
Network Working Group A. Bierman
Internet-Draft YumaWorks
Intended status: Standards Track M. Bjorklund
Expires: June 3, 2013 Tail-f Systems
 November 30, 2012

 YANG-API Protocol
 draft-bierman-netconf-yang-api-01

Abstract

 This document describes a RESTful protocol that provides a
 programmatic interface over HTTP for accessing data defined in YANG,
 using the datastores defined in NETCONF.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 3, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bierman & Bjorklund Expires June 3, 2013 [Page 1]

Internet-Draft YANG-API November 2012

Table of Contents

 1. Introduction . 4
 1.1. Simple Subset of NETCONF Functionality 4
 1.2. Data Model Driven API 5
 1.3. Terminology . 6
 1.3.1. NETCONF . 6
 1.3.2. HTTP . 7
 1.3.3. YANG . 7
 1.3.4. Terms . 8
 1.4. Overview . 8
 1.4.1. Resource URI Map 9
 1.4.2. YANG-API Message Examples 9
 2. Framework . 15
 2.1. Message Model . 15
 2.2. Resource Model . 15
 2.2.1. YANG-API Resource Types 15
 2.2.2. Resource Discovery 16
 2.3. Datastore Model . 16
 2.3.1. Content Model . 17
 2.3.2. Editing Model . 17
 2.3.3. Locking Model . 19
 2.3.4. Persistence Model 19
 2.3.5. Defaults Model . 19
 2.4. Transaction Model . 20
 2.5. Extensibility Model 20
 2.6. Versioning Model . 20
 2.7. Retrieval Filtering Model 21
 2.8. Access Control Model 21
 3. Operations . 22
 3.1. OPTIONS . 22
 3.2. HEAD . 23
 3.3. GET . 24
 3.4. POST . 26
 3.5. PUT . 26
 3.6. PATCH . 27
 3.7. DELETE . 27
 3.8. Query Parameters . 28
 3.8.1. "config" Parameter 28
 3.8.2. "depth" Parameter 29
 3.8.3. "format" Parameter 30
 3.8.4. "insert" Parameter 30
 3.8.5. "point" Parameter 31
 3.8.6. "select" Parameter 32
 3.9. Protocol Operations 32
 4. Messages . 34
 4.1. Request URI Structure 34
 4.2. Message Headers . 35

Bierman & Bjorklund Expires June 3, 2013 [Page 2]

Internet-Draft YANG-API November 2012

 4.3. Message Encoding . 36
 4.4. Return Status . 36
 4.5. Message Caching . 37
 5. Resources . 38
 5.1. API Resource (/yang-api) 38
 5.1.1. /yang-api/datastore 38
 5.1.2. /yang-api/modules 38
 5.1.3. /yang-api/operations 38
 5.1.4. /yang-api/version 40
 5.2. Datastore Resource . 41
 5.3. Data Resource . 41
 5.3.1. Encoding YANG Instance Identifiers in the Request
 URI . 42
 5.3.2. Identifying YANG-defined Data Resources 44
 5.3.3. Identifying Optional Keys 45
 5.3.4. Data Resource Retrieval 45
 5.4. Operation Resource . 47
 5.4.1. Encoding Operation Input Parameters 48
 5.4.2. Encoding Operation Output Parameters 49
 5.4.3. Identifying YANG-defined Operation Resources 50
 6. Error Reporting . 51
 6.1. Error Response Message 52
 7. RelaxNG Grammar . 55
 8. YANG-API module . 56
 9. IANA Considerations . 58
 10. Security Considerations 59
 11. Change Log . 60
 11.1. 00-01 . 60
 12. Open Issues . 61
 13. Example YANG Module . 63
 14. Normative References . 67
 Authors’ Addresses . 68

Bierman & Bjorklund Expires June 3, 2013 [Page 3]

Internet-Draft YANG-API November 2012

1. Introduction

 There is a need for standard mechanisms to allow WEB applications to
 access the configuration data, operational data, and data-model
 specific protocol operations within a networking device, in a modular
 and extensible manner.

 This document describes a RESTful protocol called YANG-API, running
 over HTTP [RFC2616], for accessing data defined in YANG [RFC6020],
 using datastores defined in NETCONF [RFC6241].

