Network Working Group A. Bierman

Internet-Draft Yumaworks
Intended status: Standards Track M. Bjorklund
Expires: June 3, 2013 Tail-f Systems

November 30, 2012

YANG-API Protocol
draft-bierman-netconf-yang-api-01

Abstract

This document describes a RESTful protocol that provides a
programmatic interface over HTTP for accessing data defined in YANG,
using the datastores defined in NETCONF.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 3, 2013.
Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Bierman & Bjorklund Expires June 3, 2013 [Page 1]

Internet-Draft YANG-API November 2012

Table of Contents

1. Introduction 4
1.1. Simple Subset of NETCONF Functionality 4
1.2. Data Model Driven APl 5
1.3. Terminology 6
1.3.1. NETCONF 6
132 HTTP ... 7
133. YANG ... 7
134. Terms i 8
14, OVerviewo 8
14.1. ResourceURIMap................... 9
1.4.2. YANG-API Message Examples 9
2. Framework L 15
2.1. Message Model 15
2.2. ResourceModel 15
2.2.1. YANG-API Resource Types 15
2.2.2. Resource Discovery 16
2.3. Datastore Model 16
2.3.1. ContentModel 17
2.3.2. EditingModel 17
2.3.3. LockingModel 19
2.3.4. Persistence Model 19
2.3.5. DefaultsModel 19
2.4, TransactionModel 20
2.5. Extensibility Model 20
2.6. VersioningModel 20
2.7. Retrieval Filtering Model 21
2.8. Access ControlModel 21
3. 0perations 22
3.1. OPTIONS e 22
32.HEADo 23
33. GET ... 24
34, POST ... 26
35 PUT ... 26
36. PATCH 27
37. DELETE i, 27
3.8. Query Parameters 28
3.8.1. "config" Parameter 28
3.8.2. "depth" Parameter 29
3.8.3. "format" Parameter.................. 30
3.8.4. "insert" Parameter.................. 30
3.8.5. "point" Parameter 31
3.8.6. "select" Parameter.................. 32
3.9. Protocol Operations 32
4, MESSageS . . .t it 34
4.1. Request URI Structure 34
4.2. MessageHeaders 35

Bierman & Bjorklund Expires June 3, 2013 [Page 2]

Internet-Draft YANG-API November 2012

4.3. Message Encoding, 36
44, Return Status 36
45. Message Caching 37
5. Resources, 38

5.1. APl Resource (lyang-api) 38

5.1.1. /yang-api/datastore 38

5.1.2. /yang-api/modules 38

5.1.3. /yang-api/operations 38
5.1.4. lyang-apilversion 40
5.2. Datastore Resource 41
53. DataResource 41
5.3.1. Encoding YANG Instance Ildentifiers in the Request
URI . 42
5.3.2. Identifying YANG-defined Data Resources 44
5.3.3. Identifying Optional Keys 45
5.3.4. Data Resource Retrieval 45
5.4. OperationResource 47
5.4.1. Encoding Operation Input Parameters 48
5.4.2. Encoding Operation Output Parameters 49
5.4.3. Identifying YANG-defined Operation Resources 50
6. ErrorReporting, 51
6.1. Error ResponseMessage 52
7. RelaxNG Grammarc.ovon.. 55
8. YANG-APImodule 56
9. IANA Considerations 58
10. Security Considerations 59
11.Changelog...... ..., 60
11.1.00-01 ... oo 60
12.0penlissues 61
13. Example YANG Module 63
14. Normative References 67
Authors’ Addresses oL 68

Bierman & Bjorklund Expires June 3, 2013 [Page 3]

Internet-Draft YANG-API November 2012

1. Introduction

There is a need for standard mechanisms to allow WEB applications to
access the configuration data, operational data, and data-model
specific protocol operations within a networking device, in a modular
and extensible manner.

This document describes a RESTful protocol called YANG-API, running
over HTTP [RFC2616], for accessing data defined in YANG [RFC6020],
using datastores defined in NETCONF [RFC6241].

The NETCONF protocol defines configuration datastores and a set of
Create, Retrieve, Update, Delete (CRUD) operations that can be used

to access these datastores. The YANG language defines the syntax and
semantics of datastore content and operational data. RESTful
operations are used to access the hierarchical data within a

datastore.

A RESTful API can be created that provides CRUD operations on a
NETCONF datastore containing YANG-defined data. This can be done in
a simplified manner, compatible with HTTP and RESTful design
principles. Since NETCONF protocol operations are not relevant, the
user should not need any prior knowledge of NETCONF in order to use
the RESTful API.

Configuration data and state data are exposed as resources that can

be retrieved with the GET method. Resources representing

configuration data can be modified with the DELETE, PATCH, POST, and
PUT methods. Data-model specific protocol operations defined with

the YANG "rpc" statement can be invoked with the POST method.

1.1. Simple Subset of NETCONF Functionality

The framework and meta-model used for a RESTful API does not need to
mirror those used by the NETCONF protocol. It just needs to be
compatible with NETCONF. A simplified framework and protocol is
needed that utilizes the three NETCONF datastores (candidate,

running, startup), but hides the complexity of multiple datastores

from the client.

A simplified transaction model is needed that allows basic CRUD
operations on a hierarchy of conceptual resources. This represents a
limited subset of the transaction capabilities of the NETCONF
protocol.

Applications that require more complex transaction capabilities might

consider NETCONF instead of YANG-API. The following transaction
features are not provided in YANG-API:

Bierman & Bjorklund Expires June 3, 2013 [Page 4]

Internet-Draft YANG-API November 2012

o datastore locking (full or partial)

0 candidate datastore

o validate operation

o confirmed-commit procedure

The RESTful API is not intended to replace NETCONF, but rather
provide an additional simplified interface that follows RESTful
principles and is compatible with a resource-oriented device
abstraction. It is expected that applications that need the full
feature set of NETCONF such as natifications will continue to use
NETCONF.

The following figure shows the system components:

S SR— + R —— +

| WEB app | <------- > |

e + HTTP | network device |

B + | +-------|----+

| NMS app | <------- >| | datastore | |

R + NETCONF | +---mmmmmme- + |
e — +

1.2. Data Model Driven API

YANG-API combines the simplicity of a RESTful APl over HTTP with the
predictability and automation potential of a schema-driven API.

A RESTful client using YANG-API will not use any data modelling
language to define the application-specific content of the API. The
client would discover each new child resource as it traverses the
URIs return as Location IDs to discover the server capabilities.

This approach has 3 significant weaknesses wrt/ control of complex
networking devices:

o inefficient performance: configuration APIs will be quite complex
and may require thousands of protocol messages to discover all the
schema information. Typically the data type information has to be
passed in the protocol messages, which is also wasteful overhead.

0 no data model richness: without a data model, the schema-level
semantics and validation constraints are not available to the
application. Data model modules such as YANG modules serve as an
"API contract" that will be honored by the server. An application

Bierman & Bjorklund Expires June 3, 2013 [Page 5]

Internet-Draft YANG-API November 2012

designer can code to the data model, knowing in advance important
details about the exact protocol operations and datastore content
a conforming server implementation will support.
0 no tool automation: API automation tools need some sort of content
schema to function. Such tools can automate various programming
and documentation tasks related to specific data models.
YANG-API provides the YANG module capability information supported by
the server, in case the client wants to use it. The URIs for custom
protocol operations and datastore content are predictable, based on
the YANG module definitions. Note that the YANG modules and
predictable URIs are optional to use by the client. They can be
completely ignored without any loss of protocol functionality.
Operational experience with CLI and SNMP indicates that operators
learn the ’location’ of specific service or device related data and
do not expect such information to be arbitrary and discovered each
time the client opens a management session to a server.
1.3. Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14, [RFC2119].
1.3.1. NETCONF
The following terms are defined in [RFC6241]:
0 candidate configuration datastore
o client
0 configuration data
0 datastore
0 configuration datastore
0 protocol operation
0 running configuration datastore

0 server

Bierman & Bjorklund Expires June 3, 2013 [Page 6]

Internet-Draft YANG-API November 2012

(o]

(o]

(o]

startup configuration datastore
state data

user

1.3.2. HTTP

The following terms are defined in [RFC2616]:

(o]

(o]

(o]

(o]

(o]

(o]

entity tag
fragment
header line
message body
method

path

query

request URI

response body

1.3.3. YANG

The following terms are defined in [RFC6020]:

(o]

(o]

(o]

(o]

(@]

container

data node

key leaf

leaf

leaf-list

list

presence container (or P-container)

RPC operation (now called protocol operation)

Bierman & Bjorklund Expires June 3, 2013

[Page 7]

Internet-Draft YANG-API November 2012

0 non-presence container (or NP-container)
o ordered-by system
o ordered-by user
1.3.4. Terms
The following terms are used within this document:

0 API resource: a resource with the media type "application/
vnd.yang.api+xml" or ""application/vnd.yang.api+json".

0 data resource: a resource with the media type "application/
vnd.yang.data+xml" or "application/vnd.yang.data+json".

0 datastore resource: a resource with the media type "application/
vnd.yang.datastore+xml" or "application/vnd.yang.datastore+json"

o edit operation: a YANG-API operation on a data resource using the
POST, PUT, PATCH, or DELETE method.

0 operation: the conceptual YANG-API operation for a message,
derived from the method, request URI, headers, and message body.

0 operation resource: a resource with the media type
"vnd.yang.operation+xml" or "vnd.yang.operation+json”

o optional key: a key leaf for a YANG list data node, which MAY be
omitted by the client when an instance of the list is created.

0 query parameter: a parameter (and its value if any), encoded
within the query portion of the request URI.

0 resource: a conceptual object representing a manageable component
within a device.

o retrieval request: an operation using the GET or HEAD methods.

0 target resource: the resource that is associated with a particular
message, identified by the "path" component of the request URI.

1.4. Overview
This document defines the YANG-API protocol, a RESTful API for
accessing conceptual datastores containing data defined with YANG

language. YANG-API provides an application framework and meta-model,
using HTTP operations.

Bierman & Bjorklund Expires June 3, 2013 [Page 8]

Internet-Draft YANG-API November 2012

The YANG-API resources are accessed via a set of URIs defined in this
document. The set of YANG modules supported by the server will
determine the additional data model specific operations and top-level
data node resources available on the server.

1.4.1. Resource URI Map

The URI hierarchy for the YANG-API resources consists of an entry
point and up to 4 top-level resources and/or fields. Refer to
Section 5 for details on each URI.

lyang-api
/datastore
/<top-level-data-nodes> (config=true or false)
/modules
/module
/operations
/<custom protocol operations>
/version

1.4.2. YANG-API Message Examples

The examples within this document use the non-normative example YANG
module defined in Section 13.

This section shows some typical YANG-API message exchanges.
1.4.2.1. Retrieve the Top-level APl Resource

By default, when a resource is retrieved, all of its fields are

returned, but none (if any) of the nested resources are returned.

Also, the default encoding is JSON. Data resources are encoded

according to the encoding rules in [I-D.lhotka-netmod-json].

The client starts by retrieving the top-level API resource, using the
entry point URI "/yang-api".

GET /yang-api HTTP/1.1
Host: example.com

The server might respond as follows. The "module" lines below are
split for display purposes only:

Bierman & Bjorklund Expires June 3, 2013 [Page 9]

Internet-Draft YANG-API November 2012

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:01:00 GMT
Server: example-server

Content-Type: application/vnd.yang.api+json

"yang-api": {
"modules": {
"module™: [
"urn:ietf:params:xml:ns:yang:ietf-yang-api
?module=ietf-yang-api&revision=2012-05-27",
"example.com?module=example-jukebox
&revision=2012-05-30"
]
ersion": "1.0"

!
}
}

To request that the response content to be encoded in XML, the
"Accept" header can be used, as in this example request:

GET /yang-api HTTP/1.1
Host: example.com
Accept: application/vnd.yang.api+xml

An alternate approach is provided using the "format" query parameter,
as in this example request:

GET /yang-api?format=xml HTTP/1.1
Host: example.com

The server will return the same response either way, which might be
as follows :

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:01:00 GMT
Server: example-server

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/vnd.yang.api+xmi

Bierman & Bjorklund Expires June 3, 2013 [Page 10]

Internet-Draft YANG-API November 2012

<yang-api>
<modules> <!-- wrapped for display only -->
<module>urn:ietf:params:xml:ns:yang:ietf-yang-api
?module=ietf-yang-api
&revision=2012-05-27</module>
<module>example.com?module=example-jukebox
&revision=2012-05-30</module>
</modules>
<version>1.0</version>
</yang-api>

Refer to Section 3.3 for details on the GET operation.
1.4.2.2. Create New Data Resources
To create a new "jukebox" resource, the client might send:

POST /yang-api/datastore/jukebox HTTP/1.1
Host: example.com

If the resource is created, the server might respond:

HTTP/1.1 201 Created

Date: Mon, 23 Apr 2012 17:01:00 GMT

Server: example-server

Location: http://example.com/yang-api/datastore/jukebox
Last-Modified: Mon, 23 Apr 2012 17:01:00 GMT

ETag: b3a3e673be2

To create a new "artist" resource within the "jukebox" resource, the
client might send the following request, Note that the arbitrary
integer "index" is not provided, since it is an optional key:

POST /yang-api/datastore/jukebox/artist HTTP/1.1
Host: example.com
Content-Type: application/vnd.yang.data+json

"artist" : {
"name" : "The Foo Fighters"

}
}

If the resource is created, the server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 11]

Internet-Draft YANG-API November 2012

HTTP/1.1 201 Created

Date: Mon, 23 Apr 2012 17:02:00 GMT

Server: example-server

Location: http://example.com/yang-api/datastore/jukebox/artist/1
Last-Modified: Mon, 23 Apr 2012 17:02:00 GMT

ETag: b3830f23a4c

To create a new "album" resource for this artist within the "jukebox"
resource, the client might send the following request,

POST /yang-api/datastore/jukebox/artist/1/aloum HTTP/1.1
Host: example.com
Content-Type: application/vnd.yang.data+json

"album” : {
"name" : "Wasting Light",
"genre" : "example-jukebox:Alternative”,
"year" : 2012
}
}

If the resource is created, the server might respond as follows.
Note that the "Location" header line is wrapped for display purposes
only:

HTTP/1.1 201 Created

Date: Mon, 23 Apr 2012 17:03:00 GMT

Server: example-server

Location: http://example.com/yang-api/datastore/
jukebox/artist/1/album/Wasting%20Light

Last-Modified: Mon, 23 Apr 2012 17:03:00 GMT

ETag: b8389233a4c

Refer to Section 3.4 for details on the POST operation.
1.4.2.3. Replace an Existing Data Resource

Note: replacing a resource is a fairly drastic operation. The PATCH
operation is often more appropriate.

The album sub-resource is re-added here for example purposes only.
To replace the "artist" resource contents, the client might send:

Bierman & Bjorklund Expires June 3, 2013 [Page 12]

Internet-Draft YANG-API November 2012

PUT /yang-api/datastore/jukebox/artist/1 HTTP/1.1
Host: example.com

If-Match: b3830f23a4c

Content-Type: application/vnd.yang.data+json

"artist" : {
"name" : "Foo Fighters",
"album™ : {

"name" : "Wasting Light",
"genre" : "example-jukebox:Alternative",
"year" : 2012
}
}
}

If the resource is updated, the server might respond:

HTTP/1.1 204 No Content

Date: Mon, 23 Apr 2012 17:04:00 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 17:04:00 GMT
ETag: b27480aeda4c

Refer to Section 3.5 for details on the PUT operation.
1.4.2.4. Patch an Existing Data Resource

To replace just the "year" field in the "album" resource, the client
might send:

PATCH /yang-api/datastore/jukebox/artist/1/album/
Wasting%20Light/year HTTP/1.1

Host: example.com

If-Match: b8389233a4c

Content-Type: application/vnd.yang.data+json

{"year": 2011}

If the resource is updated, the server might respond:
HTTP/1.1 204 No Content
Date: Mon, 23 Apr 2012 17:49:30 GMT
Server: example-server
Last-Modified: Mon, 23 Apr 2012 17:49:30 GMT
ETag: b2788923da4c

Refer to Section 3.6 for details on the PATCH operation.

Bierman & Bjorklund Expires June 3, 2013 [Page 13]

Internet-Draft YANG-API November 2012

1.4.2.5. Delete an Existing Data Resource

To delete a resource such as the "album” resource, the client might
send:

DELETE /yang-api/datastore/jukebox/artist/1/album/
Wasting%20Light HTTP/1.1
Host: example.com

If the resource is deleted, the server might respond:
HTTP/1.1 204 No Content
Date: Mon, 23 Apr 2012 17:49:40 GMT
Server: example-server
Refer to Section 3.7 for details on the DELETE operation.
1.4.2.6. Invoke a Data Model Specific Operation
To invoke a data-model specific operation via an operation resource,
the POST operation is used. A client might send a "backup-datastore”

request as follows:

POST /yang-api/operations/backup-datastore HTTP/1.1
Host: example.com

The server might respond:
HTTP/1.1 204 No Content
Date: Mon, 23 Apr 2012 17:50:00 GMT

Server: example-server

Refer to Section 3.9 for details on using the POST operation with
operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 14]

Internet-Draft YANG-API November 2012

2. Framework

The YANG-API protocol defines a framework that can be used to
implement a common API for configuration management. This section
describes the components of the YANG-API framework.

2.1. Message Model

The YANG-API protocol uses HTTP entities for messages. A single HTTP
message corresponds to a single protocol operation. A message can
perform a single task on a single resource, such as retrieving a

resource or editing a resource. It cannot be used to combine

multiple tasks. The client cannot provide multiple (possibly

unrelated) edit operations within a single request, like the NETCONF
<edit-config> protocol operation.

2.2. Resource Model

The YANG-API protocol operates on a hierarchy of resources, starting
with the top-level API resource itself. Each resource represents a
manageable component within the device.

A resource can be considered a collection of conceptual data and the
set of allowed operations on that data. It can contain child nodes
that are either "fields" or other resources. The child resource

types and operations allowed on them are data-model specific.

A resource has its own media type identifier, represented by the
"Content-Type" header in the HTTP response message. A resource can
contain zero or more fields and zero or more resources. A resource

can be created and deleted independently of its parent resource, as
long as the parent resource exist.

A field is a child node defined within a resource. A field can
contain zero or more fields and zero or more resources. A field
cannot be created and deleted independently of its parent resource.

All YANG-API resources and fields are defined in this document except
datastore contents and protocol operations. These resource types are
defined with YANG data definition statements and the "rpc" statement.
A default mapping is defined to differentiate sub-resources from

fields within data resources.

2.2.1. YANG-API Resource Types
The YANG-API protocol defines some application specific media types

to identify each of the available resource types. The following
table summarizes the purpose of each resource.

Bierman & Bjorklund Expires June 3, 2013 [Page 15]

Internet-Draft YANG-API November 2012

+ + +
| Resource | Media Type |
+ +

4
T

| API | application/vnd.yang.api |

| Datastore | application/vnd.yang.datastore |
| Data | application/vnd.yang.data |

| Operation | application/vnd.yang.operation |

YANG-API Media Types
These resources are described in Section 5.
2.2.2. Resource Discovery

A client SHOULD start by retrieving the top-level API resource, using
the entry point URI "/yang-api".

The YANG-API protocol does not include a resource discovery
mechanism. Instead, the definitions within the YANG modules
advertised by the server are used to construct a predictable
operation or data resource identifier.

The "depth" query parameter can be used to control how many
descendant levels should be included when retrieving sub-resources.
This parameter can be used with the GET operation to discover sub-
resources within a particular resource.

Refer to Section 3.8.2 for more details on the "depth" parameter.
2.3. Datastore Model

A conceptual "unified datastore” is used to simplify resource
management for the client. The YANG-API datastore is a combination
of the running configuration and any non-configuration data supported
by the device. By default only configuration data is returned by a

GET operation on the datastore contents.

The underlying NETCONF datastores can be used to implement the
unified datastore, but the server design is not limited to the exact
datastore procedures defined in NETCONF.

The "candidate" and "startup" datastores are not visible in the YANG-

API protocol. Transaction management and configuration persistence
are handled by the server and not controlled by the client.

Bierman & Bjorklund Expires June 3, 2013 [Page 16]

Internet-Draft YANG-API November 2012

2.3.1. Content Model

The YANG-API protocol operates on a conceptual datastore defined with
the YANG data modeling language. The server lists each YANG module
it supports in the "/yang-api/modules/module” field in the top-level

API resource type, using the YANG module capability URI format
defined in RFC 6020.

The conceptual datastore contents and data-model-specific operations
are identified by the set of YANG module capability URIs. All YANG-
API content identified as either a data resource or an operation
resource is defined with the YANG language.

The classification of data as configuration or non-configuration is
derived from the YANG "config" statement. Data retrieval with the
GET operation can be filtered in several ways, including the "config"
parameter to retrieve configuration or non-configuration data.

The classification of data as a resource or field within a resource
is derived from the rules specified in Section 5.3.2.

Data ordering behavior is derived from the YANG "ordered-by"
statement. Editing mechanisms are provided to allow list or leaf-

list resources to be inserted or moved in the same manner as NETCONF,
and defined in YANG.

The server is not required to maintain system ordered data in any
particular persistent order. The server SHOULD maintain the same
data ordering for system ordered data until the next reboot or
termination of the server.

