trickle ICE. The mechanism is mostly meant for use in cases where
 support for trickle ICE cannot be confirmed prior to sending a
 first offer.

 Full Trickle: Regular mode of operation for trickle ICE agents, used
 in opposition to the half trickle mode of operation.

3. Incompatibility with Standard ICE

 The ICE protocol was designed to be fairly flexible so that it would
 work in and adapt to as many network environments as possible. It is
 hence important to point out at least some of the reasons why,
 despite its flexibility, the specification in [RFC5245] would not
 support trickle ICE.

 [RFC5245] describes the conditions required to update check lists and
 timer states while an ICE agent is in the Running state. These
 conditions are verified upon transaction completion and one of them
 stipulates that:

 If there is not a pair in the valid list for each component of the
 media stream, the state of the check list is set to Failed.

 This could be a problem and cause ICE processing to fail prematurely
 in a number of scenarios. Consider the following case:

 o Alice and Bob are both located in different networks with Network
 Address Translation (NAT). Alice and Bob themselves have
 different address but both networks use the same [RFC1918] block.

 o Alice sends Bob the candidate 10.0.0.10 which also happens to
 correspond to an existing host on Bob’s network.

 o Bob creates a check list consisting solely of 10.0.0.10 and starts
 checks.

 o These checks reach the host at 10.0.0.10 in Bob’s network, which
 responds with an ICMP "port unreachable" error and per [RFC5245]
 Bob marks the transaction as Failed.

Ivov, et al. Expires September 12, 2013 [Page 5]

Internet-Draft Trickle ICE March 2013

 At this point the check list only contains Failed candidates and the
 valid list is empty. This causes the media stream and potentially
 all ICE processing to Fail.

 A similar race condition would occur if the initial offer from Alice
 only contains candidates that can be determined as unreachable (per
 [I-D.keranen-mmusic-ice-address-selection]) from any of the
 candidates that Bob has gathered. This would be the case if Bob’s
 candidates only contain IPv4 addresses and the first candidate that
 he receives from Alice is an IPv6 one.

 Another potential problem could arise when a non-trickle ICE
 implementation sends an offer to a trickle one. Consider the
 following case:

 o Alice’s client has a non-trickle ICE implementation

 o Bob’s client has support for trickle ICE.

 o Alice and Bob are behind NATs with address-dependent filtering
 [RFC4787].

 o Bob has two STUN servers but one of them is currently unreachable

 After Bob’s agent receives Alice’s offer it would immediately start
 connectivity checks. It would also start gathering candidates, which
 would take long because of the unreachable STUN server. By the time
 Bob’s answer is ready and sent to Alice, Bob’s connectivity checks
 may well have failed: until Alice gets Bob’s answer, she won’t be
 able to start connectivity checks and punch holes in her NAT. The
 NAT would hence be filtering Bob’s checks as originating from an
 unknown endpoint.

4. Determining Support for Trickle ICE

 According to [RFC5245] every time an agent supporting trickle ICE
 generates an offer or an answer, it MUST include the "trickle" token
 in the ice-options attribute. Syntax for this token is defined in
 Section 5.1.

 Additionally, in order to avoid interoperability problems such as
 those described in Section 3, it is important that trickle ICE
 negotiation is only attempted in cases where the remote party
 actually supports this specification. Agents that receive offers or
 answers can verify support by examining them for the "trickle" ice-
 options token. However, agents that are about to send a first offer,
 have no immediate way of doing this. This means that usages of
 trickle for specific protocols would need to either:

Ivov, et al. Expires September 12, 2013 [Page 6]

Internet-Draft Trickle ICE March 2013

 o Provide a way for agents to verify support of trickle ICE prior to
 initiating a session. XMPP’s Service discovery [XEP-0030] is an
 example for one such mechanism;

 o Make support for trickle ICE mandatory so that support could be
 assumed the agents.

 Alternately, for cases where a protocol provides neither of the
 above, agents may either rely on provisioning/configuration, or use
 the half trickle procedure described in Section 4.1.