 The NETCONF protocol defines configuration datastores and a set of
 Create, Retrieve, Update, Delete (CRUD) operations that can be used
 to access these datastores. The YANG language defines the syntax and
 semantics of datastore content and operational data. RESTful
 operations are used to access the hierarchical data within a
 datastore.

 A RESTful API can be created that provides CRUD operations on a
 NETCONF datastore containing YANG-defined data. This can be done in
 a simplified manner, compatible with HTTP and RESTful design
 principles. Since NETCONF protocol operations are not relevant, the
 user should not need any prior knowledge of NETCONF in order to use
 the RESTful API.

 Configuration data and state data are exposed as resources that can
 be retrieved with the GET method. Resources representing
 configuration data can be modified with the DELETE, PATCH, POST, and
 PUT methods. Data-model specific protocol operations defined with
 the YANG "rpc" statement can be invoked with the POST method.

1.1. Simple Subset of NETCONF Functionality

 The framework and meta-model used for a RESTful API does not need to
 mirror those used by the NETCONF protocol. It just needs to be
 compatible with NETCONF. A simplified framework and protocol is
 needed that utilizes the three NETCONF datastores (candidate,
 running, startup), but hides the complexity of multiple datastores
 from the client.

 A simplified transaction model is needed that allows basic CRUD
 operations on a hierarchy of conceptual resources. This represents a
 limited subset of the transaction capabilities of the NETCONF
 protocol.

 Applications that require more complex transaction capabilities might
 consider NETCONF instead of YANG-API. The following transaction
 features are not provided in YANG-API:

Bierman & Bjorklund Expires June 3, 2013 [Page 4]

Internet-Draft YANG-API November 2012

 o datastore locking (full or partial)

 o candidate datastore

 o validate operation

 o confirmed-commit procedure

 The RESTful API is not intended to replace NETCONF, but rather
 provide an additional simplified interface that follows RESTful
 principles and is compatible with a resource-oriented device
 abstraction. It is expected that applications that need the full
 feature set of NETCONF such as notifications will continue to use
 NETCONF.

 The following figure shows the system components:

 +-----------+ +-----------------+
 | WEB app | <-------> | |
 +-----------+ HTTP | network device |
 | |
 +-----------+ | +-----------+ |
 | NMS app | <-------> | | datastore | |
 +-----------+ NETCONF | +-----------+ |
 +-----------------+

1.2. Data Model Driven API

 YANG-API combines the simplicity of a RESTful API over HTTP with the
 predictability and automation potential of a schema-driven API.

 A RESTful client using YANG-API will not use any data modelling
 language to define the application-specific content of the API. The
 client would discover each new child resource as it traverses the
 URIs return as Location IDs to discover the server capabilities.

 This approach has 3 significant weaknesses wrt/ control of complex
 networking devices:

 o inefficient performance: configuration APIs will be quite complex
 and may require thousands of protocol messages to discover all the
 schema information. Typically the data type information has to be
 passed in the protocol messages, which is also wasteful overhead.

 o no data model richness: without a data model, the schema-level
 semantics and validation constraints are not available to the
 application. Data model modules such as YANG modules serve as an
 "API contract" that will be honored by the server. An application

Bierman & Bjorklund Expires June 3, 2013 [Page 5]

Internet-Draft YANG-API November 2012

 designer can code to the data model, knowing in advance important
 details about the exact protocol operations and datastore content
 a conforming server implementation will support.

 o no tool automation: API automation tools need some sort of content
 schema to function. Such tools can automate various programming
 and documentation tasks related to specific data models.

 YANG-API provides the YANG module capability information supported by
 the server, in case the client wants to use it. The URIs for custom
 protocol operations and datastore content are predictable, based on
 the YANG module definitions. Note that the YANG modules and
 predictable URIs are optional to use by the client. They can be
 completely ignored without any loss of protocol functionality.

 Operational experience with CLI and SNMP indicates that operators
 learn the ’location’ of specific service or device related data and
 do not expect such information to be arbitrary and discovered each
 time the client opens a management session to a server.