2.3.2. Editing Model

The YANG-API datastore editing model is simple and direct, similar to
the behavior of the ":writable-running" capability in NETCONF.

Each YANG-API edit of a datastore resource is activated upon
successful completion of the transaction. It is an implementation-
specific matter how the server accomplishes a YANG-API edit request.
For example, a server which only accepts edits through a candidate
datastore may internally edit this datastore and perform the "commit"
operation automatically.

Applications which need more control over the editing model might
consider using NETCONF instead of YANG-API.

Bierman & Bjorklund Expires June 3, 2013 [Page 17]

Internet-Draft YANG-API November 2012

2.3.2.1. Edit Operation Discovery

Sometimes a server does not implement every operation for every
resource. Sometimes data model requirements cause a node to
implement a subset of the edit operations. For example, a server may
not allow modification of a particular configuration data node after

the parent resource has been created.

The OPTIONS operation can be used to identify which operations are
supported by the server for a particular resource. For example, if

the server will allow a data resource node to be created then the
POST operation will be returned in the response.

2.3.2.2. Edit Collision Detection

Two "edit collision detection" mechanisms are provided in YANG-API,
for datastore and data resources.

o timestamp: the last change time is maintained and the
"Last-Modified" and "Date" headers are returned in the response
for a retrieval request. The "If-Unmodified-Since" header can be
used in edit operation requests to cause the server to reject the
request if the resource has been modified since the specified
timestamp.

0 entity tag: a unique opaque string is maintained and the "ETag"
header is returned in the response for a retrieval request. The
"If-Match" header can be used in edit operation requests to cause
the server to reject the request if the resource entity tag does
not match the specified value.

Note that the server is only required to maintain these fields for a
datastore resource, not for individual data resources.

Example:

In this example, the server just supports the mandatory datastore
last-changed timestamp. The client has previously retrieved the
"Last-Modified" header and has some value cached to provide in the
following request to replace a list entry with key value "11":

PATCH /yang-api/datastore/jukebox/artist/1/album/
Wasting%20Light/year HTTP/1.1

Host: example.com

Accept: application/vnd.yang.data+json

If-Unmodified-Since: Mon, 23 Apr 2012 17:01:00 GMT

Content-Type: application/vnd.yang.data+json

Bierman & Bjorklund Expires June 3, 2013 [Page 18]

Internet-Draft YANG-API November 2012

{"year":"2011"}

In this example the datastore resource has changed since the time
specified in the "If-Unmodified-Since" header. The server might
respond:

HTTP/1.1 304 Not Modified

Date: Mon, 23 Apr 2012 19:01:00 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 17:45:00 GMT
ETag: b34aed893a4c

2.3.3. Locking Model

Datastore locking is not provided by YANG-API. An application that
needs to make several changes to the running configuration datastore
contents in sequence, without disturbance from other clients might
consider using the NETCONF protocol instead of YANG-API.

2.3.4. Persistence Model

Each YANG-API edit of a datastore resource is saved to non-volatile
storage in an implementation-specific matter by the server. There is
no guarantee that configuration changes are saved immediately, or
that the saved configuration is always a mirror of the running
configuration.

Applications which need more control over the persistence model might
consider using NETCONF instead of YANG-API.

2.3.5. Defaults Model

NETCONF has a rather complex defaults handling model for leafs.
YANG-API attempts to avoid this complexity by restricting the
operations that can be applied to a resource and fields within that
resource.

The GET method returns only nodes that exist, which will be
determined by the server. There is no mechanism for the client to
ask the server for the default values that would be used for any
nodes not present, but some default value is in use by the server.
(There is no

retrieval mode like "with-defaults=report-all* in NETCONF.)
If a leaf definition has a default value, and the leaf has not been

given a value yet, the server SHOULD NOT return any value for the
leaf in the response for a GET operation.

Bierman & Bjorklund Expires June 3, 2013 [Page 19]

Internet-Draft YANG-API November 2012

Applications which need more control over the defaults model might
consider using NETCONF instead of YANG-API.

2.4. Transaction Model

The YANG-API protocol does not provide a complex transaction model
that allows for multiple protocol operations, or even operations on
multiple resources in one protocol operation. A very simple "one
operation one one resource" per transaction model is used instead.

Applications which need more control over the transaction model might
consider using NETCONF instead of YANG-API.

2.5. Extensibility Model

The YANG-API protocol is designed to be extensible for datastore
content and data-model specific protocol operations. New protocol
operations can be added without changing the entry point if they are
optional and do not alter any existing operations.

Separate namespaces for each YANG module are used. Content encoded
in XML will indicate the module using the "namespace" URI value in

the YANG module. Content encoded in JSON will indicate the module
using the module name specified in the YANG module. JSON encoding
rules for module namespaces are specified in

[I-D.Ihotka-netmod-json].

2.6. Versioning Model

The version of a resource instance is identified with an entity tag,

as defined by HTTP. The version identifiers in this section apply to

the version of the schema definition of a resource. There are two

types of schema versioning information used in the YANG-API protocol:

o the YANG-API protocol version
0 data and operation resource definition versions

The protocol version is identified by the string used for the well-
known URI entry point "/yang-api". This would be changed (e.g.,
"lyang-api2") if non-backward compatible changes are ever needed.
Minor version changes that do not break backward-compatibility will
not cause the entry point to change.

The API "yang-api/version” field can be used by the client to

identify the exact version of the YANG-API protocol implemented by
the server. This value will include the complete YANG-API protocol
version. The "/yang-api" entry point will only change (e.g.,

Bierman & Bjorklund Expires June 3, 2013 [Page 20]

Internet-Draft YANG-API November 2012

"lyang-api2") if non-backward compatible changes are made to the
protocol. The "/yang-api/version" field MUST be updated every time
the protocol specification is republished.

The resource definition version for a data or operation resource is a
date string, which is the revision date of the YANG module that
defines the resource. The resource version for all other resource
types is a numeric string, defined by the "/yang-api/version" field.

2.7. Retrieval Filtering Model

There are four types of filtering for retrieval of data resources in
the YANG-API protocol.

o conditional all-or-nothing: use some conditional test mechanism in
the request headers and retrieve either a complete "200 OK"
response if the condition is met, or a "304 Not Modified" Status-
Line if the condition is not met.

0 data classification: request configuration or non-configuration
data.

0 subset: request a subset of all possible instances of a list or
leaf-list data resource.

o filter: request a subset of all possible descendant nodes within
the target resource. The "select" query parameter can be used for
this purpose.

Refer to Section 5.3.4 for details on data retrieval filtering.
2.8. Access Control Model

The YANG-API protocol provides no granular access control for any
content except for operation and data resources. The NETCONF Access
Control Model (NACM) is defined in [RFC6536]. There is a specific
mapping between YANG-API operations and NETCONF edit operations,
defined in Table 1. The resource path also needs to be converted
internally by the server to the corresponding YANG instance-

identifier. Using this information, the server can apply the NACM

access control rules to YANG-API messages.

The server MUST NOT allow any operation to any resources that the
client is not authorized to access.

Bierman & Bjorklund Expires June 3, 2013 [Page 21]

Internet-Draft YANG-API November 2012

3. Operations

The YANG-API protocol uses HTTP methods to identify the CRUD
operation requested for a particular resource or field within a
resource. The following table shows how the YANG-API operations
relate to NETCONF protocol operations:

+ + +

| YANG-API | NETCONF |

+ + +

| OPTIONS | none |

| HEAD | none |

| GET | <get-config>, <get>

| POST | <edit-config> (operation="create") |

| PUT | <edit-config> (operation="replace") |

| PATCH | <edit-config> (operation="merge") |
| DELETE | <edit-config> (operation="delete") |
+ + +

Table 1: CRUD Operations in YANG-API

The NETCONF "remove" operation attribute is not supported by the HTTP
DELETE method. The resource must exist or the DELETE operation will
fail.

This section defines the YANG-API protocol usage for each HTTP
method.

3.1. OPTIONS

The OPTIONS method is sent by the client to discover which methods
are supported by the server for a specific resource, or field within

a resource. It is supported for all media types. Note that
implementation of this operation is part of HTTP, and this section
does not introduce any additional requirements.

The request MUST contain a request URI that contains at least the
entry point component.

The server will return a "Status-Line" header containing "204 No
Content". and include the "Allow" header in the response. This
header will be filled in, based on the target resource media type.
Other headers MAY also be included in the response.

Example 1:

A client might request the methods supported for a data resource
called "library"

Bierman & Bjorklund Expires June 3, 2013 [Page 22]

Internet-Draft YANG-API November 2012

OPTIONS /yang-api/datastore/jukebox/library HTTP/1.1
Host: example.com

The server might respond (for a config=true list):

HTTP/1.1 204 No Content

Date: Mon, 23 Apr 2012 17:01:00 GMT

Server: example-server

Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH,DELETE

Example 2:

A client might request the methods supported for a hon-configuration
leaf within a data resource:

OPTIONS /yang-api/datastore/jukebox/library/
song-count HTTP/1.1
Host: example.com

The server might respond:

HTTP/1.1 204 No Content

Date: Mon, 23 Apr 2012 17:02:00 GMT
Server: example-server

Allow: OPTIONS,HEAD,GET

Example 3:

A client might request the methods supported for an operation
resource called "play":

OPTIONS /yang-api/operations/play HTTP/1.1
Host: example.com

The server might respond:

HTTP/1.1 204 No Content

Date: Mon, 23 Apr 2012 17:02:00 GMT
Server: example-server

Allow: POST

3.2. HEAD
The HEAD operation is sent by the client to retrieve just the headers
that would be returned for the comparable GET operation, without the

response body. The HTTP HEAD method is used for this operation. It
is supported for all resource types, except operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 23]

Internet-Draft YANG-API November 2012

The request MUST contain a request URI that contains at least the
entry point component.

The same query parameters supported by the GET operation are
supported by the HEAD operation. For example, the "select" query
parameter can be used to specify a field within the target resource.

The access control behavior is enforced as if the method was GET
instead of HEAD. The server MUST respond the same as if the method
was GET instead of HEAD, except that no response body is included.

Example:

The client might request the response headers for the default (JSON)
representation of the "library" resource:

HEAD /yang-api/datastore/jukebox/library HTTP/1.1
Host: example.com

The server might respond:

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:02:40 GMT

Server: example-server

Content-Type: application/vnd.yang.data+json
Cache-Control: no-cache

Pragma: no-cache

ETag: a74eefc993a2b

Last-Modified: Mon, 23 Apr 2012 11:02:14 GMT

3.3. GET

The GET operation is sent by the client to retrieve data and meta-
data for a resource or field within a resource. The HTTP GET method
is used for this operation. It is supported for all resource types,

except operation resources. The request MUST contain a request URI
that contains at least the entry point component.

The following query parameters are supported by the GET operation:

+ + + +

| Name | Section | Description |

+ + + +

| config | 3.8.1 | Request either configuration or |

| | | non-configuration data |

| depth | 3.8.2 | Control the depth of a retrieval request |

| format | 3.8.3 | Request either JSON or XML contentinthe |
| | | response |

Bierman & Bjorklund Expires June 3, 2013 [Page 24]

Internet-Draft YANG-API November 2012

| select | 3.8.6 | Specify a field within the target resource |

4
T

GET Query Parameters

The server MUST NOT return any data resources or fields within any
data resources for which the user does not have read privileges.

If the user is not authorized to read any portion of the target
resource, an error response containing a "403 Forbidden" Status-Line
is returned to the client.

If the user is authorized to read some but not all of the target
resource, the unauthorized content is omitted from the response
message body, and the authorized content is returned to the client.

Example:

The client might request the response headers for a JSON
representation of the "library" resource:

GET /yang-api/datastore/jukebox/library/artist/
1/album HTTP/1.1
Host: example.com

The server might respond:

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:02:40 GMT

Server: example-server

Content-Type: application/vnd.yang.data+json
Cache-Control: no-cache

Pragma: no-cache

ETag: a74eefc993a2b

Last-Modified: Mon, 23 Apr 2012 11:02:14 GMT

"album™ : {
"name” : "Wasting Light",
"genre" : "example-jukebox:Alternative",
"year" : 2011

Bierman & Bjorklund Expires June 3, 2013 [Page 25]

Internet-Draft YANG-API November 2012

3.4. POST

The POST operation is sent by the client for various reasons. The

HTTP POST method is used for this purpose. The request MUST contain
a request URI that contains a target resource that identifies one of

the following resource types:

+ + +

| Type | Description |
+ +

+

| Data | Create a configuration data resource |
| Operation | Invoke protocol operation |

| Transaction | Create a new transaction |
. -+

4
T

Resource Types that Support POST

The following query parameters are supported by the POST operation:

| Name | Section | Description |
+ + + +
| insert | 3.8.4 | Specify where to insert a resource |

| point | 3.8.5 | Specify the insert point for a resource |
+ + + +

POST Query Parameters

If the POST operation succeeds, a "200 OK" Status-Line is returned if
there is no response message body, and a "204 No Content" Status-Line
is returned if there is a response message body.

If the user is not authorized to invoke the target (operation)
resource, or create the target resource, an error response containing
a "403 Forbidden" Status-Line is returned to the client. All other
error responses are handled according to the procedures defined in
Section 6.

3.5. PUT

The PUT operation is sent by the client to replace the target
resource.

The HTTP PUT method is used for this purpose. The request MUST
contain a request URI that contains a target resource that identifies
the data resource to replace.

The following query parameters are supported by the PUT operation:

Bierman & Bjorklund Expires June 3, 2013 [Page 26]

Internet-Draft YANG-API November 2012

+ + + +
| Name | Section | Description |
+ + +

| insert | 3.8.4 | Specify where to move a resource |

| point | 3.8.5 | Specify the move point for a resource |
+ + + +

4
T

PUT Query Parameters

If the PUT operation succeeds, a "200 OK" Status-Line is returned,
and there is no response message body.

If the user is not authorized to replace the target resource an error
response containing a "403 Forbidden" Status-Line is returned to the
client. All other error responses are handled according to the
procedures defined in Section 6.

3.6. PATCH

The PATCH operation uses the HTTP PATCH method defined in [RFC5789]
to provide a "merge" editing mode for data resources. Instead of

replacing all or part of the target resource, the supplied values are

merged into the target resource.

If the PATCH operation succeeds, a "200 OK" Status-Line is returned,
and there is no response message body.

If the user is not authorized to alter the target resource an error
response containing a "403 Forbidden" Status-Line is returned to the
client. All other error responses are handled according to the
procedures defined in Section 6.

3.7. DELETE

The DELETE operation uses the HTTP DELETE method to delete the target
resource.

If the DELETE operation succeeds, a "200 OK" Status-Line is returned,
and there is no response message body.

If the user is not authorized to delete the target resource then an
error response containing a "403 Forbidden" Status-Line is returned
to the client. All other error responses are handled according to
the procedures defined in Section 6.

Bierman & Bjorklund Expires June 3, 2013 [Page 27]

Internet-Draft YANG-API November 2012

3.8. Query Parameters

Each YANG-API operation allows zero or more query parameters to be
present in the request URI. Refer to Section 3 for details on the
guery parameters used in the definition of each operation.

Query parameters can be given in any order. Each parameter can
appear zero or one time. A default value may apply if the parameter
is missing.

This section defines all the YANG-API query parameters.
3.8.1. "config" Parameter

The "config" parameter is used to specify whether configuration or
non-configuration data is requested.

This parameter is only supported for the GET and HEAD methods. It is
also only supported if the target resource is a data resource.

syntax: config= true | false
default: true

Example:

This example request by the client would retrieve only the non-
configuration data nodes that exist within the second-level "library”
resource.

GET /yang-api/datastore/jukebox/library?config=false HTTP/1.1
Host: example.com
Accept: application/vnd.yang.data+xml

The server might respond:

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:01:30 GMT
Server: example-server

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/vnd.yang.data+json

"library" : {
"artist-count” : 42,
"album-count" : 59,
"song-count" : 374

}

Bierman & Bjorklund Expires June 3, 2013 [Page 28]

Internet-Draft YANG-API November 2012

}

3.8.2. "depth" Parameter

The "depth" parameter is used to specify the number of nest levels
returned in a response for a GET operation. A nest-level consists of
the target resource and any child nodes which are optional data nodes
(anyxml, leaf, or leaf-list). A non-presence container is

transparent when determining the nest level. A child node (which is
not a non-presence container) within a non-presence container is used
to determine the nest-level.

The start level is determined by the target resource for the
operation.

syntax: depth=<range: 1..max> | unbounded
default: 1

Example:

This example operation would retrieve 2 levels of configuration data
nodes that exist within the top-level "jukebox" resource.

GET /yang-api/datastore/jukebox?depth=2 HTTP/1.1
Host: example.com
Accept: application/vnd.yang.data+json

The server might respond:

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:11:30 GMT
Server: example-server

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/vnd.yang.data+json

{
"jukebox" : {
"library" : {
"artist" : {
"index" : 1,
"name" : "Foo Fighters"
}
h
"player” : {
"gap": 0.5
}
}

Bierman & Bjorklund Expires June 3, 2013 [Page 29]

Internet-Draft YANG-API November 2012

}

3.8.3. "format" Parameter

The "format" parameter is used to specify the format of any content
returned in the response. Note that the "Accept" header MAY be used
instead of this parameter to identify the format desired in the
response. For example:

GET /yang-api/datastore/routing HTTP/1.1
Host: example.com
Accept: application/vnd.yang.data+xml

This example request would retrieve only the configuration data nodes
that exist within the top-level "routing” resource, and retrieve them
in XML encoding instead of JSON encoding.

The "format" parameter is only supported for the GET and HEAD
methods. It is supported for all YANG-API media types.

syntax: format= xml | json
default: json

Example:

GET /yang-api/datastore/routing?format=xml HTTP/1.1
Host: example.com

This example URI would retrieve only the configuration data nodes
that exist within the top-level "routing" resource, and retrieve them
in XML encoding instead of JSON encoding.

3.8.4. "insert" Parameter

The "insert" parameter is used to specify how a resource should be
inserted (or moved) within the user-ordered list or leaf-list data
resource.

This parameter is only supported for the POST and PUT methods. Itis
also only supported if the target resource is a data resource, and

that data represents a YANG list or leaf-list that is ordered by the

user, not the system.

If the values "before" or "after" are used, then a "point" parameter
for the insertion parameter MUST also be present.

syntax: insert= first | last | before | after
default: last

Bierman & Bjorklund Expires June 3, 2013 [Page 30]

Internet-Draft YANG-API November 2012

Example:
Request from client:

POST /yang-api/datastore/jukebox/library/artist/1/album
/Wasting%?20Light/song?insert=first HTTP/1.1

Host: example.com

Content-Type: application/vnd.yang.data+json

{
"song" : {
"name" : "Bridge Burning",
"location” : "/media/bridge_burning.mp3",
"format" : "MP3",
"length" : 286
}
}

Response from server: 201 status

HTTP/1.1 201 Created

Date: Mon, 23 Apr 2012 13:01:20 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT

Location: http://example.com/yang-api/datastore/jukebox
llibrary/artist/1/album?Wasting%20Light/song/1
ETag: eeeadad438af

3.8.5. "point" Parameter

The "point" parameter is used to specify the insertion point for a
data resource that is being created or moved within a user ordered
list or leaf-list. It is ignored unless the "insert" query parameter

is also present, and has the value "before" or "after".

This parameter contains the instance identifier of the resource, or
field within a resource, to be used as the insertion point for a POST
or PUT operation. It is encoded according to the rules defined in
Section 5.3.1. There is no default for this parameter.

syntax: point= <instance-identifier of insertion point node>
Example:
In this example, the client is moving an existing "song" resource

within an "album" resource after another song. The request URI is
split for display purposes only.

Bierman & Bjorklund Expires June 3, 2013 [Page 31]

Internet-Draft YANG-API November 2012

Request from client:

PUT /yang-api/datastore/jukebox/library/artist/1/album/
Wasting%20Light/song/2?insert=after
&point=/yang-api/datastore/jukebox/library/artist/1/
album/Wasting%20Light/song/4 HTTP/1.1

Host: example.com

Response from server:

HTTP/1.1 204 No Content

Date: Mon, 23 Apr 2012 13:01:20 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
ETag: abcada438af

3.8.6. "select" Parameter

The "select" query parameter is used to specify an expression which
can represent a subset of all data nodes within the target resource.
It contains a relative path expression, using the target resource as
the context node.

It is supported for all resource types except operation resources.
The contents are encoded according to the "api-select" rule defined
in Section 5.3.1. This parameter is only allowed for GET and HEAD
operations.

[FIXME: the syntax of the select string is still TBD; XPath, schema-
identifier, regular expressions, something else]

Refer to Section 1.4.2 for example request messages using the
"select” parameter.

3.9. Protocol Operations

The YANG-API also allows data-model specific protocol operations to

be invoked using the POST method. The media type
"vnd.yang.operation+xml" or "vnd.yang.operation+json" MUST be used in
the "Content-Type" field in the message header.

Data model specific operations are supported. The syntax and
semantics of these operations exactly correspond to the YANG "rpc"
statement definition for the operation.

Any input for a protocol operation is encoded in an element called

"input", which corresponds to the <input> element in a NETCONF
message. The child nodes of the "input" element are encoded

Bierman & Bjorklund Expires June 3, 2013 [Page 32]

Internet-Draft YANG-API November 2012

according to the data definition statements in the input section of
the "rpc" statement.