 Note that out-of-band discovery semantics and half trickle are only
 necessary prior to session initiation, or in other words, when
 sending the initial offer. Once a session is established and trickle
 ICE support is confirmed for both parties, either agent can use full
 trickle for subsequent offers.

4.1. Unilateral Use of Trickle ICE (Half Trickle)

 The idea of using half trickle is about having the caller send a
 regular, vanilla ICE offer, with a complete set of candidates. This
 offer still indicates support for trickle ice, so the answerer is
 able to respond with an incomplete set of candidates and continue
 trickling the rest. Half trickle offers will typically contain an
 end-of-candidates indication.

 The mechanism can be used in cases where there is no way for an agent
 to verify in advance whether a remote party supports trickle ice.
 Because it contains a full set of candidates, its first offer can
 thus be handled by a regular vanilla ICE agent, while still allowing
 a trickle one to use the optimisation defined in this specification.
 This prevents negotiation from failing in the former case while still
 giving roughly half the trickle ICE benefits in the latter (hence the
 name of the mechanism).

 Use of half trickle is only necessary during an initial offer/answer
 exchange. Once both parties have received a session description from
 their peer, they can each reliably determine trickle ICE support and
 use it for all subsequent offer/answer exchanges.

 It is worth pointing out that using half trickle may actually bring
 more than just half the improvement in terms of user experience.
 This can happen in cases where an agent starts gathering candidates
 upon user interface cues that a call is pending, such as activity on
 a keypad or the phone going off hook. This would mean a part or all
 candidate harvesting could have completed before the agent actually
 needs to send the offer. Given that the answerer will be able to
 trickle candidates, both agents will be able to start connectivity

Ivov, et al. Expires September 12, 2013 [Page 7]

Internet-Draft Trickle ICE March 2013

 checks and complete ICE processing earlier than with vanilla ICE and
 potentially even as early as with full trickle.

 However, such anticipation is not not always possible. For example,
 a multipurpose user agent or a WebRTC web page where communication is
 a non-central feature (e.g. calling a support line in case of a
 problem with the main features) would not necessarily have a way of
 distinguishing between call intentions and other user activity.
 Still, even in these cases, using half trickle would be an
 improvement over vanilla ICE as it would optimize performance for
 answerers.

5. Sending the Initial Offer

 An agent starts gathering candidates as soon as it has an indication
 that communication is imminent (e.g. a user interface cue or an
 explicit request to initiate a session). Contrary to vanilla ICE,
 implementations of trickle ICE do not need to gather candidates in a
 blocking manner. Therefore, unless half trickle is being used,
 agents SHOULD generate and transmit their initial offer as early as
 possible, in order to allow the remote party to start gathering and
 trickling candidates.

 Trickle ICE agents MAY include any set of candidates in an offer.
 This includes the possibility of generating one with no candidates,
 or one that contains all the candidates that the agent is planning on
 using in the following session.

 For optimal performance, it is RECOMMENDED that an initial offer
 contains host candidates only. This would allow both agents to start
 gathering server reflexive, relayed and other non-host candidates
 simultaneously, and it would also enable them to begin connectivity
 checks.

 If the privacy implications of revealing host addresses are a
 concern, agents MAY generate an offer that contains no candidates and
 then only trickle candidates that do not reveal host addresses (e.g.
 relayed candidates).

 Prior to actually sending an initial offer, agents MAY verify if the
 remote party supports trickle ICE, where such mechanisms actually
 exist. If absence of such support is confirmed agents MUST fall back
 to using vanilla ICE or abandon the entire session.

 All trickle ICE offers and answers MUST indicate support of this
 specification, as explained in Section 5.1.

Ivov, et al. Expires September 12, 2013 [Page 8]

Internet-Draft Trickle ICE March 2013

 Calculating priorities and foundations, as well as determining
 redundancy of candidates work the same way they do with vanilla ICE.

5.1. Encoding the SDP

 The process of encoding the SDP [RFC4566] is mostly the same as the
 one used by vanilla ICE. Still, trickle ICE does require a few
 differences described here.