1.3. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

1.3.1. NETCONF

 The following terms are defined in [RFC6241]:

 o candidate configuration datastore

 o client

 o configuration data

 o datastore

 o configuration datastore

 o protocol operation

 o running configuration datastore

 o server

Bierman & Bjorklund Expires June 3, 2013 [Page 6]

Internet-Draft YANG-API November 2012

 o startup configuration datastore

 o state data

 o user

1.3.2. HTTP

 The following terms are defined in [RFC2616]:

 o entity tag

 o fragment

 o header line

 o message body

 o method

 o path

 o query

 o request URI

 o response body

1.3.3. YANG

 The following terms are defined in [RFC6020]:

 o container

 o data node

 o key leaf

 o leaf

 o leaf-list

 o list

 o presence container (or P-container)

 o RPC operation (now called protocol operation)

Bierman & Bjorklund Expires June 3, 2013 [Page 7]

Internet-Draft YANG-API November 2012

 o non-presence container (or NP-container)

 o ordered-by system

 o ordered-by user

1.3.4. Terms

 The following terms are used within this document:

 o API resource: a resource with the media type "application/
 vnd.yang.api+xml" or ""application/vnd.yang.api+json".

 o data resource: a resource with the media type "application/
 vnd.yang.data+xml" or "application/vnd.yang.data+json".

 o datastore resource: a resource with the media type "application/
 vnd.yang.datastore+xml" or "application/vnd.yang.datastore+json"

 o edit operation: a YANG-API operation on a data resource using the
 POST, PUT, PATCH, or DELETE method.

 o operation: the conceptual YANG-API operation for a message,
 derived from the method, request URI, headers, and message body.

 o operation resource: a resource with the media type
 "vnd.yang.operation+xml" or "vnd.yang.operation+json"

 o optional key: a key leaf for a YANG list data node, which MAY be
 omitted by the client when an instance of the list is created.

 o query parameter: a parameter (and its value if any), encoded
 within the query portion of the request URI.

 o resource: a conceptual object representing a manageable component
 within a device.

 o retrieval request: an operation using the GET or HEAD methods.

 o target resource: the resource that is associated with a particular
 message, identified by the "path" component of the request URI.

1.4. Overview

 This document defines the YANG-API protocol, a RESTful API for
 accessing conceptual datastores containing data defined with YANG
 language. YANG-API provides an application framework and meta-model,
 using HTTP operations.

Bierman & Bjorklund Expires June 3, 2013 [Page 8]

Internet-Draft YANG-API November 2012

 The YANG-API resources are accessed via a set of URIs defined in this
 document. The set of YANG modules supported by the server will
 determine the additional data model specific operations and top-level
 data node resources available on the server.

1.4.1. Resource URI Map

 The URI hierarchy for the YANG-API resources consists of an entry
 point and up to 4 top-level resources and/or fields. Refer to
 Section 5 for details on each URI.

 /yang-api
 /datastore
 /<top-level-data-nodes> (config=true or false)
 /modules
 /module
 /operations
 /<custom protocol operations>
 /version

1.4.2. YANG-API Message Examples

 The examples within this document use the non-normative example YANG
 module defined in Section 13.

 This section shows some typical YANG-API message exchanges.

1.4.2.1. Retrieve the Top-level API Resource

 By default, when a resource is retrieved, all of its fields are
 returned, but none (if any) of the nested resources are returned.
 Also, the default encoding is JSON. Data resources are encoded
 according to the encoding rules in [I-D.lhotka-netmod-json].

 The client starts by retrieving the top-level API resource, using the
 entry point URI "/yang-api".

 GET /yang-api HTTP/1.1
 Host: example.com

 The server might respond as follows. The "module" lines below are
 split for display purposes only:

Bierman & Bjorklund Expires June 3, 2013 [Page 9]

Internet-Draft YANG-API November 2012

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/vnd.yang.api+json

 {
 "yang-api": {
 "modules": {
 "module": [
 "urn:ietf:params:xml:ns:yang:ietf-yang-api
 ?module=ietf-yang-api&revision=2012-05-27",
 "example.com?module=example-jukebox
 &revision=2012-05-30"
]
 },
 "version": "1.0"
 }
 }

 To request that the response content to be encoded in XML, the
 "Accept" header can be used, as in this example request:

 GET /yang-api HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.api+xml

 An alternate approach is provided using the "format" query parameter,
 as in this example request:

 GET /yang-api?format=xml HTTP/1.1
 Host: example.com

 The server will return the same response either way, which might be
 as follows :

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/vnd.yang.api+xml

Bierman & Bjorklund Expires June 3, 2013 [Page 10]

Internet-Draft YANG-API November 2012

 <yang-api>
 <modules> <!-- wrapped for display only -->
 <module>urn:ietf:params:xml:ns:yang:ietf-yang-api
 ?module=ietf-yang-api
 &revision=2012-05-27</module>
 <module>example.com?module=example-jukebox
 &revision=2012-05-30</module>
 </modules>
 <version>1.0</version>
 </yang-api>

 Refer to Section 3.3 for details on the GET operation.

1.4.2.2. Create New Data Resources

 To create a new "jukebox" resource, the client might send:

 POST /yang-api/datastore/jukebox HTTP/1.1
 Host: example.com

 If the resource is created, the server might respond:

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Location: http://example.com/yang-api/datastore/jukebox
 Last-Modified: Mon, 23 Apr 2012 17:01:00 GMT
 ETag: b3a3e673be2

 To create a new "artist" resource within the "jukebox" resource, the
 client might send the following request, Note that the arbitrary
 integer "index" is not provided, since it is an optional key:

 POST /yang-api/datastore/jukebox/artist HTTP/1.1
 Host: example.com
 Content-Type: application/vnd.yang.data+json

 {
 "artist" : {
 "name" : "The Foo Fighters"
 }
 }

 If the resource is created, the server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 11]

Internet-Draft YANG-API November 2012

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:02:00 GMT
 Server: example-server
 Location: http://example.com/yang-api/datastore/jukebox/artist/1
 Last-Modified: Mon, 23 Apr 2012 17:02:00 GMT
 ETag: b3830f23a4c

 To create a new "album" resource for this artist within the "jukebox"
 resource, the client might send the following request,

 POST /yang-api/datastore/jukebox/artist/1/album HTTP/1.1
 Host: example.com
 Content-Type: application/vnd.yang.data+json

 {
 "album" : {
 "name" : "Wasting Light",
 "genre" : "example-jukebox:Alternative",
 "year" : 2012
 }
 }

 If the resource is created, the server might respond as follows.
 Note that the "Location" header line is wrapped for display purposes
 only:

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:03:00 GMT
 Server: example-server
 Location: http://example.com/yang-api/datastore/
 jukebox/artist/1/album/Wasting%20Light
 Last-Modified: Mon, 23 Apr 2012 17:03:00 GMT
 ETag: b8389233a4c

 Refer to Section 3.4 for details on the POST operation.

1.4.2.3. Replace an Existing Data Resource

 Note: replacing a resource is a fairly drastic operation. The PATCH
 operation is often more appropriate.

 The album sub-resource is re-added here for example purposes only.
 To replace the "artist" resource contents, the client might send:

Bierman & Bjorklund Expires June 3, 2013 [Page 12]

Internet-Draft YANG-API November 2012

 PUT /yang-api/datastore/jukebox/artist/1 HTTP/1.1
 Host: example.com
 If-Match: b3830f23a4c
 Content-Type: application/vnd.yang.data+json

 {
 "artist" : {
 "name" : "Foo Fighters",
 "album" : {
 "name" : "Wasting Light",
 "genre" : "example-jukebox:Alternative",
 "year" : 2012
 }
 }
 }

 If the resource is updated, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:04:00 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:04:00 GMT
 ETag: b27480aeda4c

 Refer to Section 3.5 for details on the PUT operation.

1.4.2.4. Patch an Existing Data Resource

 To replace just the "year" field in the "album" resource, the client
 might send:

 PATCH /yang-api/datastore/jukebox/artist/1/album/
 Wasting%20Light/year HTTP/1.1
 Host: example.com
 If-Match: b8389233a4c
 Content-Type: application/vnd.yang.data+json

 { "year" : 2011 }

 If the resource is updated, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:49:30 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:49:30 GMT
 ETag: b2788923da4c

 Refer to Section 3.6 for details on the PATCH operation.