Any output for a protocol operation is encoded in an element called
"output”, which corresponds to the <rpc-reply> element in a NETCONF
message. The child nodes of the "output" element are encoded
according to the data definition statements in the output section of

the "rpc" statement.

Bierman & Bjorklund Expires June 3, 2013 [Page 33]

Internet-Draft YANG-API November 2012

4. Messages

This section describes the messages that are used in the YANG-API
protocol.

4.1. Request URI Structure

Resources are represented with URIs following the structure for
generic URIs in [RFC3986].

A YANG-API operation is derived from the HTTP method and the request
URYI, using the following conceptual fields:

<OP> Jyang-api/<path>?<query>#<fragment>

N N AN AN AN

method entry resource query fragment

M M @) o I

M=mandatory, O=optional, I=ignored

<text> replaced by client with real values

0 method: the HTTP method identifying the YANG-API operation
requested by the client, to act upon the target resource specified
in the request URI. YANG-API operation details are described in
Section 3.

o entry: the well-known YANG-API entry point ("/yang-api").

0 resource: the path expression identifying the resource that is
being accessed by the operation. If this field is not present,
then the target resource is the API itself, represented by the
media type "vnd.yang.api".

0 query: the set of parameters associated with the YANG-API message.
These have the familiar form of "name=value" pairs. There is a
specific set of parameters defined, although the server MAY choose
to support additional parameters not defined in this document.

o fragment: This field is not used by the YANG-API protocol.

The client SHOULD NOT assume the final structure of a URI path for a

Bierman & Bjorklund Expires June 3, 2013 [Page 34]

Internet-Draft YANG-API November 2012

resource. Instead, existing resources can be discovered with the GET
operation. When new resources are created by the client, a
"Location" header is returned, which identifies the path of the newly
created resource. The client MUST use this exact path identifier to
access the resource once it has been created.

The "target” of an operation is a resource. The "path” field in the
request URI represents the target resource for the operation.

4.2. Message Headers

There are several HTTP header lines utilized in YANG-API messages.
Messages are not limited to the HTTP headers listed in this section.

HTTP defines which header lines are required for particular
circumstances. Refer to each operation definition section in
Section 3 for examples on how particular headers are used.

There are some request headers that are used within YANG-API, usually
applied to data resources. The following tables summarize the
headers most relevant in YANG-API message requests:

+ + +
| Name | Description |

+ + +

| Accept | Response Content-Types that are acceptable |
| Content-Type | The media type of the request body |

| Host | The host address of the server |

| If-Match | Only perform the action if the entity |

| matches ETag |
If-Modified-Since | Only perform the action if modified since |

|

|

| | time |

| If-Range | Only retrieve range if resource unchanged |

| If-Unmodified-Since | Only perform the action if un-modified |
| | since time |

| Range | Specify a range of data resource entries |

+ + +

YANG-API Request Headers

The following tables summarize the headers most relevant in YANG-API
message responses:

Bierman & Bjorklund Expires June 3, 2013 [Page 35]

Internet-Draft YANG-API November 2012

+ + +
Name	Description
Allow	Valid actions when 405 error returned
Content-Type	The media type of the response body
Date	The date and time the message was sent
ETag	An identifier for a specific version of a

| resource |

|
Last-Modified	The last modified date and time of a resource
Location	The resource identifier for a newly created
	resource

+ + +

YANG-API Response Headers
4.3. Message Encoding

YANG-API messages are encoded in HTTP according to RFC 2616. The
"utf-8" character set is used for all messages. YANG-API| message
content is sent in the HTTP message body.

Content is encoded in either JISON or XML format.

XML encoding rules for data nodes are defined in [RFC6020]. The same
encoding rules are used for all XML content. XML attributes are not
used and will be ignored if present in an XML-encoded message.

JSON encoding rules are defined in [I-D.lhotka-netmod-json]. Special
encoding rules are needed to handle multiple module namespaces and
provide consistent data type processing.

Request input content encoding format is identified with the Content-
Type header. This field MUST be present if message input is sent by
the client.

Response output content encoding format is identified with the Accept
header, the "format" query parameter, or if neither is specified, the
request input encoding format is used. If there was no request

input, then the default output encoding is JSON. File extensions
encoded in the request are not used to identify format encoding.

4.4, Return Status

Each message represents some sort of resource access. An HTTP
"Status-Line" header line is returned for each request. If a 4xx or
5xx range status code is returned in the Status-Line, then the error
information will be returned in the response, according to the format
defined in Section 6.1.

Bierman & Bjorklund Expires June 3, 2013 [Page 36]

Internet-Draft YANG-API November 2012

4.5. Message Caching

Since the datastore contents change at unpredictable times, responses
from a YANG-API server generally SHOULD NOT be cached.

The server SHOULD include a "Cache-Control" header in every response
that specifies whether the response should be cached. A "Pragma"
header specifying "no-cache" MAY also be sent in case the
"Cache-Control" header is not supported.

Instead of using HTTP caching, the client SHOULD track the "ETag"
and/or "Last-Modified" headers returned by the server for the
datastore resource (or data resource if the server supports it).

A retrieval request for a resource can include headers such as
"If-None-Match" or "If-Modified-Since" which will cause the server to
return a "304 Not Modified" Status-Line if the resource has not
changed.

The client MAY use the HEAD operation to retrieve just the message

headers, which SHOULD include the "ETag" and "Last-Modified" headers,
if this meta-data is maintained for the target resource.

Bierman & Bjorklund Expires June 3, 2013 [Page 37]

Internet-Draft YANG-API November 2012

5. Resources

The resources used in the YANG-API protocol are identified by the
"path" component in the request URI. Each operation is performed on
a target resource.

5.1. API Resource (/yang-api)

The API resource contains the state and access points for the YANG-
API features.

It is the top-level resource and has the media type "application/
vnd.yang.api+xml" or "application/vnd.yang.api+json". Itis
accessible through the well-known URI "/yang-api".

This resource has the following fields:

+ + +

| Field Name | Description |

| datastore | Link to "datastore™ resource |

| modules | YANG module capability URIs |

| operations | Data-model specific operations |
+ + +

YANG-API Resource Fields

5.1.1. /yang-api/datastore
This mandatory resource represents the running configuration
datastore and any non-configuration data available. It may be
retrieved and edited directly. It cannot be created or deleted by
the client. This resource type is defined in Section 5.2.

5.1.2. /yang-api/modules
This mandatory field contains the identifiers for the YANG data model
modules supported by the server. There MUST be exactly one instance
of this field.
The server MUST maintain a last-modified timestamp for this field,
and return the "Last-Modified" header when this field is retrieved
with the GET or HEAD methods.

5.1.3. /yang-api/operations

This optional field provides access to the data-model specific
protocol operations supported by the server. The server MAY omit

Bierman & Bjorklund Expires June 3, 2013 [Page 38]

Internet-Draft YANG-API November 2012

this field if no data-model specific operations are advertised.

Any data-model specific operations defined in the YANG modules
advertised by the server SHOULD be available as child nodes of this
field.

5.1.3.1. /yang-api/modules/module

This mandatory field contains one URI string for each YANG data model
module supported by the server. There MUST be an instance of this
field for every YANG module that is accessible via an operation
resource or a data resource.

The server MAY maintain a last-modified timestamp for each instance
of this resource, and return the "Last-Modified" header when this
resource is retrieved with the GET or HEAD methods. If not supported
then the timestamp for the parent "modules” field MUST NOT be used
instead.

The contents of this field are encoded with the "uri" derived type
from the "ietf-iana-types" modules in [RFC6021].

There are additional encoding requirements for this field. The URI
MUST follow the YANG module capability URI formatting defined in
section 5.6.4 of [RFC6020].

5.1.3.2. Retrieval Example

In this example the client is retrieving the modules field from the
server in the default JSON format:

GET /yang-api?select=modules HTTP/1.1
Host: example.com
Accept: application/vnd.yang.api+json

The server might respond as follows. Note that the content below is
split across multiple lines for display purposes only:

Bierman & Bjorklund Expires June 3, 2013 [Page 39]

Internet-Draft YANG-API November 2012

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 17:01:00 GMT

Server: example-server

Cache-Control: no-cache

Pragma: no-cache

Last-Modified: Sun, 22 Apr 2012 01:00:14 GMT
Content-Type: application/vnd.yang.api+json

"yang-api": {
"modules"; {

"module™: [
"example.com?module=foo&revision=2012-01-02",
"example.com?module=bar&revision=2011-10-10"
"example.com?module=itf&revision=2011-10-10

&feature=restore"

]

}
}
}

5.1.4. lyang-api/version

This mandatory field identifies the specific version of the YANG-API
protocol implemented by the server.

The same server-wide response MUST be returned each time this field
is retrieved. It is assigned by the server when the server is

started. The server MUST return the value "1.0" for this version of

the YANG-API protocol.

This field is encoded with the rules for an "enumeration” data type,
using the following leaf definition:

leaf version {
config false;
type enum {
enum "1.0" {
description
"Version 1.0 of the YANG-API protocol.";
}
}
}

Bierman & Bjorklund Expires June 3, 2013 [Page 40]

Internet-Draft YANG-API November 2012

5.2. Datastore Resource

A datastore resource represents the conceptual root of a tree of data
resources.

The server MUST maintain a last-modified timestamp for this resource,
and return the "Last-Modified" header when this resource is retrieved
with the GET or HEAD methods. Only changes to configuration data
resources within the datastore affect this timestamp.

The server SHOULD maintain a resource entity tag for this resource,

and return the "ETag" header when this resource is retrieved with the

GET or HEAD methods. The resource entity tag SHOULD be changed to a
new previously unused value if changes to any configuration data
resources within the datastore are made.

A datastore resource can be retrieved with the GET operation, to
retrieve either configuration data resources or non-configuration
data resources within the datastore. The "config" query parameter is
used to choose between them. Refer to Section 3.8.1 for more
details.

The depth of the subtrees returned in retrieval operations can be
controlled with the "depth" query parameter. The number of nest
levels, starting at the target resource, can be specified, or an
unlimited number can be returned. Refer to Section 3.8.2 for more
details.

A datastore resource cannot be written directly with any edit
operation. Only the configuration data resources within the
datastore resource can be edited.

5.3. Data Resource

A data resource represents a YANG data node that is a descendant node
of a datastore resource.

For configuration data resources, the server MAY maintain a last-
modified timestamp for the resource, and return the "Last-Modified"
header when it is retrieved with the GET or HEAD methods.

For configuration data resources, the server MAY maintain a resource
entity tag for the resource, and return the "ETag" header when it is
retrieved as the target resource with the GET or HEAD methods. The
resource entity tag SHOULD be changed to a new previously unused
value if changes to the resource or any configuration field within

the resource is altered.

Bierman & Bjorklund Expires June 3, 2013 [Page 41]

Internet-Draft YANG-API November 2012

A data resource can be retrieved with the GET operation, to retrieve
either configuration data resources or non-configuration data
resources within the target resource. The "config" query parameter
is used to choose between them. Refer to Section 3.8.1 for more
details.

The depth of the subtrees returned in retrieval operations can be
controlled with the "depth" query parameter. The number of nest
levels, starting at the target resource, can be specified, or an
unlimited number can be returned. Refer to Section 3.8.2 for more
details.

A configuration data resource can be altered by the client with some
of all of the edit operations, depending on the target resource and
the specific operation. Refer to Section 3 for more details on edit
operations.

5.3.1. Encoding YANG Instance Identifiers in the Request URI
In YANG, data nodes are named with an absolute XPath expression, from
the document root to the target resource. In YANG-API, URL friendly
path expressions are used instead.

The YANG "instance-identifier" (i-i) data type is represented in
YANG-API with the path expression format defined in this section.

R — + +
| Name | Comments |
+ + +

| point | Insertion point is always a full i-i |
| path | Request URI path is a full or partial i-i |
+ + +

YANG-API instance-identifier Type Conversion

The "path" component of the request URI contains the absolute path
expression that identifies the target resource. The "select" query
parameter is used to optionally identify the requested data nodes
within the target resource to be retrieved in a GET operation.

A predictable location for a data resource is important, since
applications will code to the YANG data model module, which uses
static naming and defines an absolute path location for all data
nodes.

A YANG-API data resource identifier is not an XPath expression. It

is encoded from left to right, starting with the top-level data node,
according to the "api-path" rule in Section 5.3.1.1. The node name

Bierman & Bjorklund Expires June 3, 2013 [Page 42]

Internet-Draft YANG-API November 2012

of each ancestor of the target resource node is encoded in order,
ending with the node name for the target resource.

If the "select" is present, it is encoded, starting with a child node
of the target resource, according to the "api-select" rule defined in
Section 5.3.1.1.

If a data node in the path expression is a YANG list node, then the
key values for the list (if any) are encoded according to the
"key-value" rule. If the list node is the target resource, then the

key values MAY be omitted, according to the operation. For example,
the POST operation to create a new data resource for a list node does
not allow the key values to be present in the request URI.

The key leaf values for a data resource representing a YANG list MUST
be encoded as follows:

0 The value of each leaf identified in the "key" statement is
encoded in order.

o All the components in the "key" statement MUST be encoded.
Partial instance identifiers are not supported.

o Each value is encoded using the "key-value" rule in
Section 5.3.1.1, according to the encoding rules for the data type
of the key leaf.

0 An empty string can be a valid key value (e.g., "/top/list/key1//
key3").

0 The "/" character MUST be URL-encoded (i.e., "%2F").
o All whitespace MUST be URL-encoded.

o A "null" value is not allowed since the "empty" data type is not
allowed for key leafs.

0 The XML encoding is defined in [RFC6020].
0 The JSON encoding is defined in [I-D.lhotka-netmod-json].

0 The entire "key-value" MUST be properly URL-encoded, according to
the rules defined in [RFC3986].

Notifications are not supported by YANG-API because they are not

supported by HTTP. YANG notification statements are ignored by a
YANG-API server.

Bierman & Bjorklund Expires June 3, 2013 [Page 43]

Internet-Draft YANG-API November 2012

Examples:
lyang-api/datastore/jukebox/library/artist/17&select=name
lyang-api/datastore/newlist/17&select=nextlist/22/44/myleaf
lyang-api/datastore/somelist/fred%20and%20wilma
lyang-api/datastore/somelist/fred%20and%?20wilma/address

5.3.1.1. ABNF For Data Resource Identifiers

The following ABNF syntax is used to construct YANG-API path
identifiers:

api-path = "/" api-identifier
0*("/" (api-identifier | key-value))

[FIXME: the syntax for the select string is still TBD]
api-select = api-identifier

0*("/" (api-identifier | key-value))
api-identifier = [module-name ":"] identifier
module-name = identifier
key-value = string
;; An identifier MUST NOT start with
5 (X)) (M) (L))
identifier = (ALPHA/"_")

*(ALPHA /DIGIT /" " /"""

string = <an unquoted string>

5.3.2. Ildentifying YANG-defined Data Resources

The data resources used in YANG-API are defined with YANG data
definition statements.

Not every data node defined in a YANG module should be treated as a
resource. The YANG-API needs to know which YANG data nodes are

resources, and which are fields within a resource.
For data resources, YANG-API uses a simple algorithm for defining

resource boundaries, within the conceptual sub-trees described by
YANG data definition statements.

Bierman & Bjorklund Expires June 3, 2013 [Page 44]

Internet-Draft YANG-API November 2012

All top-level data nodes are considered to be resources. For nodes
within a top-level resource:

0 a presence container starts a new resource
o alist starts a new resource

0 an optional terminal node (anyxml, leaf, or leaf-list) starts a
new resource

0 a data node of type "anyxml" cannot have any sub-resources

A non-configuration data node cannot be a separate resource from its
parent. Only top-level data nodes are considered to be resources
(which only support retrieval methods).

5.3.3. Identifying Optional Keys

It is sometimes useful to have the server assign the key(s) for a new
resource. The "Location" header will indicate the key value(s) that
the server selected, so the client does not need to provide all the
key leaf values.

It is useful to identify in the YANG data model module which key

leafs are optional to provide, and which are not. The YANG extension
statement "optional-key" is provided to indicate that the leaf

definition represents an optional key.

The client MAY provide a value for a key leaf in a POST operation.
Refer to Section 8 for details on the "optional-key" extension.
Refer to Section 13 for usage examples of this YANG extension
statement.

5.3.4. Data Resource Retrieval

There are four types of filtering for retrieval of data resources.
This section defines each mode.

5.3.4.1. Conditional Retrieval

The HTTP headers (such as "If-Modified-Since" and "If-Match") can by
used in for a request message for a GET operation to check a
condition within the server state, such as the last time the

datastore resource was modified, or the resource entity tag of the
target resource.

If the condition is met according to the header definition, a "200
OK" Status-Line and the data requested is returned in the response

Bierman & Bjorklund Expires June 3, 2013 [Page 45]

Internet-Draft YANG-API November 2012

message. If the condition is not met, a "304 Not Modified" Status-
Line is returned in response message instead.

5.3.4.2. Data Classification Retrieval

The "config" query parameter can be used with the GET operation to
specify whether configuration or non-configuration data is requested.
Refer to Section 3.8.1 for more details on the "config" query
parameter.

5.3.4.3. Subset Retrieval

The "Range" header is used to request a specific subset of the
instances of a list or leaf-list data resource that are returned by

the server for a retrieval operation. Normally, if the target

resource in a request message does not specify an instance, then all
instances are returned.

The YANG-API protocol uses the token "entries” instead of "bytes" as
the range units.

The entries are numbered starting from "0". A list or leaf-list can
change order between requests so the client needs to be aware of the
data model semantics, and whether the list contents are stable enough
to use the subset retrieval mechanism.

If the requested range cannot be returned because the range
specification includes index values for entries that do not exist,

then an error occurs, and the server MUST return a "416 Requested
range not satisfiable" Status-Line.

If the range request can be satisfied, then a "200 OK" Status-Line is
returned, and the response MUST include a "Content-Range" header
indicating which entries are returned. The response message body
contains the data for the requested range of entries.

Example:

In this example, the client is requesting 5 "artist” resource
entries, starting with the 10th entry:

Bierman & Bjorklund Expires June 3, 2013 [Page 46]

Internet-Draft YANG-API November 2012

Request from client:

GET lyang-api/datastore/jukebox/library/artist HTTP/1.1
Host: example.com

Accept: application/vnd.yang.data+json

Range: entries 10-14

Response from server:

HTTP/1.1 200 OK

Date: Mon, 23 Apr 2012 13:01:20 GMT
Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/vnd.yang.data+json
Content-Range: entries 10-14

Server: example-server

Last-Modified: Mon, 23 Apr 2012 02:12:20 GMT
ETag: abcada438af

"artist" : {
Il content removed for brevity
}
}

5.3.4.4. Filtered Retrieval

The "select" query parameter is used to specify a filter that should
be applied to the target resource to request a subset of all possible
descendant nodes within the target resource.

The format of the "select" parameter string is defined in
Section 3.8.6. The set of nodes selected by the filter expression is
applied to each context node identified by the target resource.

5.4. Operation Resource

An operation resource represents an protocol operation defined with
the YANG "rpc" statement.

All operation resources share the same module namespace as any top-
level data resources, so the name of an operation resource cannot
conflict with the name of a top-level data resource defined within

the same module.

If 2 different YANG modules define the same "rpc" identifier, then

the module name MUST be used in the request URI. For example, if
"module-A" and "module-B" both defined a "reset" operation, then

Bierman & Bjorklund Expires June 3, 2013 [Page 47]

Internet-Draft YANG-API November 2012

invoking the operation from "module-A" would be requested as follows:

POST /yang-api/operations/module-A:reset HTTP/1.1
Server example.com

Any usage of an operation resource from the same module, with the
same name, refers to the same "rpc" statement definition. This
behavior can be used to design protocol operations that perform the
same general function on different resource types.

If the "rpc" statement has an "input” section, then a message body

MAY be sent by the client in the request, otherwise the request

message MUST NOT include a message body. If the "rpc" statement has
an "output" section, then a message body MAY be sent by the server in
the response. Otherwise the server MUST NOT include a message body
in the response message, and MUST send a "204 No Content" Status-Line
instead.

5.4.1. Encoding Operation Input Parameters

If the "rpc" statement has an "input” section, then the "input" node
is provided in the message body, corresponding to the YANG data
definition statements within the "input” section.

Example:

The following YANG definition is used for the examples in this
section.

rpc reboot {
input {
leaf delay {
units seconds;
type uint32;
default O;

leaf message { type string; }
leaf language { type string; }

}

The client might send the following POST request message:

Bierman & Bjorklund Expires June 3, 2013 [Page 48]

Internet-Draft YANG-API November 2012

POST /yang-api/datastore/operations/reboot HTTP/1.1
Host: example.com
Content-Type: application/vnd.yang.data+json

{
"input” : {
"delay" : 600,
"message" : "Going down for system maintenance",
"language” : "en-US"
}
}

The server might respond:

HTTP/1.1 204 No Content
Date: Mon, 25 Apr 2012 11:01:00 GMT
Server: example-server

5.4.2. Encoding Operation Output Parameters

If the "rpc" statement has an "output” section, then the "output”
node is provided in the message body, corresponding to the YANG data
definition statements within the "output" section.