 Agents MUST indicate support for Trickle ICE by including the
 "trickle" token for the "a=ice-options" attribute:

 a=ice-options:trickle

 As mentioned earlier in this section, Offers and Answers can contain
 any set of candidates, which means that a trickle ICE session
 description MAY contain no candidates at all. In such cases the
 agent would still need to place an address in the "c=" line(s). If
 the use of a host address there is undesirable (e.g. for privacy
 reasons), the agent MAY set the connection address to IP6 ::. In this
 case it MUST also set the port number to 9 (Discard). There is no
 need to include a fictitious candidate for the IP6 :: address when
 doing so.

 It is worth noting that the use of IP6 :: has been selected over IP4
 0.0.0.0, even though [RFC3264] already gives the latter semantics
 appropriate for such use. The reason for this choice is the historic
 use of 0.0.0.0 as a means of putting a stream on hold [RFC2543] and
 the ambiguity that this may cause with legacy libraries and
 applications.

 It is also worth mentioning that use of IP6 :: here does not
 constitute any kind of indication as to the actual use of IPv6
 candidates in a session and it can very well appear in a negotiation
 that only involves IPv4 candidates.

6. Receiving the Initial Offer

 When an agent receives an initial offer, it will first check if it
 indicates support for trickle ICE as explained in Section 4. If this
 is not the case, the agent MUST process the offer according to the
 [RFC5245] procedures or standard [RFC3264] processing in case no ICE
 support is detected at all.

Ivov, et al. Expires September 12, 2013 [Page 9]

Internet-Draft Trickle ICE March 2013

 It is worth pointing out that in case support for trickle ICE is
 confirmed, an agent will automatically assume support for vanilla ICE
 as well even if the support verification procedure in [RFC5245]
 indicates otherwise. Specifically, such verification would indicate
 lack of support when the offer contains no candidates. The IP6 ::
 address present in the c= line in that case would not "appear in a
 candidate attribute". Obviously, a fallback to [RFC3264] is not
 required when this happens.

 If, the offer does indicate support for trickle ICE, the agent will
 determine its role, start gathering and prioritizing candidates and,
 while doing so it will also respond by sending its own answer, so
 that both agents can start forming check lists and begin connectivity
 checks.

6.1. Sending the Initial Answer

 An agent can respond to an initial offer at any point while gathering
 candidates. The answer can again contain any set of candidates
 including none or all of them. Unless it is protecting host
 addresses for privacy reasons, the agent would typically construct
 this initial answer including only them, thus allowing the remote
 party to also start forming checklists and performing connectivity
 checks.

 The answer MUST indicate support for trickle ICE as described by
 Section 4.

6.2. Forming check lists and beginning connectivity checks

 After exchanging offer and answer, and as soon as they have obtained
 local and remote candidates, agents will begin forming candidate
 pairs, computing their priorities and creating check lists according
 to the vanilla ICE procedures described in [RFC5245]. Obviously in
 order for candidate pairing to be possible, it would be necessary
 that both the offer and the answer contained candidates. If this was
 not the case agents will still create the check lists (so that their
 Active/Frozen state could be monitored and updated) but they will
 only populate them once they actually have the candidates.

 Initially, all check lists will have their Active/Frozen state set to
 Frozen.

Ivov, et al. Expires September 12, 2013 [Page 10]

Internet-Draft Trickle ICE March 2013

 Trickle ICE agents will then also attempt to unfreeze the check list
 for the first media stream (i.e. the first media stream that was
 reported to the ICE implementation from the using application). If
 this checklist is still empty however, agents will continue examining
 media streams in the order they were reported and will unfreeze the
 first non-empty checklist.

 Respecting the order in which lists have been reported to an ICE
 implementation, or in other words, the order in which they appear in
 SDP, is helpful so that checks for the same media stream is more
 likely to be performed simultaneously by both agents.

6.3. Encoding the SDP

 The process for encoding the SDP at the answerer is identical to the
 process followed by the offerer for both full and lite
 implementations, as described in Section 5.1.