Bierman & Bjorklund Expires June 3, 2013 [Page 13]

Internet-Draft YANG-API November 2012

1.4.2.5. Delete an Existing Data Resource

 To delete a resource such as the "album" resource, the client might
 send:

 DELETE /yang-api/datastore/jukebox/artist/1/album/
 Wasting%20Light HTTP/1.1
 Host: example.com

 If the resource is deleted, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:49:40 GMT
 Server: example-server

 Refer to Section 3.7 for details on the DELETE operation.

1.4.2.6. Invoke a Data Model Specific Operation

 To invoke a data-model specific operation via an operation resource,
 the POST operation is used. A client might send a "backup-datastore"
 request as follows:

 POST /yang-api/operations/backup-datastore HTTP/1.1
 Host: example.com

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:50:00 GMT
 Server: example-server

 Refer to Section 3.9 for details on using the POST operation with
 operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 14]

Internet-Draft YANG-API November 2012

2. Framework

 The YANG-API protocol defines a framework that can be used to
 implement a common API for configuration management. This section
 describes the components of the YANG-API framework.

2.1. Message Model

 The YANG-API protocol uses HTTP entities for messages. A single HTTP
 message corresponds to a single protocol operation. A message can
 perform a single task on a single resource, such as retrieving a
 resource or editing a resource. It cannot be used to combine
 multiple tasks. The client cannot provide multiple (possibly
 unrelated) edit operations within a single request, like the NETCONF
 <edit-config> protocol operation.

2.2. Resource Model

 The YANG-API protocol operates on a hierarchy of resources, starting
 with the top-level API resource itself. Each resource represents a
 manageable component within the device.

 A resource can be considered a collection of conceptual data and the
 set of allowed operations on that data. It can contain child nodes
 that are either "fields" or other resources. The child resource
 types and operations allowed on them are data-model specific.

 A resource has its own media type identifier, represented by the
 "Content-Type" header in the HTTP response message. A resource can
 contain zero or more fields and zero or more resources. A resource
 can be created and deleted independently of its parent resource, as
 long as the parent resource exist.

 A field is a child node defined within a resource. A field can
 contain zero or more fields and zero or more resources. A field
 cannot be created and deleted independently of its parent resource.

 All YANG-API resources and fields are defined in this document except
 datastore contents and protocol operations. These resource types are
 defined with YANG data definition statements and the "rpc" statement.
 A default mapping is defined to differentiate sub-resources from
 fields within data resources.

2.2.1. YANG-API Resource Types

 The YANG-API protocol defines some application specific media types
 to identify each of the available resource types. The following
 table summarizes the purpose of each resource.

Bierman & Bjorklund Expires June 3, 2013 [Page 15]

Internet-Draft YANG-API November 2012

 +-----------+--------------------------------+
 | Resource | Media Type |
 +-----------+--------------------------------+
 | API | application/vnd.yang.api |
 | Datastore | application/vnd.yang.datastore |
 | Data | application/vnd.yang.data |
 | Operation | application/vnd.yang.operation |
 +-----------+--------------------------------+

 YANG-API Media Types

 These resources are described in Section 5.

2.2.2. Resource Discovery

 A client SHOULD start by retrieving the top-level API resource, using
 the entry point URI "/yang-api".

 The YANG-API protocol does not include a resource discovery
 mechanism. Instead, the definitions within the YANG modules
 advertised by the server are used to construct a predictable
 operation or data resource identifier.

 The "depth" query parameter can be used to control how many
 descendant levels should be included when retrieving sub-resources.
 This parameter can be used with the GET operation to discover sub-
 resources within a particular resource.

 Refer to Section 3.8.2 for more details on the "depth" parameter.

2.3. Datastore Model

 A conceptual "unified datastore" is used to simplify resource
 management for the client. The YANG-API datastore is a combination
 of the running configuration and any non-configuration data supported
 by the device. By default only configuration data is returned by a
 GET operation on the datastore contents.

 The underlying NETCONF datastores can be used to implement the
 unified datastore, but the server design is not limited to the exact
 datastore procedures defined in NETCONF.

 The "candidate" and "startup" datastores are not visible in the YANG-
 API protocol. Transaction management and configuration persistence
 are handled by the server and not controlled by the client.