Example:

The following YANG definition is used for the examples in this
section.

rpc get-reboot-info {
input {
leaf reboot-time {
units seconds;
type uint32;

leaf message { type string; }
leaf language { type string; }

}
}

The client might send the following POST request message:

POST /yang-api/datastore/operations/get-reboot-info HTTP/1.1
Host: example.com

The server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 49]

Internet-Draft YANG-API November 2012

HTTP/1.1 200 OK

Date: Mon, 25 Apr 2012 11:10:30 GMT
Server: example-server

Content-Type: application/vnd.yang.data+json

"output” : {
"reboot-time" : 30,
"message" : "Going down for system maintenance",
"language" : "en-US"
}
}

5.4.3. Identifying YANG-defined Operation Resources
The operation resources used in YANG-API are defined with YANG "rpc"

statements. All "rpc" statements within a YANG module that are
supported by the server are available as operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 50]

Internet-Draft YANG-API November 2012

6. Error Reporting

HTTP Status-Lines are used to report success or failure for YANG-API
operations. The <rpc-error> element returned in NETCONF error
responses contains some useful information. This error information

is adapted for use in YANG-API, and error information is returned for
"4xx" class of status codes.

The following table summarizes the return status codes used
specifically by YANG-API operations:

+ + +
| Status-Line | Description [
100 Continue	POST accepted, 201 should follow
200 OK	Success with response body
201 Created	POST to create a resource success
202 Accepted	POST to create a resource
	accepted
204 No Content	Success without response body
304 Not Modified	Conditional operation not done
400 Bad Request	Invalid request message
403 Forbidden	Access to resource denied
404 Not Found	Resource target or resource node
not found	
405 Method Not Allowed	Method not allowed for target
resource	
409 Conflict | Resource or lock in use |

|

|

I

| 413 Request Entity Too Large | too-big error |

| 414 Request-URI Too Large | too-big error |

| 415 Unsupported Media Type | non YANG-API media type
| 416 Requested range not | If-Range error |
|
|
|
|
+

satisfiable

500 Internal Server Error | operation-failed |

501 Not Implemented | unknown-operation |

503 Service Unavailable | Recoverable server error |
+ +

HTTP Status Codes used in YANG-API

Since an operation resource is defined with a YANG "rpc" statement, a
mapping between the NETCONF <error-tag> value and the HTTP status
code is needed. The specific error condition and response code to

use are data-model specific and might be contained in the YANG
"description” statement for the "rpc" statement.

Bierman & Bjorklund Expires June 3, 2013 [Page 51]

Internet-Draft YANG-API November 2012

+ + +

| <error-tag> | status code |

+ + +

| in-use | 409 |

| invalid-value | 400 |

| too-big | 413 |

| missing-attribute | 400 |

| bad-attribute | 400 |

| unknown-attribute | 400 |

| bad-element | 400 |

| unknown-element | 400 |

| unknown-namespace | 400 |
| access-denied | 403 |

| lock-denied | 409 |

| resource-denied | 409 |

| rollback-failed | 500 |

| data-exists | 409 |

| data-missing | 409 |

| operation-not-supported | 501 |
| operation-failed | 500 |

| partial-operation | 500 |

| malformed-message | 400 |
+ + +

Mapping from error-tag to status code
6.1. Error Response Message

When an error occurs for a request message on a data resource or an
operation resource, and a "4xx" class of status codes (except for
status code "403"), then the server SHOULD send a response body
containing the information described by the following YANG data
definition statement:

Bierman & Bjorklund Expires June 3, 2013 [Page 52]

Internet-Draft YANG-API November 2012

container errors {
config false;

list error {
reference "RFC 6241, Section 4.3";
leaf error-type {
mandatory true;
type enumeration {
enum transport;
enum rpc;
enum protocol;
enum application;

}

leaf error-tag {
mandatory true;
type string;

leaf error-app-tag {
type string;

leaf error-path {
type string; // YANG-API encoded instance-identifier

}

leaf error-message {
type string;

container error-info {
/[anyxml content here

}
}
}

Example:

The following example shows an error returned for an "lock-denied"
error on a datastore resource.

POST /yang-api/operations/lock-datastore HTTP/1.1
Host: example.com

The server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 53]

Internet-Draft YANG-API November 2012

HTTP/1.1 409 Conflict

Date: Mon, 23 Apr 2012 17:11:00 GMT
Server: example-server

Content-Type: application/vnd.yang.api+json

"errors": {
"error": {
“"error-type": "protocol”,
"error-tag": "lock-denied",

"error-message": "Lock failed, lock is already held'

}
}
}

Bierman & Bjorklund Expires June 3, 2013

[Page 54]

Internet-Draft YANG-API November 2012

7. RelaxNG Grammar

TBD

Bierman & Bjorklund Expires June 3, 2013 [Page 55]

Internet-Draft YANG-API November 2012

8. YANG-API module

RFC Ed.: update the date below with the date of RFC publication and
remove this note.

<CODE BEGINS> file "ietf-yang-api@2012-11-30.yang"

module ietf-yang-api {
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-api";
prefix "api";

organization
"IETF NETCONF (Network Configuration) Working Group";

contact
"Editor: Andy Bierman
<mailto;:andy@yumaworks.com>

Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";

description
"This module contains a collection of YANG language extensions
to describe REST API Resources using YANG data definition
statements.

Copyright (c) 2012 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject

to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

/I RFC Ed.: replace XXXX with actual RFC number and remove this
I note.

/l RFC Ed.: remove this note
/I Note: extracted from draft-bierman-netconf-yang-api-01.txt

/I RFC Ed.: update the date below with the date of RFC publication

/I and remove this note.
revision 2012-11-30 {

Bierman & Bjorklund Expires June 3, 2013 [Page 56]

Internet-Draft YANG-API November 2012

description
"Initial revision.";
reference
"RFC XXXX: YANG-API Protocol.";

}

/*
* Extensions
*/

extension optional-key {
description

"This extension is used to allow the client to create
a new instance of a resource without providing a
value for the key leaf containing this statement.
This extension is ignored for NETCONF, and only
applies to YANG-API resources and fields.
This extension is ignored unless it appears
directly within a 'leaf’ data definition statement.";

<CODE ENDS>

Bierman & Bjorklund Expires June 3, 2013 [Page 57]

Internet-Draft YANG-API November 2012

9. IANA Considerations

This document registers one URI in the IETF XML registry [RFC3688].
Following the format in RFC 3688, the following registration is
requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-api
Registrant Contact: The NETMOD WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

This document registers one YANG module in the YANG Module Names
registry [RFC6020].

name: ietf-yang-api
namespace: urn:ietf:params:xml:ns:yang:ietf-yang-api
prefix: api

reference: RFC XXXX

Bierman & Bjorklund Expires June 3, 2013 [Page 58]

Internet-Draft YANG-API November 2012

10. Security Considerations

TBD

Bierman & Bjorklund Expires June 3, 2013 [Page 59]

Internet-Draft YANG-API November 2012

11. Change Log
-- RFC Ed.: remove this section before publication.
11.1. 00-01
0 expanded introduction
0 removed transactions
0 removed capabilities
o simplified editing model
o removed global protocol operations from ietf-yang-api.yang
o changed RPC operation terminology to protocol operation
0 updated JSON draft reference
0 updated open issues section

0 updated IANA section

Bierman & Bjorklund Expires June 3, 2013 [Page 60]

Internet-Draft YANG-API November 2012

12. Open Issues

0 Which WG should do this work? NETCONF? NETMOD? Itis not clear
since YANG-API builds on concepts and standards from documents
owned by both working groups.

0 Resource creation order and other dependencies between resources
are not well identified in YANG. YANG has leafrefs and instance-
identifiers, which can be used to identify some order
dependencies. Are any new mechanisms needed in YANG-API needed to
identify resource creation order and other dependency
requirements?

0 There is no "message-id" field in a YANG-API message. Is a
message identifier needed? If so, should either the "Message-ID"
or "Content-ID" header from RFC 2392 be used for this purpose?

0 Should sessions be used or not? Should "reusable sessions" be
used? Better for auditing? How does locking of the /yang-api/
datastore resource work for multiple edits if a session is 1
operation? When does the server release the lock and decide it
has been abandoned or client was disconnected?

0 What syntax should be used for the "select" query parameter?

o0 Should the "/yang-api/modules"” field within the API resource be a
separate resource, with its own timestamp? Currently the API
timestamp is coupled to any changes to the list of loaded modules.
Should the API resource be static and cacheable?

0 What to do about no REMOVE operation, just DELETE? The effect is
local to the request; in a NETCONF edit-config it is worse, since
the netconf request might create/delete/modify many nodes

0 Should every YANG data node be a data resource and every YANG RPC
statement an operation resource? Is a YANG extension needed to
allow data modeler control of resource boundaries?

o Encoding of leafrefs? Is there some additional meta-data needed?
Do leafref nodes need to be identified in responses (RFC 5988) or
is the YANG module definition sufficient to provide this meta-
data?

o What should the default algorithm be for defining data resources?
Should the default for an augment from another namespace be to
start a new resource? Top-level data node defaults as a resource
OK?

Bierman & Bjorklund Expires June 3, 2013 [Page 61]

Internet-Draft YANG-API November 2012

o Is the token "entries" legal in the YANG-API usage of Range? What
units should be used? "bytes" is the only token defined by HTTP.

0 Are all header lines used by YANG-API supported by common
application frameworks, such as FastCGIl and WSGI? If not, then
should query parameters be used instead, since the QUERY_STRING is
widely available to WEB applications?

0 Should the <errors> element returned in error responses be a
separate media type?

o How should additional datastores be supported, which may be added
to the NETCONF/NETMOD framework in the future?

Bierman & Bjorklund Expires June 3, 2013 [Page 62]

Internet-Draft YANG-API November 2012

13. Example YANG Module
module example-jukebox {

namespace "http://example.com/ns/example-jukebox";
prefix "jbox";

import ietf-yang-api { prefix api; }

organization "Example, Inc.";
description "Example Jukebox Data Model Module";
revision "2012-05-30";

identity genre {
description "Base for all genre types";

}

/[abbreviated list of genre classifications
identity Alternative {
base genre;

}
identity Blues {
base genre;

}
identity Country {
base genre;

}
identity Jazz {
base genre;

}
identity Pop {
base genre;

}
identity Rock {
base genre;

}

container jukebox {
presence
"An empty container indicates that the jukebox
service is available";

container library {
list artist {
key index;
unigue name;

Bierman & Bjorklund Expires June 3, 2013 [Page 63]

Internet-Draft YANG-API November 2012

leaf index {
api:optional-key;
type uint32;
description
"Optional key used instead of natural key for
example. Also rare but possible artists with
the same name are really different entities.";
}
leaf name {
type string;

list album {
key name;
leaf name {
type string {
length "1 .. max";
}
}

leaf genre {
type identityref { base genre; }

leaf year {
type uintl16 {
range "1900 .. max";

}

list song {
api:optional-key;
key index;
ordered-by user;
leaf index {
type uint32;

leaf name {
mandatory true;
type string;

leaf location {
mandatory true;
type string;

leaf format {
type string;

}
leaf length {

units "seconds";
type uint32;

Bierman & Bjorklund Expires June 3, 2013

[Page 64]

Internet-Draft YANG-API November 2012

}
}
}

leaf artist-count {
config false;
type uint32;
units "songs";
description "Number of artists in the library";

leaf album-count {
config false;
type uint32;
units "albums";
description "Number of albums in the library";
}
leaf song-count {
type uint32;
units "songs";
description "Number of songs in the library";
}
}

list playlist {
description
"Example configuration data resource";
key name;
leaf name {
type string;

leaf description {
type string;

list song {
description
"Example nested configuration data resource";
ordered-by user;
key index;
leaf index {
api:optional-key;
type uint32;

}
leaf id {
mandatory true;
type instance-identifier;
description
"Song identifier. Must identify an instance of
/jukebox/library/artist/album/song.

Bierman & Bjorklund Expires June 3, 2013 [Page 65]

Internet-Draft YANG-API November 2012

The id is not the key to allow duplicates
in a playlist”;

}
}

container player {
leaf gap {
description "Time gap between each song";
units "tenths of seconds";
type decimal64 {
fraction-digits 1;
range "0.0 .. 2.0";
}
}
}
}

rpc play {
description "Control function for the jukebox player";
input {
leaf playlist {
type string;
mandatory true;
description "playlist name";
}
leaf song-number {
type uint32;
mandatory true;
description "Song number in playlist to play";
}
}
}

Bierman & Bjorklund Expires June 3, 2013 [Page 66]

Internet-Draft YANG-API November 2012

14. Normative References

[I-D.Ihotka-netmod-json]
Lhotka, L., "Modeling JSON Text with YANG",
draft-lhotka-netmod-yang-json-00 (work in progress),
October 2012.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3688] Mealling, M., "The IETF XML Registry”, BCP 81, RFC 3688,
January 2004.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)", RFC 6020,
October 2010.

[RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
October 2010.

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, June 2011.

[RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration

Protocol (NETCONF) Access Control Model", RFC 6536,
March 2012.

Bierman & Bjorklund Expires June 3, 2013 [Page 67]

Internet-Draft YANG-API November 2012

Authors’ Addresses

Andy Bierman
YumaWorks

Email: andy@yumaworks.com
Martin Bjorklund
Tail-f Systems

Email: mbj@tail-f.com

Bierman & Bjorklund Expires June 3, 2013 [Page 68]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Updates: 4253 (if approved) July 2014
Intended status: Standards Track

Expires: January 02, 2015

NETCONF Call Home using SSH
draft-ietf-netconf-reverse-ssh-06

Abstract

This document presents a technique for a NETCONF server to request
that a NETCONF client initiates a SSH connection to the NETCONF
server, a technique referred to as 'call home’. Call home is needed

to support deployments where the NETCONF client is otherwise unable
to initiate a SSH connection to the NETCONF server directly.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 02, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

Watsen Expires January 02, 2015 [Page 1]

Internet-Draft NETCONF Call Home using SSH July 2014

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Requirements Terminology 2
2. Introduction 2
2.1. Applicability Statement 3
2.2. UpdatetoRFC 4253 3
23. DraftNaming 3
Benefits to Device Management 3
Protocol 5
SSH Server Identification and Verification 5
Device Configuration 6
Security Considerations 7
IANA Considerations 8
. Acknowledgements 8
10. References 8
10.1. Normative References 8
10.2. Informative References 9
Appendix A. Changelog..................... 9
Al 05t006 9
A2.04t005 10
A3.03t004 10
Ad. 02t003 11
A5.01t002 11
A6. 00to01 11

©oN O ~W

1. Requirements Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

Watsen Expires January 02, 2015 [Page 2]

Internet-Draft NETCONF Call Home using SSH July 2014

This document presents a technique for a NETCONF server to request
that a NETCONF [RFC6241] client initiates a SSH [RFC4251] connection
to the NETCONF server, a technique referred to as 'call home’. Call
home is needed to support deployments where the NETCONF client is
otherwise unable to initiate a SSH connection to the NETCONF server
directly.

2.1. Applicability Statement

The techniques described in this document are suitable for network
management scenarios such as the ones described in section 3.

However, these techniques SHOULD only be used for a NETCONF server to
initiate a connection to a NETCONF client, as described in this

document.

The reason for this restriction is that different protocols have

different security assumptions. The NETCONF over SSH specification
requires NETCONF clients and servers to verify the identity of the
other party before starting the NETCONF protocol (section 6 of
[RFC6242]). This contrasts with the base SSH protocol, which does
not require programmatic verification of the other party (section

9.3.4 of [RFC4251] and section 4 of [RFC4252]). In such
circumstances, allowing the SSH server to contact the SSH client
would open new vulnerabilities. Therefore, any use of call home with
SSH for purposes other than NETCONF will need a thorough, contextual
security analysis.

2.2. Update to RFC 4253

This document updates the SSH Transport Layer Protocol [RFC4253] only
by removing the restriction in Section 4 (Connection Setup) of

[RFC4252] that the SSH Client must initiate the transport connection.
Security implications related to this change are discussed in

Security Considerations (Section 7).

2.3. Draft Naming
(this section should be removed if this draft becomes an RFC)
This draft's name includes the string "reverse-ssh”, and yet
currently nowhere in this draft is there any reference to reversing
SSH. This appearant ommision comes from the -05 edit of this draft,
where "Reverse SSH" was changed to "Call Home" throughout. If this
draft becomes an RFC, its name would no longer contain the obsolete
"reverse-ssh” reference, thus self-correcting this inconsistency.

3. Benefits to Device Management

Watsen Expires January 02, 2015 [Page 3]

Internet-Draft NETCONF Call Home using SSH July 2014

The SSH protocol is nearly ubiquitous for device management, as it is
the transport for the command-line applications ‘ssh’, ‘scp’, and

‘sftp* and is the required transport for the NETCONF protocol

[RFC6241]. However, all these SSH-based protocols expect the network
element to be the SSH server.

NETCONF over SSH Call Home enables the network element to
consistently be the SSH server regardless of which peer initiates the
underlying TCP connection. Maintaining the role of SSH server is

both necessary and desirable. It is necessary because SSH channels
and subsystems can only be opened on the SSH server. It is desirable
because it conveniently leverages infrastructure that may be deployed
for host-key verification and user authentication.

Call home is useful for both initial deployment and on-going device
management and may be used to enable any of the following scenarios:

0 The network element may proactively call home after being powered
on for the first time to register itself with its management
system.

0 The network element may access the network in a way that
dynamically assigns it an IP address and it doesn't register its
assigned IP addressed to a mapping service.

0 The network element may be configured in "stealth mode" and thus
doesn’t have any open ports for the management system to connect
to.

0 The network element may be deployed behind a firewall that doesn’t
allow SSH access to the internal network.

0 The network element may be deployed behind a firewall that
implements network address translation (NAT) for all internal
network IP addresses, thus complicating the ability for a
management system to connect to it.

0 The operator may prefer to have network elements initiate
management connections believing it is easier to secure one open-
port in the data center than to have an open port on each network
element in the network.

One key benefit of using SSH as the transport protocol is its ability

to multiplex an unspecified number of independently flow-controlled
TCP sessions [RFC4254]. This is valuable as the network element only
needs to be configured to initiate a single call home connection to a
management system, regardless the number of NETCONF channels the
management system wants to open.

Watsen Expires January 02, 2015 [Page 4]

Internet-Draft NETCONF Call Home using SSH July 2014

4. Protocol
The NETCONF server’s perspective (e.g., the network element)

0 The NETCONF server initiates a TCP connection to the NETCONF
client on the IANA-assigned SSH for NETCONF Call Home port YYYY.

0 The TCP connection is accepted and a TCP session is established.

0 Using this TCP connection, the NETCONF server immediately starts
the SSH server protocol. That is, the next message sent on the
TCP stream is SSH’s Protocol Version Exchange message (section
4.2, [RFC4253]).

0 The SSH connection is established.
The NETCONF client’s perspective (e.g., the management system)

0 The NETCONF client listens for TCP connections on the IANA-
assigned NETCONF over SSH Call Home port YYYY.

0 The NETCONF client accepts an incoming TCP connection and a TCP
session is established.

0 Using this TCP connection, the NETCONF client immediately starts
the SSH Client protocol, starting with sending the SSH’s Protocol
Version Exchange message (section 4.2, [RFC4253]).

0 The SSH connection is established.
5. SSH Server ldentification and Verification

When the management system accepts a new incoming TCP connection on
the NETCONF over SSH Call Home port, it starts the SSH client

protocol. As the SSH client, it MUST authenticate the SSH server, by

both identifying the network element and verifying its SSH host key.

Due to call home having the network element initiate the TCP

connection, the management system MAY identify the remote peer using
the source IP address of the TCP connection. However, identifying

the remote peer using the source IP address of the TCP connection is

NOT RECOMMENDED as it can only work in networks that use known static
addresses.

To support network elements having dynamically-assigned IP addresses,
or deployed behind gateways that translate their IP addresses (e.g.,
NAT), the management system MAY identify the device using its SSH
host key. For instance, a fingerprint of the network element’s host

Watsen Expires January 02, 2015 [Page 5]

Internet-Draft NETCONF Call Home using SSH July 2014

key could itself be used as an identifier since each device has a
statistically unique host key. However, identifying the remote peer
using its host key directly is NOT RECOMMENDED as it requires the
host key to be manually verified the first time the network element
connects and anytime its host key changes thereafter.

Yet another option for identifying the network element is for its

host key to encode the network element’s identity, such as if the

host key were a certificate. This option enables the host key to
change over time, so long as it continues to encode the same

identity, but brings the next issue of how the management system can
verify the network element’s host key is authentic.

The security of SSH is anchored in the ability for the SSH client to

verify the SSH server’s host key. Typically this is done by

comparing the host key presented by the SSH server with one that was
previously configured on the SSH client, looking it up in a local

database using the identity of the SSH client as the lookup key.

Nothing changes regarding this requirement due to the direction

reversal of the underlying TCP connection. To ensure security, the
management system MUST verify the network element’'s SSH host key each
time a SSH session is established.

However, configuring distinct host keys on the management system
doesn’t scale well, which is an important consideration to a network
management system. A more scalable strategy for the management
system is for the network element’'s manufacturer to sign the network-
element’s host key with a common trusted key, such as a certificate
authority. Then, when the network-element is deployed, the
management system only needs to trust a single certificate, which
vouches for the authenticity of the various network element host
keys.