7. Receiving the Initial Answer

 When receiving an answer, agents will follow vanilla ICE procedures
 to determine their role and they would then form check lists (as
 described in Section 6.2) and begin connectivity checks .

8. Performing Connectivity Checks

 For the most part, trickle ICE agents perform connectivity checks
 following vanilla ICE procedures. Of course, the asynchronous nature
 of candidate harvesting in trickle ICE would impose a number of
 changes described here.

8.1. Check List and Timer State Updates

 The vanilla ICE specification requires that agents update check lists
 and timer states upon completing a connectivity check transaction.
 During such an update vanilla ICE agents would set the state of a
 check list to Failed if the following two conditions are satisfied:

 o all of the pairs in the check list are either in the Failed or
 Succeeded state;

 o if at least one of the components of the media stream has no pairs
 in its valid list.

 With trickle ICE, the above situation would often occur when
 candidate harvesting and trickling are still in progress and it is
 perfectly possible that future checks will succeed. For this reason
 trickle ICE agents add the following conditions to the above list:

Ivov, et al. Expires September 12, 2013 [Page 11]

Internet-Draft Trickle ICE March 2013

 o all candidate harvesters have completed and the agent is not
 expecting to learn any new candidates;

 o the remote agent has sent an end-of-candidates indication for that
 check list as described in Section 9.3.

 Vanilla ICE requires that agents then update all other check lists,
 placing one pair in each of them into the Waiting state, effectively
 unfreezing the check list. Given that with trickle ICE, other check
 lists may still be empty at that point, a trickle ICE agent SHOULD
 also maintain an explicit Active/Frozen state for every check list,
 rather than deducing it from the state of the pairs it contains.
 This state should be set to Active when unfreezing the first pair in
 a list or when that couldn’t happen because a list was empty.

9. Discovering and Sending Additional Local Candidates

 After an offer or an answer have been sent, agents will most likely
 continue discovering new local candidates as STUN, TURN and other
 non-host candidate harvesting mechanisms begin to yield results.
 Whenever an agent discovers such a new candidate it will compute its
 priority, type, foundation and component id according to normal
 vanilla ICE procedures.

 The new candidate is then checked for redundancy against the existing
 list of local candidates. If its transport address and base match
 those of an existing candidate, it will be considered redundant and
 will be ignored. This would often happen for server reflexive
 candidates that match the host addresses they were obtained from
 (e.g. when the latter are public IPv4 addresses). Contrary to
 vanilla ICE, trickle ICE agents will consider the new candidate
 redundant regardless of its priority. [TODO: is this OK? if not we
 need to check if the existing candidate was already used in conn
 checks, cancel them, and then restart them with the new candidate ...
 and in this specific case there’s probably no point to do that].

 Then, if no remote candidates are currently known for this same
 stream, the new candidate will simply be added to the list of local
 candidates.

 Otherwise, if the agent has already learned of one or more remote
 candidates for this stream and component, it will begin pairing the
 new local candidates with them and adding the pairs to the existing
 check lists according to their priority.

9.1. Pairing newly learned candidates and updating check lists

Ivov, et al. Expires September 12, 2013 [Page 12]

Internet-Draft Trickle ICE March 2013

 Forming candidate pairs will work the way it is described by the
 vanilla ICE specification. Actually adding the new pair to a check
 list however, will happen according to the rules described below.

 If the new pair’s local candidate is server reflexive, the server
 reflexive candidate MUST be replaced by its base before adding the
 pair to the list. Once this is done, the agent examines the check
 list looking for another pair that would be redundant with the new
 one. If such a pair exists and its state is:

 Succeeded: the newly formed pair is ignored.

 Frozen or Waiting: the agent chooses the pair with the higher
 priority local candidate, places it in the state that the old pair
 was in (i.e. Frozen or Waiting) and removes the other one as
 redundant.

 Failed: the agent chooses the pair with the higher priority local
 candidate, places it in the Waiting state and removes the other
 one as redundant.

 In-Progress: The agent cancels the in-progress transaction (where
 cancellation happens as explained in Section 7.2.1.4 of
 [RFC5245]), then it chooses the pair with the higher priority
 local candidate, places it in the Waiting state and removes the
 other one as redundant.