Since both the identification and verification issues are addressed

using certificates, this draft RECOMMENDS network elements use a host
key that can encode a unique identifier (e.g., its serial number) and

be signed by a common trust anchor (e.g., a certificate authority).
Examples of suitable public host keys are the X.509v3 keys defined in
defined in [RFC6187] and the PGP keys defined in [RFC4253].

6. Device Configuration

How to configure a device to initiate a NETCONF over SSH Call Home
connection is outside the scope of this document, as implementations

can support this protocol using a proprietary configuration data

model. That said, a YANG [RFC6020] model to configure NETCONF over
SSH Call Home is specified in [draft-ietf-netconf-server-model].

Watsen Expires January 02, 2015 [Page 6]

Internet-Draft NETCONF Call Home using SSH July 2014

7. Security Considerations

This RFC deviates from standard SSH protocol usage by allowing the
SSH server to initiate the TCP connection. This conflicts with

section 4 of the SSH Transport Layer Protocol RFC [RFC4253], which
states "The client initiates the connection”. However this statement

is made without rationalization and it's not clear how it impacts the
security of the protocol, so this section analyzes the security

offered by having the client initiate the connection.

First, assuming the SSH server is not using a public host key
algorithm that certifies its identity, the security of the protocol

doesn’t seem to be sensitive to which peer initiates the connection.
That is, it is still the case that reliable distribution of host keys

(or their fingerprints) should occur prior to first connection and

that verification for subsequent connections happens by comparing the
host keys in a locally cached database. It does not seem to matter
if the SSH server’s host name is derived from user-input or extracted
from the TCP layer, potentially via a reverse-DNS lookup. Once the
host name-to-key association is stored in a local database, no man-
in-the-middle attack is possible due to the attacker being unable to
guess the real SSH server’s private key (Section 9.3.4 (Man-in-the-
middle) of [RFC4251])).

That said, this RFC recommends implementations use a public host key
algorithm that certifies the SSH server’s identity. The identity can

be any unique identifier, such as a device’s serial number or a
deployment-specific value. If this recommendation is followed, then

no information from the TCP layer would be needed to lookup the
device in a local database and therefore the directionality of the

TCP layer is clearly inconsequential.

The SSH protocol negotiates which algorithms it will use during key
exchange (Section 7.1 (Algorithm Negotiation) in [RFC4253]). The
algorithm selected is essentially the first compatible algorithm

listed by the SSH client that is also listed by the SSH server. For

a network management application, there may be a need to advertise a
large number of algorithms to be compatible with the various devices
it manages. The SSH client SHOULD order its list of public host key
algorithms such that all the certifiable public host key algorithms

are listed first. Additionally, when possible, SSH servers SHOULD
only list certifiable public host key algorithms. Note that since

the SSH server would have to be configured to know which IP address
it is to connect to, it is expected that it will also be configured

to know which host key algorithm to use for the particular

application, and hence only needs to list just that one public host

key algorithm.

Watsen Expires January 02, 2015 [Page 7]

Internet-Draft NETCONF Call Home using SSH July 2014

This RFC suggests implementations can use a device’s serial number as
a form of identity. A potential concern with using a serial number

is that the SSH protocol passes the SSH server’s host-key in the

clear and many times serial numbers encode revealing information
about the device, such as what kind of device it is and when it was
manufactured. While there is little security in trying to hide this
information from an attacker, it is understood that some deployments
may want to keep this information private. If this is a concern,
deployments SHOULD use an alternate unique identifier, if even just

the hash of the device’s serial number.

An attacker could DoS the application by having it perform
computationally expensive operations, before deducing that the
attacker doesn’t posses a valid key. This is no different than any
secured service and all common precautions apply (e.g., blacklisting
the source address after a set number of unsuccessful login
attempts).

8. IANA Considerations

This document requests that IANA assigns a TCP port number in the
"Registered Port Numbers" range with the service name "netconf-ssh-
ch". This port will be the default port for NETCONF over SSH Call
Home protocol and will be used when the NETCONF server is to initiate
a connection to a NETCONF client using SSH. Below is the
registration template following the rules in [RFC6335].

Service Name: netconf-ssh-ch

Transport Protocol(s): TCP

Assignee: IESG <iesg@ietf.org>

Contact: IETF Chair <chair@ietf.org>
Description: NETCONF over SSH Call Home
Reference: RFC XXXX

Port Number: YYYY

9. Acknowledgements

The author would like to thank for following for lively discussions

on list and in the halls (ordered by last name): Andy Bierman, Martin
Bjorklund, Mehmet Ersue, Wes Hardaker, Stephen Hanna, David
Harrington, Jeffrey Hutzelman, Radek Krejci, Alan Luchuk, Mouse, Russ
Mundy, Tom Petch, Peter Saint-Andre, Joe Touch, Sean Turner, Bert
Wijnen.

10. References

10.1. Normative References

Watsen Expires January 02, 2015 [Page 8]

Internet-Draft NETCONF Call Home using SSH July 2014

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels ", BCP 14, RFC 2119, March 1997.

[RFC4250] Lehtinen, S. and C. Lonvick, "The Secure Shell (SSH)
Protocol Assigned Numbers ", RFC 4250, December 2005.

[RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Protocol Architecture ", RFC 4251, January 2006.

[RFC4252] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Authentication Protocol ", RFC 4252, January 2006.

[RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Transport Layer Protocol ", RFC 4253, January 2006.

[RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Connection Protocol ", RFC 4254, January 2006.

[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF) ", RFC 6020,
October 2010.

[RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
Shell Authentication ", RFC 6187, March 2011.

[RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
Bierman, "NETCONF Configuration Protocol”, RFC 6241, June
2011.

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, June 2011.

[RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry”, RFC 6335, August
2011.

10.2. Informative References

[draft-ietf-netconf-server-model]

Watsen, K. and J. Schoenwaelder, "A YANG Data Model for
NETCONF Server Configuration”, RFC 6242, June 2011.
Appendix A. Change Log

A.1. 05to 06

Watsen Expires January 02, 2015 [Page 9]

Internet-Draft NETCONF Call Home using SSH July 2014

Changed title to "NETCONF Call Home using SSH"

Revised the Abstract and Introduction to better explain what the
document regards.

Changed "MUST" to "SHOULD" in the Applicability Statement.

Added a "Draft Naming" section explaining why, despite its name,
reversing SSH is nowhere in the text

Added PGP keys as another kind of SSH host key encoding identity
and signed by a trust anchor.

Revised the Device Considerations section to more clearly explain
why a device configuration data model is out of scope, and hence
an Informative reference.

Clarified Security Considerations section on use of serial
numbers.

A.2. 04 to 05
Changed "Reverse SSH" to "Call Home"
Added references to Applicability Statement
A.3. 03to 04

Changed title to "Reverse SSH for NETCONF Call Home" (changed
again in -05)

Removed statement on how other SSH channels might be used for
other protocols

Improved language on how the management system, as the SSH client,
MUST authenticate the SSH server

Clarified that identifying the network element using source IP
address is NOT RECOMMENDED

Clarified that identifying the NE using simple certificate
comparison is NOT RECOMMENDED

Device Configuration section now more clearly states that the YANG
model is out of scope

Change requested port name to "netconf-ssh-ch"

Watsen Expires January 02, 2015 [Page 10]

Internet-Draft NETCONF Call Home using SSH July 2014

General edits for grammer, capitalization, and spellings

A.4. 0210 03

Updated Device Configuration section to reference
[draft-ietf-netconf-server-model]

A.5. 01to 02

Added Applicability Statement

Removed references to ZeroConf / ZeroTouch

Clarified the protocol section

Added a section for identification and verification
A.6. 00to 01

Removed the hmac-* family of algorithms
Author’s Address

Kent Watsen
Juniper Networks

EMail: kwatsen@juniper.net

Watsen Expires January 02, 2015 [Page 11]

NETCONF Working Group M. Badra

Internet-Draft Zayed University
Obsoletes: 5539 (if approved) A. Luchuk
Intended status: Standards Track SNMP Research, Inc.
Expires: October 12, 2015 J. Schoenwaelder
Jacobs University Bremen
April 10, 2015

Using the NETCONF Protocol over Transport Layer Security (TLS) with
Mutual X.509 Authentication
draft-ietf-netconf-rfc5539bis-10

Abstract

The Network Configuration Protocol (NETCONF) provides mechanisms to
install, manipulate, and delete the configuration of network devices.

This document describes how to use the Transport Layer Security (TLS)
protocol with mutual X.509 authentication to secure the exchange of
NETCONF messages. This revision of RFC 5539 documents the new
message framing used by NETCONF 1.1 and it obsoletes RFC 5539.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

This Internet-Draft will expire on October 12, 2015.
Copyright Notice

Copyright (¢) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

Badra, et al. Expires October 12, 2015 [Page 1]

Internet-Draft NETCONF over TLS April 2015

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction 2
Connection Initiation 3
Message Framing 3
ConnectionClosure 3
Certificate Validation 3
Serverldentity 4
Clientldentity 4
CipherSuites 6
. Security Considerations 6
10. IANA Considerationscovvu... 7
11. Acknowledgements 7
12. References 8
12.1. Normative References 8
12.2. Informative References 8
Appendix A. Changes fromRFC5539 9
Authors’ Addresses 9

©CoNoh~wWNE

1. Introduction

The NETCONF protocol [RFC6241] defines a mechanism through which a
network device can be managed. NETCONF is connection-oriented,
requiring a persistent connection between peers. This connection

must provide integrity, confidentiality, peer authentication, and

reliable, sequenced data delivery.

This document defines how NETCONF messages can be exchanged over
Transport Layer Security (TLS) [RFC5246]. Implementations MUST
support mutual TLS certificate-based authentication [RFC5246]. This
assures the NETCONF server of the identity of the principal who

wishes to manipulate the management information. It also assures the
NETCONF client of the identity of the server for which it wishes to
manipulate the management information.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Badra, et al. Expires October 12, 2015 [Page 2]

Internet-Draft NETCONF over TLS April 2015

2. Connection Initiation

The peer acting as the NETCONF client MUST act as the TLS client.
The TLS client actively opens the TLS connection and the TLS server
passively listens for the incoming TLS connections. The well-known
TCP port number 6513 is used by NETCONF servers to listen for TCP
connections established by NETCONF over TLS clients. The TLS client
MUST send the TLS ClientHello message to begin the TLS handshake.
The TLS server MUST send a CertificateRequest in order to request a
certificate from the TLS client. Once the TLS handshake has

finished, the client and the server MAY begin to exchange NETCONF
messages. Client and server identity verification is done before the
NETCONF <hello> message is sent. This means that the identity
verification is completed before the NETCONF session is started.

3. Message Framing

All NETCONF messages MUST be sent as TLS "application data". Itis
possible that multiple NETCONF messages be contained in one TLS
record, or that a NETCONF message be transferred in multiple TLS
records.

The previous version of this document [RFC5539] used the framing
sequence defined in [RFC4742]. This version aligns with [RFC6242]
and adopts the framing protocol defined in [RFC6242] as follows:

The NETCONF <hello> message MUST be followed by the character
sequence J]>]]>. Upon reception of the <hello> message, the peers
inspect the announced capabilities. If the :base:1.1 capability is
advertised by both peers, the chunked framing mechanism defined in
Section 4.2 of [RFC6242] is used for the remainder of the NETCONF
session. Otherwise, the old end-of-message-based mechanism (see
Section 4.3 of [RFC6242]) is used.

4. Connection Closure

A NETCONEF server will process NETCONF messages from the NETCONF
client in the order in which they are received. A NETCONF session is
closed using the <close-session> operation. When the NETCONF server
processes a <close-session> operation, the NETCONF server SHALL
respond and close the TLS session as described in Section 7.2.1 of
[RFC5246].

5. Certificate Validation
Both peers MUST use X.509 certificate path validation [RFC5280] to

verify the integrity of the certificate presented by the peer. The
presented X.509 certificate may also be considered valid if it

Badra, et al. Expires October 12, 2015 [Page 3]

Internet-Draft NETCONF over TLS April 2015

matches one obtained by another trusted mechanism, such as using a
locally configured certificate fingerprint. If X.509 certificate

path validation fails and the presented X.509 certificate does not
match a certificate obtained by a trusted mechanism, the connection
MUST be terminated as defined in [RFC5246].

6. Server ldentity

The NETCONF client MUST check the identity of the server according to
Section 6 of [RFC6125].

7. Client Identity

The NETCONF server MUST verify the identity of the NETCONF client to
ensure that the incoming request to establish a NETCONF session is
legitimate before the NETCONF session is started.

The NETCONF protocol [RFC6241] requires that the transport protocol’s
authentication process results in an authenticated NETCONF client
identity whose permissions are known to the server. The

authenticated identity of a client is commonly referred to as the
NETCONF username. The following algorithm is used by the NETCONF
server to derive a NETCONF username from a certificate. (Note that

the algorithm below is the same as the one described in the SNMP-TLS-
TM-MIB MIB module defined in [RFC6353] and in the ietf-x509-cert-to-
name YANG module defined in [RFC7407].)

(a) The server maintains an ordered list of mappings of certificates
to NETCONF usernames. Each list entry contains

* a certificate fingerprint (used for matching the presented
certificate),

* a map type (indicates how the NETCONF username is derived
from the certificate), and

* optional auxiliary data (used to carry a NETCONF username if
the map type indicates the user name is explicitly
configured).

(b) The NETCONF username is derived by considering each list entry
in order. The fingerprint member of the current list entry
determines whether the current list entry is a match:

1. If the list entry’s fingerprint value matches the

fingerprint of the presented certificate, then consider the
list entry as a successful match.

Badra, et al. Expires October 12, 2015 [Page 4]

Internet-Draft NETCONF over TLS April 2015

2. If the list entry’s fingerprint value matches that of a
locally held copy of a trusted CA certificate, and that CA
certificate was part of the CA certificate chain to the
presented certificate, then consider the list entry as a
successful match.

(c) Once a matching list entry has been found, the map type of the
current list entry is used to determine how the username
associated with the certificate should be determined. Possible
mapping options are:

A. The username is taken from the auxiliary data of the current
list entry. This means the username is explicitely
configured (map type 'specified’).

B. The subjectAltName’s rfc822Name field is mapped to the
username (map type 'san-rfc822-name’). The local part of
the rfc822Name is used unaltered but the host-part of the
name must be converted to lowercase.

C. The subjectAltName’s dNSName is mapped to the username (map
type 'san-dns-name’). The characters of the dNSName are
converted to lowercase.

D. The subjectAltName’s iPAddress is mapped to the username
(map type 'san-ip-address’). IPv4 addresses are converted
into decimal-dotted quad notation (e.g., '192.0.2.1"). IPv6
addresses are converted into a 32-character all lowercase
hexadecimal string without any colon separators.

E. Any of the subjectAltName’s rfc822Name, dNSName, iPAddress
is mapped to the username (map type 'san-any’). The first
matching subjectAltName value found in the certificate of
the above types MUST be used when deriving the name.

F. The certificate’s CommonName is mapped to the username (map
type 'common-name’). The CommonName is converted to UTF-8
encoding. The usage of CommonNames is deprecated and users
are encouraged to use subjectAltName mapping methods
instead.

(d) Ifitis impossible to determine a username from the list
entry’s data combined with the data presented in the
certificate, then additional list entries MUST be searched
looking for another potential match. Similarily, if the
username does not comply to the NETCONF requirements on
usernames [RFC6241], then additional list entries MUST be

Badra, et al. Expires October 12, 2015 [Page 5]

Internet-Draft NETCONF over TLS April 2015

searched looking for another potential match. If there are no
further list entries, the TLS session MUST be terminated.

The username provided by the NETCONF over TLS implementation will be
made available to the NETCONF message layer as the NETCONF username
without modification.

The NETCONF server configuration data model
[I-D.ietf-netconf-server-model] covers NETCONF over TLS and provides
further details such as certificate fingerprint formats exposed to

network configuration systems.

8. Cipher Suites

Implementations MUST support TLS 1.2 [RFC5246] and are REQUIRED to
support the mandatory-to-implement cipher suite. Implementations MAY
implement additional TLS cipher suites that provide mutual

authentication [RFC5246] and confidentiality as required by NETCONF
[RFC6241]. Implementations SHOULD follow the recommendations given
in [I-D.ietf-uta-tls-bcp].

9. Security Considerations

NETCONF is used to access configuration and state information and to
modify configuration information, so the ability to access this

protocol should be limited to users and systems that are authorized

to view the NETCONF server’s configuration and state or to modify the
NETCONF server’s configuration.

Configuration or state data may include sensitive information, such

as usernames or security keys. So, NETCONF requires communications
channels that provide strong encryption for data privacy. This

document defines a NETCONF over TLS mapping that provides for support
of strong encryption and authentication. The security considerations

for TLS [RFC5246] and NETCONF [RFC6241] apply here as well.

NETCONF over TLS requires mutual authentication. Neither side should
establish a NETCONF over TLS connection with an unknown, unexpected,
or incorrect identity on the opposite side. Note that the decision

whether a certificate presented by the client is accepted can depend

on whether a trusted CA certificate is white listed (see Section 7).

If deployments make use of this option, it is recommended that the

white listed CA certificate is used only to issue certificates that

are used for accessing NETCONF servers. Should the CA certificate be
used to issue certificates for other purposes, then all certificates

created for other purposes will be accepted by a NETCONF server as
well, which is likely not suitable.

Badra, et al. Expires October 12, 2015 [Page 6]

Internet-Draft NETCONF over TLS April 2015

This document does not support third-party authentication (e.g.,
backend Authentication, Authorization, and Accounting (AAA) servers)
due to the fact that TLS does not specify this way of authentication
and that NETCONF depends on the transport protocol for the
authentication service. If third-party authentication is needed, the
SSH transport [RFC6242] can be used.

RFC 5539 assumes that the end-of-message (EOM) sequence, []>]]>,
cannot appear in any well-formed XML document, which turned out to be
mistaken. The EOM sequence can cause operational problems and open
space for attacks if sent deliberately in NETCONF messages. Itis
however believed that the associated threat is not very high. This
document still uses the EOM sequence for the initial <hello> message

to avoid incompatibility with existing implementations. When both

peers implement :base:1.1 capability, a proper framing protocol

(chunked framing mechanism; see Section 3) is used for the rest of

the NETCONF session, to avoid injection attacks.

10. IANA Considerations

Based on the previous version of this document, RFC 5539, IANA has
assigned a TCP port number (6513) in the "Registered Port Numbers"
range with the service name "netconf-tls". This port will be the

default port for NETCONF over TLS, as defined in Section 2. Below is
the registration template following the rules in [RFC6335].

Service Name: netconf-tls

Transport Protocol(s): TCP

Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: NETCONF over TLS
Reference: RFC XXXX

Port Number: 6513

[[CREF1: RFC Editor: Please replace XXXX above with the allocated RFC
number and remove this comment. --JS]]

11. Acknowledgements

The authors like to acknowledge Martin Bjorklund, Olivier Coupelon,
Mehmet Ersue, Stephen Farrell, Miao Fuyou, Ibrahim Hajjeh, David
Harrington, Sam Hartman, Alfred Hoenes, Simon Josefsson, Barry Leiba,
Tom Petch, Eric Rescorla, Dan Romascanu, Kent Watsen, Bert Wijnen,
Stefan Winter and the NETCONF mailing list members for their comments
on this document. Charlie Kaufman, Pasi Eronen, and Tim Polk

provided a thorough review of previous versions of this document.

Badra, et al. Expires October 12, 2015 [Page 7]

Internet-Draft NETCONF over TLS April 2015

Juergen Schoenwaelder was partly funded by Flamingo, a Network of
Excellence project (ICT-318488) supported by the European Commission
under its Seventh Framework Programme.

12. References
12.1. Normative References

[I-D.ietf-uta-tls-bcp]
Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of TLS and DTLS", draft-
ietf-uta-tls-bcp-09 (work in progress), February 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.

[RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
Bierman, "Network Configuration Protocol (NETCONF)", RFC
6241, June 2011.

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, June 2011.

[RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", BCP 165, RFC
6335, August 2011.

12.2. Informative References

Badra, et al. Expires October 12, 2015 [Page 8]

Internet-Draft NETCONF over TLS April 2015

[I-D.ietf-netconf-server-model]
Watsen, K. and J. Schoenwaelder, "NETCONF Server and
RESTCONF Server Configuration Models", draft-ietf-netconf-
server-model-06 (work in progress), February 2015.

[RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
Configuration Protocol over Secure SHell (SSH)", RFC 4742,
December 2006.

[RFC5539] Badra, M., "NETCONF over Transport Layer Security (TLS)",
RFC 5539, May 2009.

[RFC6353] Hardaker, W., "Transport Layer Security (TLS) Transport
Model for the Simple Network Management Protocol (SNMP)",
STD 78, RFC 6353, July 2011.

[RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
SNMP Configuration”, RFC 7407, December 2014.

Appendix A. Changes from RFC 5539

This section summarizes major changes between this document and RFC
5539.

0 Documented that NETCONF over TLS uses the new message framing if
both peers support the :base:1.1 capability.

o0 Removed redundant text that can be found in the TLS and NETCONF
specifications and restructured the text. Alignment with
[RFC6125].

0 Added a high-level description how NETCONF usernames are derived
from certificates.

o Removed the reference to BEEP.
Authors’ Addresses

Mohamad Badra
Zayed University

Email: mbadra@gmail.com

Badra, et al. Expires October 12, 2015 [Page 9]

Internet-Draft NETCONF over TLS

Alan Luchuk

SNMP Research, Inc.

3001 Kimberlin Heights Road
Knoxville, TN 37920

USA

Phone: +1 865 573 1434
Email: luchuk@snmp.com
URI: http://www.snmp.com/

Juergen Schoenwaelder
Jacobs University Bremen
Campus Ring 1

28759 Bremen

Germany

Phone: +49 421 200 3587

Email: j.schoenwaelder@jacobs-university.de
URI: http://www.jacobs-university.de/

Badra, et al. Expires October 12, 2015

April 2015

[Page 10]

Network Working Group T. Mizrahi

Internet Draft Y. Moses
Intended status: Experimental Technion, Israel Institute of Technology
Expires: April 2016 October 15, 2015

Time Capability in NETCONF
draft-mm-netconf-time-capability-09.txt

Abstract

This document defines a capability-based extension to the Network
Configuration Protocol (NETCONF) that allows time-triggered
configuration and management operations. This extension allows
NETCONF clients to invoke configuration updates according to
scheduled times, and allows NETCONF servers to attach timestamps to
the data they send to NETCONF clients.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 15, 2016.
Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents

Mizrahi, Moses Expires April 15, 2016 [Page 1]

Internet-Draft Time Capability in NETCONF October 2015

(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. INtrodUCtioN.coeeiiiiiee e 3
2. Conventions used in this document............ccccccovuvveeen. 3
2.1, KEY WOIdS.eevieiiiiiiieiiiiiieee e 3
2.2. Abbreviations...........cccceeeiiiiiiiiiii, 4
2.3. Terminology.........cccccvviiieiiiiiiiiiieeeee, 4
3. Using Time in NETCONF...........cccociiiiiiieeeeee e, 4
3.1. The Time Capability in a Nutshell......................... 4
3.2. Notifications and Cancellation Messages................... 6
3.3. Synchronization ASPEeCtS..........ccccovvuvveeerriineenen 8
3.4. Scheduled Time Format...........ccccuvveeeeeiieeinnnnns 9
3.5. Scheduling Tolerance...........ccccooiiiiiiiieeenennnn. 9
3.6. Near Future Scheduling vs. Far Future Scheduling......... 10
3.7. Time Interval Format..........ccccovviveeeiiiiieeennns 12
4. Time Capability........ccoceiiiii e, 13
4.1, OVEIVIEW..cooeiei e 13
4.2. DepeNndenCIes.......cccuuuuiieeeieeeeeee e 13
4.3. Capability Identifier............ccooviiiiieennnnnn. 13
4.4. New Operations...........ccccevvvvieeeeeeeeeeeesiiinnns 13
4.5. Modifications to Existing Operations..................... 14
4.5.1. Affected Operations..........cccoecuvveeerrniinnnen. 14
4.5.2. Processing Scheduled Operations..................... 15
4.6. Interactions with Other Capabilities..................... 15
5. sched-max-futures...........ccoceeeeiiiiiiiniiiieeee, 16
5.1. <scheduled-time> Example........cccccccccevvevnnvnnnnn. 16
5.2. <get-time> Example........ccccccvveeeriniiicinninnnnnnn. 17
5.3. Error Example.........occoceeiiiiiiiiiiniiieee 17
6. Security Considerations............ccccccvveeereeeeeennnnns 18
6.1. General Security Considerations............cccccceeen... 18
6.2. YANG Module Security Considerations...................... 19
7. IANA Considerations..........ccccovcuvveeeeiiiieene s 20
8. Acknowledgments...........ccccuvvieireriee e 20
9. References........cccovveccvvvieiieiie e 21
9.1. Normative References...........ccccooeeuvveveeennnnnnn. 21
9.2. Informative References.........cccccceeeiiiiinininnnen. 21
Appendix A. YANG Module for the Time Capability.................. 22

Mizrahi, Moses Expires April 15, 2016 [Page 2]

Internet-Draft Time Capability in NETCONF October 2015

1. Introduction

The Network Configuration Protocol (NETCONF) defined in [RFC6241]
provides mechanisms to install, manipulate, and delete the
configuration of network devices. NETCONF allows clients to configure
and monitor NETCONF servers using remote procedure calls (RPC).

NETCONF, as defined in [RFC6241], is asynchronous; when a client
invokes an RPC, it has no control over the time at which the RPC is
executed, nor does it have any feedback from the server about the
execution time.

Time-based configuration ([HotSDN], [TimeTR]) can be a useful tool
that enables an entire class of coordinated and scheduled
configuration procedures. Time-triggered configuration allows
coordinated network updates in multiple devices; a client can invoke
a coordinated configuration change by sending RPCs to multiple
servers with the same scheduled execution time. A client can also
invoke a time-based sequence of updates by sending n RPCs with n
different update times, T1, T2, ..., Tn, determining the order in

which the RPCs are executed.

This memo defines the :time capability in NETCONF. This extension
allows clients to determine the scheduled execution time of RPCs they
send. It also allows a server that receives an RPC to report its

actual execution time to the client.

The NETCONF time capability is intended for scheduling RPCs that
should be performed in the near future, allowing to coordinate
simultaneous configuration changes, or to specify an order of
configuration updates. Time-of-day-based policies and far-future
scheduling, e.g., [Cond], are outside the scope of this memo.

This memo is defined for experimental purposes, and will allow the
community to experiment with the NETCONF time capability. It is
expected that based on the lessons learned from this experience the
NETCONF working group will be able to consider whether to adopt the
time capability.

2. Conventions used in this document
2.1. Key words
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Mizrahi, Moses Expires April 15, 2016 [Page 3]

Internet-Draft Time Capability in NETCONF October 2015

2.2. Abbreviations
NETCONF Network Configuration Protocol
RPC Remote Procedure Call

2.3. Terminology

0 Capability [RFC6241]: A functionality that supplements the base
NETCONF specification.

0 Client [RFC6241]: Invokes protocol operations on a server. In
addition, a client can subscribe to receive notifications from a
server.

0 Execution time: The execution time of an RPC is defined as the
time at which a server completes the execution of an RPC.

0 Scheduled RPC: an RPC that is scheduled to be performed at a
predetermined time, which is included in the <rpc> message.

0 Scheduled time: The scheduled time of an RPC is the time at which
the RPC should be invoked. The scheduled time is determined by the
client, and enforced by the server.

0 Server [RFC6241]: Executes protocol operations invoked by a
client. In addition, a server can send notifications to a client.

3. Using Time in NETCONF
3.1. The Time Capability in a Nutshell
The :time capability provides two main functions:

0 Scheduling:
When a client sends an RPC to a server, the RPC message MAY
include the scheduled-time element, denoted by Ts in Figure 1. The
server then executes the RPC at the scheduled time Ts, and once
completed the server can respond with an RPC reply message.

0 Reporting:
When a client sends an RPC to a server, the RPC message MAY
include a get-time element (see Figure 2), requesting the server
to return the execution time of the RPC. In this case, after the
server performs the RPC it responds with an RPC reply that
includes the execution time, Te.

Mizrahi, Moses Expires April 15, 2016 [Page 4]

Internet-Draft Time Capability in NETCONF October 2015

RPC
executed \
V
Ts
server + ---->time
JANE
rpc/ \ rpc-reply
(Ts)/ \
/ V

client

Figure 1 Scheduled RPC

RPC
executed \
V
Te
server + ----> time
JAU
roc / \rpc-reply
(get-time)/ \ (Te)
/ V

client
Figure 2 Reporting the Execution Time of an RPC

Example 1. A client needs to trigger a commit at n servers, so that

the n servers perform the commit as close as possible to

simultaneously. Without the time capability, the client sends a

sequence of n commit messages, and thus each server performs the
commit at a different time. By using the time capability, the client

can send commit messages that are scheduled to take place at a chosen
time Ts, for example 5 seconds in the future, causing the servers to
invoke the commit as close as possible to time Ts.

Example 2. In many applications it is desirable to monitor events or
collect statistics regarding a common time reference. A client can
send a set of get-config messages that is scheduled to be executed at
multiple servers at the same time, providing a simultaneous system-
wide view of the state of the servers. Moreover, a client can use the
get-time element in its get-config messages, providing a time
reference to the sampled element.

Mizrahi, Moses Expires April 15, 2016 [Page 5]

Internet-Draft Time Capability in NETCONF October 2015

The scenarios of Figure 1 and Figure 2 imply that a third scenario

can also be supported (Figure 3), where the client invokes an RPC
that includes a scheduled time, Ts, as well as the get-time element.
This allows the client to receive feedback about the actual execution
time, Te. Ideally, Ts=Te. However, the server may execute the RPC at
a slightly different time than Ts, for example if the server is tied

up with other tasks at Ts.

RPC
executed \
V
Ts Te
server +-+ ---->time
N \
rpc |/ \ rpc-reply
(Ts + get-time)/ \ (Te)
/ V

client

Figure 3 Scheduling and Reporting
3.2. Notifications and Cancellation Messages
Notifications

As illustrated in Figure 1, after a scheduled RPC is executed the
server sends an rpc-reply. The rpc-reply may arrive a long period of
time after the RPC was sent by the client, leaving the client without
a clear indication of whether the RPC was received.

This document defines a new notification, the netconf-scheduled-
message notification, which provides an immediate acknowledgement of
the scheduled RPC.

The <netconf-scheduled-message> is sent to the client if it is
subscribed to the NETCONF noatifications [RFC6470]; as illustrated in
Figure 4, when the server receives a scheduled RPC it sends a
notification to the client.

The <netconf-scheduled-message> notification includes a <schedule-id>
element. The <schedule-id> is a unique identifier that the server

assigns to every scheduled RPC it receives. Thus, a client can keep
track of all the pending scheduled RPCs; a client can uniquely

identify a scheduled RPC by the tuple {server, schedule-id}.

Mizrahi, Moses Expires April 15, 2016 [Page 6]

Internet-Draft Time Capability in NETCONF October 2015

RPC
executed \
V
Ts
server + ----> time
NN\ \

rpc/ \notifi- \ rpc-reply
(Ts)/ \cation \
/ V V
client

Figure 4 Scheduled RPC with Notification
Cancellation Messages

A client can cancel a scheduled RPC by sending a <cancel-schedule>
RPC. The <cancel-schedule> RPC includes the <schedule-id> of the
scheduled RPC that needs to be cancelled.

The <cancel-schedule> RPC, defined in this document, can be used to
perform a coordinated all-or-none procedure, where either all the
servers perform the operation on schedule, or the operation is

aborted.

Example 3. A client sends scheduled RPC messages to server 1 and
server 2, both scheduled to be performed at time Ts. Server 1 sends a
notification indicating that it has successfully scheduled the RPC,

while server 2 replies with an unknown-element error [RFC6241] that
indicates that it does not support the time capability. The client

sends a <cancel-schedule> RPC to server 1, and receives an rpc-reply.
The message exchange between the client and server 1 in this example
is illustrated in Figure 5.

Mizrahi, Moses Expires April 15, 2016 [Page 7]

Internet-Draft Time Capability in NETCONF October 2015

RPC not
executed \
V
Ts
server +--- ----> time
AR N \

rpc/ \notifi- /cancel- \rpc-reply
(Ts)/ \cation /schedule \
[V / V

client

Figure 5 Cancellation Message

A cancel-schedule message MUST NOT include the scheduled-time
parameter. A server that receives a cancel-schedule should try to
cancel the schedule as soon as possible. If the server is unable to
cancel the scheduled RPC, for example because it has already been
executed, it should respond with an rpc-error [RFC6241], in which the
error-type is 'protocol’, and the error-tag is 'operation-failed’.

3.3. Synchronization Aspects

The time capability defined in this document requires clients and
servers to maintain clocks. It is assumed that clocks are
synchronized by a method that is outside the scope of this document,
e.g., [NTP] or [[EEE1588].

This document does not define any requirements pertaining to the
degree of accuracy of performing scheduled RPCs. Note that two
factors affect how accurately the server can perform a scheduled RPC;
one factor is the accuracy of the clock synchronization method used

to synchronize the clients and servers, and the second factor is the
server’s ability to execute real-time configuration changes, which
greatly depends on how it is implemented. Typical networking devices
are implemented by a combination of hardware and software. While the
execution time of a hardware module can typically be predicted with a
high level of accuracy, the execution time of a software module may
be variable and hard to predict. A configuration update would

typically require the server’s software to be involved, thus

affecting how accurately the RPC can be scheduled.

Another important aspect of synchronization, is monitoring; a client
should be able to check whether a server is synchronized to a

reference time source. Typical synchronization protocols, such as the
Network Time Protocol [NTP] provide the means ([RFC5907], [RFC7317])

Mizrahi, Moses Expires April 15, 2016 [Page 8]

Internet-Draft Time Capability in NETCONF October 2015

to verify that a clock is synchronized to a time reference by

querying its Management Information Base (MIB). The get-time feature
defined in this document (see Figure 2) allows a client to obtain a
rough estimate of the time offset between the client’s clock and the
server’s clock.

Since servers do not perform configuration changes instantaneously,

the processing time of an RPC should not be overlooked. The scheduled
time always refers to the start time of the RPC, and the execution

time always refers to its completion time.

3.4. Scheduled Time Format

The scheduled time and execution time fields in RPC messages use a
common time format field.

The time format used in this document is the date-and-time format,
that is defined in Section 5.6 of [RFC3339] and in Section 3 of
[RFC6991].

leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";

}

leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";

}

3.5. Scheduling Tolerance

When a client sends an RPC that is scheduled to Ts, the server MUST
verify that the value Ts is not too far in the past or in the future.

As illustrated in Figure 6, the server verifies that Ts is within the
scheduling tolerance range.

Mizrahi, Moses Expires April 15, 2016 [Page 9]

Internet-Draft Time Capability in NETCONF October 2015

RPC
received \
V
Ts
----- + B + > time
< > < >

sched-max-past sched-max-future

< >
scheduling tolerance

Figure 6 Scheduling Tolerance

The scheduling tolerance is determined by two parameters,
sched-max-future and sched-max-past. These two parameters use the
time-interval format (Section 3.7.), and their default value is 15
seconds.

If the scheduled time, Ts is within the scheduling tolerance range,
the scheduled RPC is performed; if Ts occurs in the past and within
the scheduling tolerance, the server performs the RPC as soon as
possible, whereas if Ts is a future time, the server performs the RPC
atTs.

If Ts is not within the scheduling tolerance range, the scheduled RPC
is discarded, and the server responds with an error message [RFC6241]
with a bad-element error-tag. An example is provided in Section 5.3.

3.6. Near Future Scheduling vs. Far Future Scheduling

The scheduling bound defined by sched-max-future guarantees that
every scheduled RPC is restricted to a near future scheduling time.

The scheduling mechanism defined in this document is intended for
near future scheduling, on the order of seconds. Far future
scheduling is outside the scope of this document.

Example 1 is a typical example of using near future scheduling; the
goal in the example is to perform the RPC at multiple servers at the
same time, and therefore it is best to schedule the RPC to be
performed a few seconds in the future.

Mizrahi, Moses Expires April 15, 2016 [Page 10]

Internet-Draft Time Capability in NETCONF October 2015

The Challenges of Far Future Scheduling

When an RPC is scheduled to be performed at a far-future time, during
the long period between the time at which the RPC is sent and the
time at which it is scheduled to be executed the following erroneous
events may occur:

0 The server may restart.

0 The client’s authorization level may be changed.
0 The client may restart and send a conflicting RPC.
o A different client may send a conflicting RPC.

In these cases if the server performs the scheduled operation it may
perform an action that is inconsistent with the current network
policy, or inconsistent with the currently active clients.

Near future scheduling guarantees that external events such as the
examples above have a low probability of occurring during the sched-
max-future period, and even when they do, the period of inconsistency
is limited to sched-max-future, which is a short period of time.

The Tradeoff in Setting the sched-max-future Value

The sched-max-future parameter should be configured to a value that
is high enough to allow the client to:

1. Send the scheduled RPC, potentially to multiple servers.

2. Receive notifications or rpc-error messages from the server(s), or
wait for a timeout and decide that if no response has arrived then
something is wrong.

3. If necessary, send a cancellation message, potentially to multiple
servers.

On the other hand, sched-max-future should be configured to a value
that is low enough to allow a low probability of the erroneous events
above, typically on the order of a few seconds. Note that even if
sched-max-future is configured to a low value, it is still possible

(with a low probability) that an erroneous event will occur. However,
this short potentially hazardous period is not significantly worse

than in conventional (unscheduled) RPCs, as even a conventional RPC
may in some cases be executed a few seconds after it was sent by the
client.

Mizrahi, Moses Expires April 15, 2016 [Page 11]

Internet-Draft Time Capability in NETCONF October 2015

The Default Value of sched-max-future

The default value of sched-max-future is defined to be 15 seconds.
This duration is long enough to allow the scheduled RPC to be sent by
the client, potentially to multiple servers, and in some cases to

send a cancellation message, as described in Section 3.2. On the
other hand, the 15 second duration yields a very low probability of a
reboot or a permission change.

3.7. Time Interval Format

The time-interval format is used for representing the length of a

time interval, and is based on the date-and-time format. It is used

for representing the scheduling tolerance parameters, as described in
the previous section.

While the date-and-time type uniquely represents a specific point in
time, the time-interval type defined below can be used to represent
the length of a time interval without specifying a specific date.

The time-interval type is defined as follows:

typedef time-interval {

type string {
pattern \d{2}:\d{2}:\d{2}(\.\d+)?’;
}

description
"Defines a time interval, up to 24 hours.
The format is specified as HH:mm:ss.f,
consisting of two digits for hours,
two digits for minutes, two digits
for seconds, and zero or more digits
representing second fractions.";

}

Example

The sched-max-future parameter is defined (Appendix A) as a
time-interval, as follows:

leaf sched-max-future {
type time-interval;
default 00:00:15.0;

}

Mizrahi, Moses Expires April 15, 2016 [Page 12]

Internet-Draft Time Capability in NETCONF October 2015

The default value specified for sched-max-future is 0 hours, 0
minutes, and 15 seconds.

4. Time Capability

The structure of this section is as defined in Appendix D of
[RFC6241].

4.1. Overview

A server that supports the time capability can perform time-triggered
operations as defined in this document.

A server implementing the :time capability:

0 MUST support the ability to receive <rpc> messages that include a
time element, and perform a time-triggered operation accordingly.

0 MUST support the ability to include a time element in the <rpc-
reply> messages that it transmits.

4.2. Dependencies

With-defaults Capability
The time capability YANG module (Appendix A.) uses default values,
and thus it is assumed that the with-defaults capability [RFC6243] is
supported.

4.3. Capability Identifier

The :time capability is identified by the following capability string
(to be assigned by IANA - see Section 0):

urn:ietf:params:netconf:capability:time:1.0
4.4. New Operations
<cancel-schedule>

The cancel-schedule RPC is used for cancelling an RPC that was
previously scheduled.

Mizrahi, Moses Expires April 15, 2016 [Page 13]

Internet-Draft Time Capability in NETCONF October 2015

A cancel-schedule RPC MUST include the <cancelled-message-id>
element, which specifies the message ID of the scheduled RPC that
needs to be cancelled.

A cancel-schedule RPC MAY include the <get-time> element. In this
case the rpc-reply includes the <execution-time> element, specifying
the time at which the scheduled RPC was cancelled.

4.5

4.5

. Modifications to Existing Operations

.1. Affected Operations

The :time capability defined in this memo can be applied to any of
the following operations:

(o]

(o]

(o]

(o]

get-config
get
copy-config
edit-config
delete-config
lock

unlock

commit

Three new elements are added to each of these operations:

(o]

<scheduled-time>

This element is added to the input of each operation, indicating

the time at which the server is scheduled to invoke the operation.

Every <rpc> message MAY include the <scheduled-time> element. A
server that supports the :time capability and receives an <rpc>

message with a <scheduled-time> element MUST perform the operation
as close as possible to the scheduled time.

The <scheduled-time> element uses the date-and-time format
(Section 3.4.).

Mizrahi, Moses Expires April 15, 2016 [Page 14]

Internet-Draft Time Capability in NETCONF October 2015

0 <get-time>
This element is added to the input of each operation. An <rpc>
message MAY include a <get-time> element, indicating that the
server MUST include an <execution-time> in its corresponding <rpc-
reply>.

0 <execution-time>
This element is added to the output of each operation, indicating
the time at which the server completed the operation. An <rpc-
reply> MAY include the <execution-time> element. A server that
supports the :time capability and receives an operation with the
<get-time> element MUST include the execution time in its
response.

The execution-time element uses the date-and-time format
(Section 3.4.).

4.5.2. Processing Scheduled Operations

A server that receives a scheduled RPC MUST start executing the RPC
as close as possible to its scheduled execution time.

If a session between a client and a server is terminated, the server
MUST cancel all pending scheduled RPCs that were received in this
session.

Scheduled RPCs are processed serially, in an order that is defined by
their scheduled times. Thus, the server sends <rpc-reply> messages to
scheduled RPCs according to the order of their corresponding
schedules. Note that this is a modification to the behavior defined

in [RFC6241], which states that replies are sent in the order the
requests were received. Interoperability with [RFC6241] is guaranteed
by the NETCONF capability exchange; a server that does not support
the :time capability responds to RPCs in the order the requestes were
received. A server that supports the :time capability replies to
conventional (non-scheduled) RPCs in the order they were received,
and replies to scheduled RPCs in the order of their scheduled times.