 For all other pairs, including those with a server reflexive local
 candidate that were not found to be redundant:

 o if all check lists are empty and in the Frozen state, or in other
 words, if this is the first pair the agent is adding to any check
 list, both the pair and its containing check list will be placed
 in an Active state.

 o if this check list is Frozen then the new pair will also be
 assigned a Frozen state.

 o else if the check list is Active and it is either empty or
 contains only candidates in the Succeeded and Failed states, then
 the new pair’s state is set to Waiting.

 o else if the check list is non-empty and Active, then the new pair
 state will be set to

 Frozen: if there is at least one pair in the list whose
 foundation matches the one in the new pair and whose state
 is neither Succeeded nor Failed (eventually the new pair

Ivov, et al. Expires September 12, 2013 [Page 13]

Internet-Draft Trickle ICE March 2013

 will get unfrozen after the the on-going check for the
 existing pair concludes);

 Waiting: if the list contains no pairs with the same foundation
 as the new one, or, in case such pairs exist but they are
 all in either the Succeeded or Failed states.

9.2. Encoding the SDP for Additional Candidates

 To facilitate interoperability an ICE agent will encode additional
 candidates using the vanilla ICE SDP syntax. For example:

 a=candidate:2 1 UDP 1658497328 198.51.100.33 5000 typ host

 Given that such lines do not provide a relationship between the
 candidate and the m line that it relates to, signalling protocols
 using trickle ICE MUST establish that relation themselves using an
 MID [RFC3388]. Such MIDs use "media stream identification", as
 defined in [RFC3388], to identify a corresponding m-line. When
 creating candidate lines usages of trickle ICE MUST use the MID if
 possible, or the m-line index if not. Obviously, agents MUST NOT
 send individual candidates prior to generating the corresponding SDP
 session description.

 The exact means of transporting additional candidates to a remote
 agent is left to the protocols using trickle ICE. It is important to
 note, however, that these candidate exchanges are not part of the
 offer/answer model.

9.3. Announcing End of Candidates

 Once all candidate harvesters for a specific media stream complete,
 or expire, the agents will generate an "end-of-candidates" indication
 for that stream and send it to the remote agent via the signalling
 channel. Such indications are sent in the form of a media-level
 attribute that has the following form: end-of-candidates.

 a=end-of-candidates

 The end-of-candidates indications can be sent as part of an offer,
 which would typically be the case with half trickle initial offers,
 they can accompany the last candidate an agent can send for a stream,

Ivov, et al. Expires September 12, 2013 [Page 14]

Internet-Draft Trickle ICE March 2013

 and they can also be sent alone (e.g. after STUN Binding requests or
 TURN Allocate requests to a server timeout and the agent has no other
 active harvesters).

 Controlled trickle ICE agents SHOULD always send end-of-candidates
 indications once harvesting for a media stream has completed unless
 ICE processing terminates before they’ve had a chance to do so.
 Sending the indication is necessary in order to avoid ambiguities and
 speed up ICE conclusion. This is necessary in order to avoid
 ambiguities and speed up ICE conclusion. Controlling agents on the
 other hand MAY sometimes conclude ICE processing prior to sending
 end-of-candidates notifications for all streams. This would
 typically be the case with aggressive nomination. Yet it is
 RECOMMENDED that controlling agents do send such indications whenever
 possible for the sake of consistency and keeping middle boxes and
 controlled agents up-to-date on the state of ICE processing.

 When sending end-of-candidates during trickling, rather than as a
 part of an offer or an answer, it is the responsibility of the using
 protocol to define means that can be used to relate the indication to
 one or more specific m-lines.

 Receiving an end-of-candidates notification allows an agent to update
 check list states and, in case valid pairs do not exist for every
 component in every media stream, determine that ICE processing has
 failed. It also allows agents to speed ICE conclusion in cases where
 a candidate pair has been validates but it involves the use of lower-
 preference transports such as TURN. In such situations some
 implementations may choose to wait in case higher-priority candidates
 are received and end-of-candidates provides an indication that this
 is not going to happen.