If a server receives two or more RPCs that are scheduled to be
performed at the same time, the server executes the RPCs serially in
an arbitrary order.

4.6. Interactions with Other Capabilities

Confirmed Commit Capability

Mizrahi, Moses Expires April 15, 2016 [Page 15]

Internet-Draft Time Capability in NETCONF October 2015

The confirmed commit capability is defined in Section 8.4 of
[RFC6241]. According to [RFC6241], a confirmed <commit> operation
MUST be reverted if a confirming commit is not issued within the
timeout period (which by default is 600 seconds).

When the time capability is supported, and a confirmed <commit>
operation is used with the <scheduled-time> element, the confirmation
timeout MUST be counted from the scheduled time, i.e., the client
begins the timeout measurement starting at the scheduled time.

5. Examples
5.1. <scheduled-time> Example

The following example extends the example presented in Section 7.2 of
[RFC6241] by adding the time capability. In this example, the
<scheduled-time> element is used to specify the scheduled execution
time of the configuration update (as shown in Figure 1).

<rpc message-id="101"
xmins="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<scheduled-time
xmins="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
2015-10-21T04:29:00.235Z
</scheduled-time>
<config>
<top xmIns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>1500</mtu>
<finterface>
</top>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

Mizrahi, Moses Expires April 15, 2016 [Page 16]

Internet-Draft Time Capability in NETCONF October 2015

</rpc-reply>

5.2. <get-time> Example

The following example is similar to the one presented in Section 5.1.
, except that in this example the client includes a <get-time>
element in its RPC, and the server consequently responds with an
<execution-time> element (as shown in Figure 2).

<rpc message-id="101"
xmins="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<get-time
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
</get-time>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>1500</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
<execution-time>
2015-10-21T04:29:00.235Z
</execution-time>
</rpc-reply>

5.3. Error Example
The following example presents a scenario in which the scheduled-time

is not within the scheduling tolerance, i.e., it is too far in the
past, and therefore an rpc-error is returned.

Mizrahi, Moses Expires April 15, 2016 [Page 17]

Internet-Draft Time Capability in NETCONF October 2015

<rpc message-id="101"
xmins="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<scheduled-time
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
2010-10-21T04:29:00.235Z
</scheduled-time>
<config>
<top xmIns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>1500</mtu>
<finterface>
</top>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>application</error-type>
<error-tag>bad-element</error-tag>
<error-severity>error</error-severity>
<error-info>
<bad-element>scheduled-time</bad-element>
</error-info>
</rpc-error>
</rpc-reply>

6. Security Considerations
6.1. General Security Considerations

The security considerations of the NETCONF protocol in general are
discussed in [RFC6241].

The usage of the time capability defined in this document can assist
an attacker in gathering information about the system, such as the

Mizrahi, Moses Expires April 15, 2016 [Page 18]

Internet-Draft Time Capability in NETCONF October 2015

exact time of future configuration changes. Moreover, the time
elements can potentially allow an attacker to learn information about
the system’s performance. Furthermore, an attacker that sends
malicious RPC messages can use the time capability to amplify her
attack; for example, by sending multiple RPC messages with the same
scheduled time. It is important to note that the security measures
described in [RFC6241] can prevent these vulnerabilities.

The time capability relies on an underlying time synchronization
protocol. Thus, by attacking the time protocol an attack can
potentially compromise NETCONF when using the time capability. A
detailed discussion about the threats against time protocols and how
to mitigate them is presented in [TimeSec].

The time capability can allow an attacker to attack a NETCONF server
by sending malicious RPCs that are scheduled to take place in the
future. For example, an attacker can send multiple scheduled RPCs

that are scheduled to be performed at the same time. Another possible
attack is to send a large number of scheduled RPCs to a NETCONF
server, potentially causing the server’s buffers to overflow. These

attacks can be mitigated by a carefully designed NETCONF server; when
a server receives a scheduled RPC that exceeds its currently

available resources, it should reply with an rpc-error, and discard

the scheduled RPC.

Note that if an attacker has been detected and revoked, its future
scheduled RPCs are not executed; as defined in Section 4.5.2. , once
the session with the attacker has been terminated, the corresponding
scheduled RPCs are discarded.

6.2. YANG Module Security Considerations
This memo defines a new YANG module, as specified in Appendix A.

The YANG module defined in this memo is designed to be accessed via
the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
secure transport layer and the mandatory to implement secure
transport is SSH [RFC6242]. The NETCONF access control model
[RFC6536] provides the means to restrict access for particular
NETCONF users to a pre-configured subset of all available NETCONF
protocol operations and content.

This YANG module defines <sched-max-future> and <sched-max-past>,
which are writable/creatable/deletable. These data nodes may be
considered sensitive or vulnerable in some network environments. An
attacker may attempt to maliciously configure these parameters to a

low value, thereby causing all scheduled RPCs to be discarded. For

Mizrahi, Moses Expires April 15, 2016 [Page 19]

Internet-Draft Time Capability in NETCONF October 2015

instance, if a client expects <sched-max-future> to be 15 seconds,

but in practice it is maliciously configured to 1 second, then a
legitimate scheduled RPC that is scheduled to be performed 5 seconds
in the future will be discarded by the server.

This YANG module defines the <cancel-schedule> RPC. This RPC may be
considered sensitive or vulnerable in some network environments.
Since the value of the <schedule-id> is known to all the clients that

are subscribed to notifications from the server, the <cancel-

schedule> RPC may be used maliciously to attack servers by canceling
their pending RPCs. This attack is addressed in two layers: (i)

security at the transport layer, limiting the attack only to clients

that have successfully initiated a secure session with the server,

and (ii) the authorization level required to cancel an RPC should be

the same as the level required to schedule it, limiting the attack

only to attackers with an authorization level that is equal to or

higher than that of the client that initiated the scheduled RPC.

7. IANA Considerations
This document proposes to register the following capability
identifier URN in the 'Network Configuration Protocol (NETCONF)
Capability URNS' registry:
urn:ietf:params:netconf:capability:time:1.0
This document proposes to register the following XML namespace URN
in the 'IETF XML registry’, following the format defined in
[RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-netconf-time

This document proposes to register a module name in the 'YANG Module
Names’ registry, defined in [RFC6020].

name: ietf-netconf-time
prefix: nct
namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-time
RFC: TBD
8. Acknowledgments
The authors gratefully acknowledge Joe Marcus Clarke, Andy Bierman,

Balazs Lengyel, Jonathan Hansford, John Heasley, Robert Sparks, Al

Mizrahi, Moses Expires April 15, 2016 [Page 20]

Internet-Draft Time Capability in NETCONF October 2015
Morton, Olafur Gudmundsson, Juergen Schoenwaelder, Joel Jaeggli,
Alon Schneider and Eylon Egozi for their insightful comments.

This work was supported in part by Israel Science Foundation grant
ISF 1520/11.

This document was prepared using 2-Word-v2.0.template.dot.
9. References
9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
Internet: Timestamps", RFC 3339, July 2002.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC
3688, January 2004.

[RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
July 2013.

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,
Ed., Bierman, A., Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, June 2011.

[RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
Base Notifications", RFC 6470, February 2012.

9.2. Informative References
[RFC6020] Bijorklund, M., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC
6020, October 2010.

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, June 2011.

[RFC6243] Bierman, A., Lengyel, B., "With-defaults Capability
for NETCONF", RFC 6243, June 2011.

[RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration

Protocol (NETCONF) Access Control Model", RFC 6536,
March 2012.

Mizrahi, Moses Expires April 15, 2016 [Page 21]

Internet-Draft Time Capability in NETCONF October 2015

[RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
System Management", RFC 7317, August 2014.

[Cond] Watsen, K., "Conditional Enablement of Configuration
Nodes", draft-kwatsen-conditional-enablement-00
(expired), 2013.

[HotSDN] Mizrahi, T., Moses, Y., "Time-based Updates in
Software Defined Networks", the second workshop on hot
topics in software defined networks (HotSDN), 2013.

[[EEE1588] IEEE TC 9 Instrumentation and Measurement Society,
"1588 IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems Version 2", IEEE Standard, 2008.

[NTP] Mills, D., Martin, J., Burbank, J., Kasch, W.,

"Network Time Protocol Version 4: Protocol and
Algorithms Specification”, RFC 5905, June 2010.
[RFC5907] Gerstung, H., Elliott, C., Haberman, B., "Definitions
of Managed Obijects for Network Time Protocol Version 4

(NTPv4", RFC 5907, June 2010.

[TimeSec] Mizrahi, T., "Security Requirements of Time Protocols
in Packet Switched Networks", RFC 7384, October 2014.

[TimeTR] Mizrahi, T., Moses, Y., "Time-based Updates in
OpenFlow: A Proposed Extension to the OpenFlow
Protocol", Technion - Israel Institute of Technology,
technical report, CCIT Report #835, EE Pub No. 1792,

2013.
http://tx.technion.ac.il/"dew/OFTimeTR.pdf

Appendix A. YANG Module for the Time Capability
This section is normative.
<CODE BEGINS> file "ietf-netconf-time@2015-09-01.yang"
module ietf-netconf-time {
namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-time";

prefix nct;

Mizrahi, Moses Expires April 15, 2016 [Page 22]

Internet-Draft Time Capability in NETCONF October 2015

import ietf-netconf { prefix nc; }
import ietf-yang-types { prefix yang; }
import ietf-netconf-monitoring { prefix ncm; }

organization
"IETF";

contact
"Editor: Tal Mizrahi
<dew@tx.technion.ac.il>
Editor: Yoram Moses
<moses@ee.technion.ac.il>";

description
"This module defines a capability-based extension to the
Network Configuration Protocol (NETCONF) that allows
time-triggered configuration and management operations.
This extension allows NETCONF clients to invoke configuration
updates according to scheduled times, and allows NETCONF
servers to attach timestamps to the data they send to NETCONF
clients.

Copyright (c) 2015 IETF Trust and the persons identified as
the document authors. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject

to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).";

revision 2015-09-01 {
description
"Initial version.";
reference
"draft-mm-netconf-time-capability:
Time Capability in NETCONF";
}

typedef time-interval {
type string {

Mizrahi, Moses Expires April 15, 2016 [Page 23]

Internet-Draft Time Capability in NETCONF October 2015

pattern \d{2}:\d{2}:\d{2}(\.\d+)?’;

description
"Defines a time interval, up to 24 hours.
The format is specified as HH:mm:ss.f,
consisting of two digits for hours,
two digits for minutes, two digits
for seconds, and zero or more digits
representing second fractions.";

grouping scheduling-tolerance-parameters {
leaf sched-max-future {

type time-interval;

default 00:00:15.0;

description
"When the scheduled time is in the future, i.e., greater
than the present time, this leaf defines the maximal
difference between the scheduled time
and the present time that the server is willing to
accept. If the difference exceeds this number, the
server responds with an error.";

}

leaf sched-max-past {

type time-interval;

default 00:00:15.0;

description
"When the scheduled time is in the past, i.e., less
than the present time, this leaf defines the maximal
difference between the present time
and the scheduled time that the server is willing to
accept. If the difference exceeds this number, the
server responds with an error.";

}

description
"Contains the parameters of the scheduling tolerance.";

}

Mizrahi, Moses Expires April 15, 2016 [Page 24]

Internet-Draft Time Capability in NETCONF October 2015

/I extending the get-config operation
augment /nc:get-config/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";
}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <get-config>.";

}

augment /nc:get-config/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";
}

description
"Adds the time element to <get-config>.";

}

augment /nc:get/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";

}

leaf get-time {
type empty;,

Mizrahi, Moses Expires April 15, 2016 [Page 25]

Internet-Draft Time Capability in NETCONF October 2015

description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <get>.";

}

augment /nc:get/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";
}

description
"Adds the time element to <get>.";

}

augment /nc:copy-config/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";
}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <copy-config>.";

}

augment /nc:copy-config/nc:output {
leaf execution-time {
type yang:date-and-time;

Mizrahi, Moses Expires April 15, 2016 [Page 26]

Internet-Draft Time Capability in NETCONF October 2015

description
"The time at which the RPC was executed.";
}

description
"Adds the time element to <copy-config>.";

}

augment /nc:edit-config/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";
}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <edit-config>.";

}

augment /nc:edit-config/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";
}

description
"Adds the time element to <edit-config>.";

}

augment /nc:delete-config/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description

Mizrahi, Moses Expires April 15, 2016 [Page 27]

Internet-Draft Time Capability in NETCONF October 2015

"The time at which the RPC is scheduled to be performed.";
}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <delete-config>.";

}

augment /nc:delete-config/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";
}

description
"Adds the time element to <delete-config>.";

}

augment /nc:lock/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";
}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";
}

description
"Adds the time element to <lock>.";

}

Mizrahi, Moses Expires April 15, 2016 [Page 28]

Internet-Draft Time Capability in NETCONF October 2015

augment /nc:lock/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";

}

description
"Adds the time element to <lock>.";

}

augment /nc:unlock/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";

}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";
}

description
"Adds the time element to <unlock>.";

}

augment /nc:unlock/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";

}

description
"Adds the time element to <unlock>.";

}

Mizrahi, Moses Expires April 15, 2016 [Page 29]

Internet-Draft Time Capability in NETCONF October 2015

augment /nc:commit/nc:input {
leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.";

}

leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include the
execution-time.";

}

description
"Adds the time element to <commit>.";

}

augment /nc:commit/nc:output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed.";

}

description
"Adds the time element to <commit>.";

}

augment /ncm:netconf-state {
container scheduling-tolerance {
uses scheduling-tolerance-parameters;
description
"The scheduling tolerance when the time capability
is enabled.";
}
description
"The scheduling tolerance of the server.";

}

rpc cancel-schedule {

Mizrahi, Moses Expires April 15, 2016 [Page 30]

Internet-Draft Time Capability in NETCONF October 2015

description
"Cancels a scheduled message.";
reference
"draft-mm-netconf-time-capability:
Time Capability in NETCONF";

input {
leaf cancelled-message-id {
type string;
description
"The ID of the message to be cancelled.";
}
leaf get-time {
type empty;
description
"Indicates that the rpc-reply should include
the execution-time.";

}
}
output {
leaf execution-time {
type yang:date-and-time;
description
"The time at which the RPC was executed."”;
}
}
}

notification netconf-scheduled-message {
leaf schedule-id {
type string;
description
"The ID of the scheduled message.";

}

leaf scheduled-time {
type yang:date-and-time;
description
"The time at which the RPC is scheduled to be performed.”;

}

Mizrahi, Moses Expires April 15, 2016 [Page 31]

Internet-Draft Time Capability in NETCONF October 2015

description
"Indicates that a scheduled message was received.";
reference
"draft-mm-netconf-time-capability:
Time Capability in NETCONF";
}

}
<CODE ENDS>

Authors’ Addresses

Tal Mizrahi

Department of Electrical Engineering
Technion - Israel Institute of Technology
Technion City, Haifa, 32000, Israel

Email: dew@tx.technion.ac.il

Yoram Moses

Department of Electrical Engineering
Technion - Israel Institute of Technology
Technion City, Haifa, 32000, Israel

Email: moses@ee.technion.ac.il

Mizrahi, Moses Expires April 15, 2016 [Page 32]

NETCONF Working Group R. Varga
Internet-Draft Pantheon Technologies SRO
Intended status: Standards Track March 3, 2014
Expires: September 02, 2014

Efficient XML Interchange Capability for NETCONF
draft-varga-netconf-exi-capability-02

Abstract

The Network Configuration Protocol (NETCONF) provides mechanisms to
install, manipulate, and delete the configuration of network devices

via exchange of XML messages in textual representation. Efficient

XML Interchange (EXI) is a W3C-recommended binary representation of
XML Information Set, which is more efficient from both CPU and
bandwidth utilization perspective. This document defines a
capability-based extension to the NETCONF protocol that allows peers

to agree to exchange protocol messages using EXI encoding.

Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 02, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

Varga Expires September 02, 2014 [Page 1]

Internet-Draft EXI Capability March 2014

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction L. 2
2. Terminology 3
3. EXICapability 3
3.1 Overview 3
3.2. Dependencies 3
3.3. Capability Identifier 3
3.4. Dynamic Schema-informed Encoding Negotiation 4
3.5. New Mandatory Operations 5
351 <start-exi> 5
352, <stop-exi>............. . 8
3.6. New Optional Operations 8
3.6.1. <enable-schema-encoding>............... 8
3.6.2. <disable-schema-encoding> 9
4. YANG module for <start-exi> and <stop-exi> Operations 9
5. IANA considerations 14
6. Security Considerations 14
7. Acknowledgements....................... 14
8. Normative References 14
Authors Address 14

1. Introduction

The NETCONF protocol [RFC6241] is defined in terms of two peers,

client and server, exchanging XML messages in an RPC pattern. These
messages are encoded as XML text documents, which makes the exchange
easily understandable by human operators by simply observing them on

the wire. Unfortunately, this feature takes its toll on both

computation and network resources, as the representation contains
redundant information and verbose names.

Efficient XML Interchange [W3C.REC-exi-20110310] is a W3C
Recommendation which defines a more efficient way of encoding XML
Information Set than the usual text representation. This is achieved
by a combination of reduced verbosity, binary encoding and,
optionally, pruning of non-essential information like comments.

It seems advantageous to allow clients and servers participating on a
NETCONF session to sacrifice human readability to increase processing
efficiency, especially in environments with high transactional

activity and/or limited computing resources.

Varga Expires September 02, 2014 [Page 2]

Internet-Draft EXI Capability March 2014

2. Terminology
This document uses the following terms defined in [RFC6241]:
0 capability
o client
0 message
0 protocol operation
0 remote procedure call
0 server

3. EXI Capability

3.1. Overview
The :exi capability indicates that the peer supports EXI message
encoding and is willing to use it. The capability has no effect on
data being handled by the NETCONF protocol, nor does it affect
protocol message exchanges.

3.2. Dependencies
EXI-encoded documents are binary data, this capability may only be
used when the underlying transport is 8-bit clean and preserves
message boundaries in face of arbitrary binary data. Notably this
requires use of Chunked Framing mechanism as described in [RFC6242]

when used with SSH transport.

The optional Dynamic Schema-informed Encoding Negotiation mechanism
relies on NETCONF Monitoring as defined in [RFC6022].

3.3. Capability Identifier

The EXI capability is identified by the following capability string:

urn:ietf:params:netconf:capability:exi:1.0

The identifier MAY have a the following parameters:

compression: This indicates that the sender is willing to perform EXI
compression. The parameter MUST contain a positive integral
value, which indicates maximum compression block size which the
sender can process.

schemas: This indicates that the sender can use schema-informed

grammars for EXI encoding. The parameter MUST contain a value,
which has to be one of "builtin", "base:1.1" or "dynamic".

Varga Expires September 02, 2014 [Page 3]

Internet-Draft EXI Capability March 2014

builtin Indicates the ability to use the XML schema built into the
EXI specification.

base:1.1 Superset of "builtin”, indicates that the sender
additionally supports schema-informed EXI encoding, based on
netconf.xsd schema published in [RFC6241].

dynamic Superset of "base:1.1", indicates that the sender
additionally supports dynamic schema-informed encoding
negotiation outlined below.

Examples:
urn:ietf:params:netconf:capability:exi:1.0?compression=1000000
urn:ietf:params:netconf;capability:exi:1.0?schemas=builtin
urn:ietf:params:netconf:capability:exi:1.0?schemas=base:1.1

urn:ietf:params:netconf:capability:exi:1.0?compression=20000&schem
as=builtin

urn:ietf:params:netconf:capability:exi:1.0?schemas=dynamic
3.4. Dynamic Schema-informed Encoding Negotiation

The core of this extension relies on shared knowledge between the
server and the client where schema-informed encoding is concerned.
This limits the encoding efficiency as the actual data transferred

over the session is encoded using the equivalent of the builtin
schema. Alleviating this limitation requires a mechanism for
discovering data schemas and a protocol for synchronizing their
activation.

The base schema discovery mechanism is already present in [RFC6022].
This document extends the /netconf-state/schemas/schema subtree with
a new leaf, exi-useable, which indicates whether the server supports

the use of that particular schema in the EXI schema-informed encoding
process.

The negotiation of use of a particular schema for encoding has

multiple aspects. First and foremost is the concern of constrained
environments, which may have limited resources and thus their ability

to dedicate them to improving encoding efficiency may change over
lifetime of a NETCONF session. The second issue comes from the need
to synchronize the values used in the "schema" EXI header field.

Both end of the session need to map names to the same schemas,
otherwise the decoding process will not succeed. This name is

carried verbatim in the stream, so it should be as concise as

possible.

Varga Expires September 02, 2014 [Page 4]

Internet-Draft EXI Capability March 2014

When the peers have both indicated support for Dynamic Schema-
informed Encoding, encoding starts in base:1.1 mode. The client then
gueries the server for the list of schemas, looking for schemas which
have the exi-useable leaf set to true. It then selects the schemas

it can use in EXI encoding process, potentially requesting them from
the server. Finally it prioritizes them and sends a <enable-schema-
encoding> request for each of them. Once the server has assigned a
EXI schema-id and communicated it back the the client, both parties
can use this schema in EXI encoding. The client can request the end
of use of a particular schema via the <disable-schema-encoding> RPC,
which the server SHOULD NOT fail.

3.5. New Mandatory Operations
3.5.1. <start-exi>

Description: The <start-exi> operation requests that the message
encoding be switched to EXI. The operation is invoked by the
client and validated by the server. If the server finds the
parameters acceptable, it will issue a positive response in the
current session encoding. It MUST encode all subsequent messages
using EXI encoding with the supplied parameters. It will also
expect all incoming messages to be EXI-encoded. The client MUST
NOT send any messages to the server between the time is sends this
request and the time it receives a response. Once it receives a
positive reply, it MUST encode all subsequent messages using the
EXI encoding with the parameters supplied in the RPC. If the
operation fails, the session message encoding remains unchanged.

Parameters:
alignment: Requested EXI alignment. If this parameter is not
present, bit-packed is assumed. The following values are
valid:
bit-packed: Set EXI alignment to bit-packed.
byte-aligned: Set EXI alignment to byte-aligned.

pre-compression: Set EXI alignment to pre-compression.

compressed: Do not specify EXI alignment, but perform EXI
compression instead.

fidelity: Requested EXI fidelity options. If this parameter is
not present or empty, all fidelity options are disabled. The

Varga Expires September 02, 2014 [Page 5]

Internet-Draft EXI Capability March 2014
following items may be specified:
<comments/>: Preserve.comments EXI Fidelity option
<dtd/>: Preserve.dtd EXI Fidelity option
<lexical-values/>: Preserve.lexicalValues EXI Fidelity option
<pis/>: Preserve.pis EXI Fidelity option
<prefixes/>: Preserve.prefixes EXI Fidelity option
schema: Optional parameter. This specifies what schema options

should be enabled in the EXI encoding process. The following
values are valid:

none Do not use schema-informed grammars at all. This
translates to using schemald of <xsd:nil>true</xsd:nil> in
the EXI Options header.

builtin Do no use schema-informed grammars, but use the built-
in XML data types. This translates to using an empty
schemald in the EXI Options header.

base:1.1 Use schema-informed grammar based on netconf.xsd as
published in [RFC6241] in non-strict mode. The value
"base:1.1" should be carried in the schemald field in the
EXI Options.

dynamic Same as base:1.1 with the additional support for
dynamically modifying which schemas are available for
schema-informed encoding.

Positive Response: If the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <ok> element.

Negative Response: An <rpc-error> element is included in the <rpc-
reply> if the request cannot be completed for any reason.

Example:

Varga Expires September 02, 2014 [Page 6]

Internet-Draft EXI Capability March 2014

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<start-exi>
<alignment>pre-compression</alignment>
<fidelity>
<dtd/>
<lexical-values/>
</fidelity>
</start-exi>

Varga Expires September 02, 2014 [Page 7]

Internet-Draft EXI Capability March 2014
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

3.5.2. <stop-exi>

Description: The <stop-exi> operation requests that the message
encoding be switched to textual XML. The operation is invoked by
the client and validated by the server. If the server is able to
switch the encoding to XML, it will issue a positive response in
the current session encoding. It MUST encode all subsequent
messages using standard XML encoding. It will also expect all

incoming messages to be XML-encoded. The client MUST NOT send any

messages to the server between the time is sends this request and
the time it receives a response. Once it receives a positive

reply, it MUST encode all subsequent messages using the standard
XML encoding. If the operation fails, the session message
encoding remains unchanged. If the session currently uses XML
encoding, this RPC is a no-operation and SHOULD NOT fail.

Positive Response: If the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <ok> element.

Negative Response: An <rpc-error> element is included in the <rpc-
reply> if the request cannot be completed for any reason.

Example:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<stop-exi/>
</rpc>
<rpc-reply message-id="101"
xmIns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
3.6. New Optional Operations
3.6.1. <enable-schema-encoding>
Description: The <enable-schema-encoding> requests the device assign
a numeric identifier for use of a specific schema for EXI Schema-
informed encoding.
Parameters:
identifier: Schema identifier, as defined in [RFC6022].
version: Schema version, as defined in [RFC6022].

Varga Expires September 02, 2014 [Page 8]

Internet-Draft EXI Capability March 2014

format: Schema format, as defined in [RFC6022].

Positive Response: If the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <exi-schema-id> element,
which contains the numeric identifier which should be used in the
schemald EXI header field. This identifier has to be unique.

Negative Response: An <rpc-error> element is included in the <rpc-
reply> if the request cannot be completed for any reason.

3.6.2. <disable-schema-encoding>
Description: The <disable-schema-encoding> requests the device to
deallocate the schema ID from use on this session and stop using
it for encoding data towards the client.

Parameters:

exi-schema-id: EXI Schema ID, as assigned by a previous <enable-
schema-encoding> call.

Positive Response: If the device was able to satisfy the request, an
<rpc-reply> is sent that contains an <ok> element.

Negative Response: An <rpc-error> element is included in the <rpc-
reply> if the request cannot be completed for any reason.

4. YANG module for <start-exi> and <stop-exi> Operations
The following YANG module defines the new operations introduced in
this document. The YANG language is defined in [RFC6020]. Every

NETCONF speaker that supports the :exi capability MUST implement this
YANG module.

Varga Expires September 02, 2014 [Page 9]

Internet-Draft EXI Capability March 2014

<CODE BEGINS> file "ietf-netconf-exi@2014-03-03.yang"

module ietf-netconf-exi {
Il vi: set et smarttab sw=4 tabstop=4:
namespace "urn:ietf:params:xml:ns:netconf.exi:1.0";

prefix exi;
import ietf-netconf-monitoring {
prefix ncm;

revision-date "2010-10-04";
}

organization
"IETF NETCONF (Network Configuration) Working Group";

contact
"Robert Varga <robert.varga@pantheon.sk>";

description
"NETCONF Protocol Operations for Efficient XML Interchange.";

revision 2014-03-03 {

description
"Updated with dynamic schema negotiation.";
reference
"I-D.varga-netconf-exi-capability-02";
}
revision 2013-10-21 {
description
"Initial revision";
reference
"I-D.varga-netconf-exi-capability-01";
}

typedef exi-alignment {
type enumeration {
enum bit-packed {
description
"Use bit-packed EXI alignment";

enum byte-aligned {
description
"Use byte-aligned EXI alignment";
}
enum pre-compression {
description
"Use pre-compression EXI alignment";
}

enum compressed {
description

Varga Expires September 02, 2014 [Page 10]

Internet-Draft EXI Capability March 2014

"Do not set EXI alignment, use EXI compression
instead"”;
}
}

description "EXI alignment specification.";

}

typedef exi-fidelity {
type enumeration {
enum comments {
description
"Preserve.comments EXI Fidelity option";

}
enum dtd {
description
"Preserve.dtd EXI Fidelity option";

enum lexical-values {
description
"Preserve.lexicalValues EXI Fidelity option";
}
enum pis {
description
"Preserve.pis EXI Fidelity option";

enum prefixes {
description
"Preserve.prefixes EXI Fidelity option";
}
}

description "EXI fidelity options.";
}

rpc start-exi {
description
"Start encoding protocol messages in Efficient XML
Interchange format.";

reference "I-D.varga-netconf-exi-capability”;

input {
leaf alignment {
type exi-alignment;
default "bit-packed";
description "EXI alignment to use.";

}

leaf-list fidelity {
type exi-fidelity;
description "EXI fidelity options to use.";
}
}

Varga Expires September 02, 2014 [Page 11]

Internet-Draft EXI Capability March 2014

}

rpc stop-exi {
description
"Stop encoding protocol messages in Efficient XML
Interchange format. Revert back to using the usual text
XML encoding.";

}

grouping schema-identifier {
description
"The globally-unique identifier of a schema. This
grouping contains the verbatim transcription of arguments
to <get-schema> RPC as defined in RFC6022, except all
leaves are made mandatory.";

leaf identifier {
type string;
mandatory true;
description
"Identifier for the schema list entry.";
}

leaf version {
type string;
description
"Version of the schema requested. If this parameter
is not present, and more than one version of the
schema exists on the server, a 'data-not-unique’
error is returned, as described above.";

}

leaf format {

type identityref {
base ncm:schema-format;

}

description
"The data modeling language of the schema. If this
parameter is not present, and more than one formats
of the schema exists on the server, a
‘data-not-unique’ error is returned, as described
above.";

}
}

typedef exi-schema-id {
type uintl6;
description
"Schema identifier for use in the EXI| stream header.";

}

augment "/ncm:netconf-state/ncm:schemas/ncm:schema” {
description
"Additional information about schemas useful for EXI

Varga Expires September 02, 2014 [Page 12]

Internet-Draft EXI Capability March 2014
encoding";

leaf exi-useable {
type boolean;
default false;
description
"Set to true if the device can use the schema for EXI
Schema-informed encoding.";
}
leaf exi-schema-id {
type exi-schema-id;
description
"The EXI schema ID currently assigned to this schema.
This value has meaning only within the session and
may differ on other sessions.";

}
}
rpc enable-schema-encoding {
description
"Request the use of specificied schema in EXI message
encoding. This request is sent by the client to the
server. If the server is able to transition into using
the schema, it assigns it a unique EXI integer
identifier. This identifier is to be used in the EXI
header as schema identifier.
The server may start using the identifier as soon as it
enqueus the response. The client may start using the
identifier as soon as it sees this RPC complete.";
input {
uses schema-identifier;
output {
leaf exi-schema-id {
type exi-schema-id,;
mandatory true;
description
"The EXI Schema ID assigned to this schema for
encoding purposes.";
}
}
}
rpc disable-schema-encoding {
description

"This RPC is send by the client when it stops using a
particular exi-schema-id.";
input {

leaf exi-schema-id {

type exi-schema-id;

mandatory true;

description

"The EXI Schema ID which should be disabled.";

Varga Expires September 02, 2014 [Page 13]

Internet-Draft EXI Capability March 2014

}
}
}
}

5. IANA considerations

This document registers the following capability identifier URN in
the 'Network Configuration Protocol (NETCONF) Capability URNS’
registry: urn:ietf:params:netconf:.capability:exi:1.0

6. Security Considerations

The compression option present in EXI specification may increase CPU
and memory requirements for encoding the response. Devices should
ensure this overhead is acceptable before agreeing to using EXI
encoding, such that no operational risks are introduced.

7. Acknowledgements

The author would like to thank Anton Tkacik, Miroslav Miklus and
Stefan Kobza for their contributions to this document.

8. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)", RFC 6020,
October 2010.

[RFC6022] Scott, M. and M. Bjorklund, "YANG Module for NETCONF
Monitoring", RFC 6022, October 2010.

[RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
Bierman, "Network Configuration Protocol (NETCONF)", RFC
6241, June 2011.

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, June 2011.

[W3C.REC-exi-20110310]
Schneider, J. and T. Kamiya, "Efficient XML Interchange
(EXI) Format 1.0", World Wide Web Consortium
Recommendation REC-exi-20110310, March 2011, <http://
www.w3.0rg/TR/2011/REC-exi-20110310>.

Author’s Address

Varga Expires September 02, 2014 [Page 14]

Internet-Draft EXI Capability March 2014

Robert Varga

Pantheon Technologies SRO
Mlynske Nivy 56

Bratislava 821 05

Slovakia

Email: robert.varga@pantheon.sk

Varga Expires September 02, 2014 [Page 15]

Network Working Group S. Yang

Internet-Draft X.Ji
Intended status: Experimental T. Zou
Expires: January 12, 2014 G. Yan
Huawei Technologies
July 11, 2013

NETCONF rpc-error extension
draft-ysc-netconf-rpc-error-extension-00

Abstract

The NETCONF is a machine-machine interface, it is easy to expand.
This document will expand the rpc-error message to make multiple
language support easily.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”
This Internet-Draft will expire on January 12, 2014.

Copyright Notice

Copyright (¢) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

Yang, et al. Expires January 12, 2014 [Page 1]

Internet-Draft NETCONF rpc-error extension July 2013

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 2
2. The definition in NETCONF Protocol 2
3. Thesolution 3
4. Error-parameters Capability 3
41, OVerview 3
4.2. Dependencies 4
4.3. Capability Identifier 4
4.4, New Operation.................0.... 4
4.5. Modifications to Existing Operations 4
4.6. Interactions with Other Capabilities 5
5. UseCaseinNMS 5
6. YANG Module for the <error-parameters> 5
7. IANA Considerations 7
8. Security Considerations 8
9. Acknowledgements 8
10. Normative References 8
Authors’ Addresses 9

1. Introduction

The Network Configuration Protocol (NETCONF) provides mechanisms to
install, manipulate, and delete the configuration of network devices.

It uses a RPC-based communication model. NETCONF peer use <rpc> and
<rpc-reply> elements to provide transport protocol-independent

framing of NETCONF requests and responses. The <rpc> element is used
to enclose a NETCONF request sent from the client to the server. The
<rpc-reply> message is sent in response to an <rpc> message. The
<rpc-error> element is sent in <rpc-reply> messages if an error

occurs during the processing of an <rpc> request. The error-message

is part of rpc-error information; it contains a string suitable for

human display that describes the error condition.

The network device of one producer may be used in many industries and
be integrated with many NMS all over the world, each industry or NMS
has different custom and demand in the GUI style. So there is a need
for the error-message to support multiple language and customization.

2. The definition in NETCONF Protocol

Yang, et al. Expires January 12, 2014 [Page 2]

Internet-Draft NETCONF rpc-error extension July 2013

Although NETCONF already support identify the language type by
xml:lang="en" in the error-message, but it's very difficult for

network devices to support multiple languages or customization for
error-message, because of storage limitation, complexity on software
release, unexpected customization requirement, and so on.

This document describes another solution to resolve this issue by
extending the rpc-error with a new capability: error-parameters.

3. The solution

First of all, we classify all languages into two types: common

language and local language. English is specified as common
language, and all other languages are specified as local language.
Each error-message contains 2 parts, static format string and dynamic
error parameters, each format string mapping to a unique an error-
app-tag. NMS could translate the format string from common language
to local language for each error-app-tag, and network devices could
return the error parameters in the rpc-reply. So network devices

only need support common language in error-message, NMS could support
local language for error-message by combining the format string of
local language and error-parameters. It's similar to customization,
network device only need support default error-message in common
language, and NMS could support customization for error-message.

Example:
error-app-tag: 00010001

Error message: MTU value 25000 of interface ethernet1/0/1 is not
within range 256..9192

Error-message definition for common language:
Error-parameters:25000, ethernet1/0/1, 256, 9192

Format string: MTU value $1 of interface $2 is not within range
$3..$4

4. Error-parameters Capability

4.1. Overview
The :error-parameters capability indicates that the device supports
to carry error parameters which are referred by error-message in the

rpc-error. The error-parameters could be used to support local
language and customization for error-message by NMS.

Yang, et al. Expires January 12, 2014 [Page 3]

Internet-Draft NETCONF rpc-error extension July 2013

4.2. Dependencies
None.
4.3. Capability Identifier

The :error-parameters capability is identified by the following
capability string:

urn:ietf:params:netconf:capability:error-parameters:1.0
4.4, New Operation

None.
4.5. Modifications to Existing Operations

All operation which may cause an rpc-error carrying error-message
which refers error parameter.

The rpc-reply will carry error parameters which are referred by the
error-message in the rpc-error.

For example:

<rpc-reply message-id="101"
xmins="urn:ietf:params:xml:ns:netconf:base:1.0"
xmins:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>

<error-type>application</error-type>

<error-tag>invalid-value</error-tag>

<error-severity>error</error-severity>

<error-app-tag>00010001</error-app-tag>

<error-path xmlIns:t="http://example.com/schema/1.2/config">
[t:top/tinterface[t:name="Ethernet1/0/1")/t:mtu

</error-path>

<error-message xml:lang="en">
MTU value 25000 of interface ethernet1/0/1 is not within range 256..9192

</error-message>

<error-parameters xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-error-pa

rameters">

<error-parameter>25000</error-parameter>
<error-parameter>ethernetl/0/1</error-parameter>
<error-parameter>256</error-parameter>
<error-parameter>9192</error-parameter>

</error-parameters>

</rpc-error>
</rpc-reply>

Yang, et al. Expires January 12, 2014 [Page 4]

Internet-Draft NETCONF rpc-error extension July 2013

4.6. Interactions with Other Capabilities
None.
5. Use Case in NMS

One example is provided to describe how this solution support local
language for error-message in NMS.

Example:
error-app-tag: 00010001

Error message: MTU value 25000 of interface ethernet1/0/1 is not
within range 256..9192

Error-message definition for common language:
Error-parameters:25000, ethernet1/0/1, 256, 9192

Format string: MTU value $1 of interface $2 is not within range
$3..%4

Major work in NMS for each error-message:
1. Translation format string to local language:

Format string: La valeur MTU $1 de l'interface $2 n’est pas dans la
plage de $3 a $4.

Remark: The order of error-parameters in the format string of local
language may be different with format string of common language.

2. Search the error-message by error-app-tag and combine the error-
parameters into the format string in local language to generate the
error-message for local language

La valeur MTU 25000 de l'interface ethernet1/0/1 n’est pas dans la
plage de 256 a 9192.

6. YANG Module for the <error-parameters>
<CODE BEGINS> file="ietf-netconf-error-parameters@2013-07-11.yang"
module ietf-netconf-error-parameters {

namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters";

Yang, et al. Expires January 12, 2014 [Page 5]

Internet-Draft NETCONF rpc-error extension July 2013

prefix ncep;
import yuma-netconf { prefix nc; }

organization
"IETF NETCONF (Network Configuration Protocol) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/netconf/>

WG List: <netconf@ietf.org>

WG Chair: Bert Wijnen
<bertietf@bwijnen.net>

WG Chair: Mehmet Ersue
<mehmet.ersue@nsn.com>

Editor: Andy Bierman
<andy.bierman@brocade.com>

Editor: Balazs Lengyel
<balazs.lengyel@ericsson.com>";

description

"This module defines an extension to the NETCONF protocol
that allows the NETCONF server to return error parameters in
the rpc-error which are refered in the error-message.

Copyright (¢) 2013 IETF Trust and the persons identified as
the document authors. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject

to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

/I RFC Ed.: replace XXXX with actual RFC number and remove this
/I note.

/l RFC Ed.: remove this note
/I Note: extracted from draft-ysc-netconf-rpc-error-extension-00.txt

Yang, et al. Expires January 12, 2014 [Page 6]

Internet-Draft NETCONF rpc-error extension July 2013

/l RFC Ed.: update the date below with the date of RFC publication
/I and remove this note.

revision 2013-07-11 {
description
"Initial version.";
reference
"RFC XXXX: NETCONF rpc-error extension";

}

grouping ErrorParameters {
description
"Contains the <error-parameters> for the <rpc-error> extension.";

container error-parameters {
description
"The container of all error parameters in the <rpc-error>";
reference
"RFC XXXX; Section 4.5";

leaf-list error-parameter {
type string;
description
"error-parameter element”;
reference
"RFC XXXX; Section 4.5";

}
}
}

/I extending the rpc-error
augment /nc:rpc-reply/nc:rpc-error {
description
"Adds the <error-parameters> parameter to the <rpc-error>.";
reference
"RFC XXXX; Section 4.5";

uses ErrorParameters;

}
}

<CODE ENDS>

7. IANA Considerations

Yang, et al. Expires January 12, 2014 [Page 7]

Internet-Draft NETCONF rpc-error extension July 2013

This document registers the following capability identifier URN in
the 'Network Configuration Protocol (NETCONF) Capability URNS’
registry:

urn:ietf:params:netconf:capability:error-parameters:1.0

This document registers two XML namespace URNSs in the 'IETF XML
registry’, following the format defined in [RFC3688].

URI: urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URIs are XML namespaces.

This document registers one module name in the 'YANG Module Names’
registry, defined in [RFC6020] .

name: ietf-netconf-error-parameters
prefix: ncep
namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters
RFC: XXXX
8. Security Considerations

This document does not introduce any further security issues other
than that discussed in [RFC6241].

9. Acknowledgements
NA
10. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
January 2004.

[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the

Network Configuration Protocol (NETCONF)", RFC 6020,
October 2010.

Yang, et al. Expires January 12, 2014 [Page 8]

Internet-Draft NETCONF rpc-error extension July 2013

[RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
Bierman, "Network Configuration Protocol (NETCONF)", RFC
6241, June 2011.

Authors’ Addresses

Shouchuan Yang

Huawei Technologies

Huawei Bld., No.156 Beiging Rd.
Beijing 100095

China

Email: yangshouchuan@huawei.com

Xiaofeng Ji

Huawei Technologies

Huawei Bld., No.156 Beiging Rd.
Beijing 100095

China

Email: jixiaofeng@huawei.com

Ting Zou

Huawei Technologies

Santa Clara-2330 Central Expressway
Santa Clara, CA 95050

America

Email: Tina.Tsou.Zouting@huawei.com
Gang Yan

Huawei Technologies

Huawei Bld., No.156 Beiging Rd.
Beijing 100095

China

Email: yangang@huawei.com

Yang, et al. Expires January 12, 2014 [Page 9]

	draft-bierman-netconf-yang-api-01
	draft-ietf-netconf-reverse-ssh-06
	draft-ietf-netconf-rfc5539bis-10
	draft-mm-netconf-time-capability-09
	draft-varga-netconf-exi-capability-02
	draft-ysc-netconf-rpc-error-extension-00