 An agent MAY also choose to generate an end-of-candidates event
 before candidate harvesting has actually completed, if the agent
 determines that harvesting has continued for more than an acceptable
 period of time. However, an agent MUST NOT send any more candidates
 after it has send an end-of-candidates notification.

 When performing half trickle agents SHOULD send end-of-candidates
 together with their initial offer unless they are planning on
 potentially sending additional candidates in case the remote party
 turns out to actually support trickle ICE.

 When end-of-candidates is sent as part of an offer or an answer it
 can appear as a session-level attribute, which would be equivalent to
 having it appear in all m-lines.

Ivov, et al. Expires September 12, 2013 [Page 15]

Internet-Draft Trickle ICE March 2013

 Once an agent sends the end-of-candidates event, it will update the
 state of the corresponding check list as explained in section
 Section 8.1. Past that point agents MUST NOT send any new
 candidates. Once an agent has received an end-of-candidates
 indication, it MUST also ignore any newly received candidates for
 that media stream. Adding new candidates to the negotiation is hence
 only possible through an ICE restart.

 It is important to note that This specification does not override
 vanilla ICE semantics for concluding ICE processing. This means that
 even if end-of-candidates indications are sent agents will still have
 to go through pair nomination. Also, if pairs have been nominated
 for components and media streams, ICE processing will still conclude
 even if end-of-candidate indications have not been received for all
 streams.

9.4. Receiving an End Of Candidates Notification

 When an agent receives an end-of-candidates notification for a
 specific check list, they will update its state as per Section 8.1.
 In case the list is still in the Active state after the update, the
 agent will persist the the fact that an end-of-candidates
 notification has been received for and take it into account in future
 list updates.

 [TODO would we like to say anything about nomination? in general
 this would be up to implementers but is there a need for some basic
 guidelines?]

10. Receiving Additional Remote Candidates

 At any point of ICE processing, a trickle ICE agent may receive new
 candidates from the remote agent. When this happens and no local
 candidates are currently known for this same stream, the new remote
 candidates are simply added to the list of remote candidates.

 Otherwise, the new candidates are used for forming candidate pairs
 with the pool of local candidates and they are added to the local
 check lists as described in Section 9.1.

 Once the remote agent has completed candidate harvesting, it will
 send an end-of-candidates event. Upon receiving such an event, the
 local agent MUST update check list states as per Section 8.1. This
 may lead to some check lists being marked as Failed.

11. Concluding ICE Processing

Ivov, et al. Expires September 12, 2013 [Page 16]

Internet-Draft Trickle ICE March 2013

 This specification does not directly modify the procedures ending ICE
 processing described in Section 8 of [RFC5245], and trickle ICE
 implementations will follow the same rules.

12. Subsequent Offer/Answer Exchanges

 Either agent MAY generate a subsequent offer at any time allowed by
 [RFC3264]. When this happens agents will use [RFC5245] semantics to
 determine whether or not the new offer requires an ICE restart. If
 this is the case then agents would perform trickle ICE as they would
 in an initial offer/answer exchange.

 The only differences between an ICE restart and a brand new media
 session are that:

 o during the restart, media can continue to be sent to the
 previously validated pair.

 o both agents are already aware whether or not their peer supports
 trickle ICE, and there is no longer need for performing half
 trickle or confirming support with other mechanisms.

13. Interaction with ICE Lite

 Behaviour of Trickle ICE capable ICE lite agents does not require any
 particular rules other than those already defined in this
 specification and [RFC5245]. This section is hence added with an
 informational purpose only.

 A Trickle ICE capable ICE Lite agent would generate offers or answers
 as per [RFC5245]. Both will indicate support for trickle ICE
 (Section 5.1) and given that they will contain a complete set of
 candidates (the agent’s host candidates) these offers and answers
 would also be accompanied with an end-of-candidates notification.

 When performing full trickle, a full ICE implementation could send an
 offer or an answer with no candidates and an IP6 :: connection line
 address. After receiving an answer that identifies the remote agent
 as an ICE lite implementation, the offerer may very well choose to
 not send any additional candidates. The same is also true in the
 case when the ICE lite agent is making the offer and the full ICE one
 is answering. In these cases the connectivity checks would be enough
 for the ICE lite implementation to discover all potentially useful
 candidates as peer reflexive. The following example illustrates one
 such ICE session:

 ICE Lite Bob

Ivov, et al. Expires September 12, 2013 [Page 17]

Internet-Draft Trickle ICE March 2013

 Agent
 | Offer (a=ice-lite a=ice-options:trickle) |
 |-->|
 | |no cand
 | Answer (a=ice-options:trickle) |trickling
 |<--|
 | Connectivity Checks |
 |<--->|
 peer rflx| |
 cand disco| |
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 1: Example

 In addition to reducing signaling traffic this approach also removes
 the need to discover STUN bindings, or to make TURN or UPnP
 allocations which may considerably lighten ICE processing.

14. Example Flow

 A typical successful trickle ICE exchange with an Offer/Answer
 protocol would look this way:

 Alice Bob
 | Offer |
 |-->|
 | Additional Candidates |
 |-->|
 | |
 | Answer |
 |<--|
 | Additional Candidates |
 |<--|
 | |
 | Additional Candidates and Connectivity Checks |
 |<--->|
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 2: Example

Ivov, et al. Expires September 12, 2013 [Page 18]

Internet-Draft Trickle ICE March 2013

15. Security Considerations

 [TODO]

16. Acknowledgements

 The authors would like to thank Bernard Adoba, Christer Holmberg,
 Enrico Marocco, Flemming Andreasen, Jonathan Lennox and Martin
 Thomson for their reviews and suggestions on improving this document.

17. References

17.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

17.2. Informative References

 [I-D.ivov-mmusic-trickle-ice-sip]
 Ivov, E., Marocco, E., and C. Holmberg, "A Session
 Initiation Protocol (SIP) usage for Trickle ICE", draft-
 ivov-mmusic-trickle-ice-sip-00 (work in progress), January
 2013.

 [I-D.keranen-mmusic-ice-address-selection]
 Keraenen, A. and J. Arkko, "Update on Candidate Address
 Selection for Interactive Connectivity Establishment
 (ICE)", draft-keranen-mmusic-ice-address-selection-01
 (work in progress), July 2012.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets", BCP
 5, RFC 1918, February 1996.

Ivov, et al. Expires September 12, 2013 [Page 19]

Internet-Draft Trickle ICE March 2013

 [RFC2543] Handley, M., Schulzrinne, H., Schooler, E., and J.
 Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
 March 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3388] Camarillo, G., Eriksson, G., Holler, J., and H.
 Schulzrinne, "Grouping of Media Lines in the Session
 Description Protocol (SDP)", RFC 3388, December 2002.

 [RFC3840] Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
 "Indicating User Agent Capabilities in the Session
 Initiation Protocol (SIP)", RFC 3840, August 2004.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,
 RFC 4787, January 2007.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [XEP-0030]
 Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
 Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
 2008.

 [XEP-0115]
 Hildebrand, J., Saint-Andre, P., Troncon, R., and J.
 Konieczny, "XEP-0115: Entity Capabilities", XEP XEP-0115,
 February 2008.

 [XEP-0176]
 Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
 Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
 Transport Method", XEP XEP-0176, June 2009.

 [XEP-0278]
 Camargo, T., "XEP-0278: Jingle Relay Nodes", XEP XEP-0278,
 June 2011.

Ivov, et al. Expires September 12, 2013 [Page 20]

Internet-Draft Trickle ICE March 2013

Appendix A. Open issues

 At the time of writing of this document the authors have no clear
 view on how and if the following list of issues should be addressed.

A.1. MID/Stream Indices in SDP

 This specification does not currently define syntax for candidate-to-
 stream bindings although it says that they should be implemented with
 MID or a stream index. Yet, it is reasonable to assume that most
 usages would need to do this within the SDP and it may make sense to
 agree on the format. Here’s one possible way to do this:

 a=mid:1
 a=candidate:1 1 UDP 1658497328 192.168.100.33 5000 typ host
 a=candidate:2 1 UDP 1658497328 96.1.2.3 5000 typ srflx
 a=mid:2
 a=candidate:2 1 UDP 1658497328 96.1.2.3 5002 typ srflx
 a=end-of-candidates

A.2. Starting checks

 Normally Vanilla ICE implementations would first activate a check
 list, validate at least one pair in every component and only then
 unfreeze all other checklists. With trickle ICE this would be
 suboptimal since, candidates can arrive randomly and we would be
 wasting time waiting for a checklist to fill (almost as if we were
 doing vanilla ICE). We need to decide if unfreezing everything
 solely based on foundation is good enough.

Appendix B. Changes From Earlier Versions

 Note to the RFC-Editor: please remove this section prior to
 publication as an RFC.

B.1. Changes From draft-ivov-00

 o Specified that end-of-candidates is a media level attribute which
 can of course appear as session level, which is equivalent to
 having it appear in all m-lines. Also made end-of-candidates
 optional for cases such as aggressive nomination for controlled
 agents.

Ivov, et al. Expires September 12, 2013 [Page 21]

Internet-Draft Trickle ICE March 2013

 o Added an example for ICE lite and trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

 o Added an example for ICE lite and trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

 o Added wording that explicitly states ICE lite agents have to be
 prepared to receive no candidates over signalling and that they
 should not freak out if this happens. (Closed the corresponding
 open issue).

 o It is now mandatory to use MID when trickling candidates and using
 m-line indexes is no longer allowed.

 o Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
 issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
 hold operation. Also changed the port number here from 1 to 9
 since it already has a more appropriate meaning. (Port change
 suggested by Jonathan Lennox).

 o Closed the Open Issue about use about what to do with cands
 received after end-of-cands. Solution: ignore, do an ice restart
 if you want to add something.

 o Added more terminology, including trickling, trickled candidates,
 half trickle, full trickle,

 o Added a reference to the SIP usage for trickle ICE as requested at
 the Boston interim.

B.2. Changes From draft-rescorla-01

 o Brought back explicit use of Offer/Answer. There are no more
 attempts to try to do this in an O/A independent way. Also
 removed the use of ICE Descriptions.

 o Added SDP specification for trickled candidates, the trickle
 option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

 o Support and Discovery. Changed that section to be less abstract.
 As discussed in IETF85, the draft now says implementations and
 usages need to either determine support in advance and directly
 use trickle, or do half trickle. Removed suggestion about use of
 discovery in SIP or about letting implementing protocols do what
 they want.

Ivov, et al. Expires September 12, 2013 [Page 22]

Internet-Draft Trickle ICE March 2013

 o Defined Half Trickle. Added a section that says how it works.
 Mentioned that it only needs to happen in the first o/a (not
 necessary in updates), and added Jonathan’s comment about how it
 could, in some cases, offer more than half the improvement if you
 can pre-gather part or all of your candidates before the user
 actually presses the call button.

 o Added a short section about subsequent offer/answer exchanges.

 o Added a short section about interactions with ICE Lite
 implementations.

 o Added two new entries to the open issues section.

B.3. Changes From draft-rescorla-00

 o Relaxed requirements about verifying support following a
 discussion on MMUSIC.

 o Introduced ICE descriptions in order to remove ambiguous use of
 3264 language and inappropriate references to offers and answers.

 o Removed inappropriate assumption of adoption by RTCWEB pointed out
 by Martin Thomson.

Authors’ Addresses

 Emil Ivov
 Jitsi
 Strasbourg 67000
 France

 Phone: +33 6 72 81 15 55
 Email: emcho@jitsi.org

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

Ivov, et al. Expires September 12, 2013 [Page 23]

Internet-Draft Trickle ICE March 2013

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Phone: +1 857 288 8888
 Email: justin@uberti.name

Ivov, et al. Expires September 12, 2013 [Page 24]