Bierman & Bjorklund Expires June 3, 2013 [Page 16]

Internet-Draft YANG-API November 2012

2.3.1. Content Model

 The YANG-API protocol operates on a conceptual datastore defined with
 the YANG data modeling language. The server lists each YANG module
 it supports in the "/yang-api/modules/module" field in the top-level
 API resource type, using the YANG module capability URI format
 defined in RFC 6020.

 The conceptual datastore contents and data-model-specific operations
 are identified by the set of YANG module capability URIs. All YANG-
 API content identified as either a data resource or an operation
 resource is defined with the YANG language.

 The classification of data as configuration or non-configuration is
 derived from the YANG "config" statement. Data retrieval with the
 GET operation can be filtered in several ways, including the "config"
 parameter to retrieve configuration or non-configuration data.

 The classification of data as a resource or field within a resource
 is derived from the rules specified in Section 5.3.2.

 Data ordering behavior is derived from the YANG "ordered-by"
 statement. Editing mechanisms are provided to allow list or leaf-
 list resources to be inserted or moved in the same manner as NETCONF,
 and defined in YANG.

 The server is not required to maintain system ordered data in any
 particular persistent order. The server SHOULD maintain the same
 data ordering for system ordered data until the next reboot or
 termination of the server.

2.3.2. Editing Model

 The YANG-API datastore editing model is simple and direct, similar to
 the behavior of the ":writable-running" capability in NETCONF.

 Each YANG-API edit of a datastore resource is activated upon
 successful completion of the transaction. It is an implementation-
 specific matter how the server accomplishes a YANG-API edit request.
 For example, a server which only accepts edits through a candidate
 datastore may internally edit this datastore and perform the "commit"
 operation automatically.

 Applications which need more control over the editing model might
 consider using NETCONF instead of YANG-API.

Bierman & Bjorklund Expires June 3, 2013 [Page 17]

Internet-Draft YANG-API November 2012

2.3.2.1. Edit Operation Discovery

 Sometimes a server does not implement every operation for every
 resource. Sometimes data model requirements cause a node to
 implement a subset of the edit operations. For example, a server may
 not allow modification of a particular configuration data node after
 the parent resource has been created.

 The OPTIONS operation can be used to identify which operations are
 supported by the server for a particular resource. For example, if
 the server will allow a data resource node to be created then the
 POST operation will be returned in the response.

2.3.2.2. Edit Collision Detection

 Two "edit collision detection" mechanisms are provided in YANG-API,
 for datastore and data resources.

 o timestamp: the last change time is maintained and the
 "Last-Modified" and "Date" headers are returned in the response
 for a retrieval request. The "If-Unmodified-Since" header can be
 used in edit operation requests to cause the server to reject the
 request if the resource has been modified since the specified
 timestamp.

 o entity tag: a unique opaque string is maintained and the "ETag"
 header is returned in the response for a retrieval request. The
 "If-Match" header can be used in edit operation requests to cause
 the server to reject the request if the resource entity tag does
 not match the specified value.

 Note that the server is only required to maintain these fields for a
 datastore resource, not for individual data resources.

 Example:

 In this example, the server just supports the mandatory datastore
 last-changed timestamp. The client has previously retrieved the
 "Last-Modified" header and has some value cached to provide in the
 following request to replace a list entry with key value "11":

 PATCH /yang-api/datastore/jukebox/artist/1/album/
 Wasting%20Light/year HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.data+json
 If-Unmodified-Since: Mon, 23 Apr 2012 17:01:00 GMT
 Content-Type: application/vnd.yang.data+json

Bierman & Bjorklund Expires June 3, 2013 [Page 18]

Internet-Draft YANG-API November 2012

 { "year" : "2011" }

 In this example the datastore resource has changed since the time
 specified in the "If-Unmodified-Since" header. The server might
 respond:

 HTTP/1.1 304 Not Modified
 Date: Mon, 23 Apr 2012 19:01:00 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:45:00 GMT
 ETag: b34aed893a4c

2.3.3. Locking Model

 Datastore locking is not provided by YANG-API. An application that
 needs to make several changes to the running configuration datastore
 contents in sequence, without disturbance from other clients might
 consider using the NETCONF protocol instead of YANG-API.

2.3.4. Persistence Model

 Each YANG-API edit of a datastore resource is saved to non-volatile
 storage in an implementation-specific matter by the server. There is
 no guarantee that configuration changes are saved immediately, or
 that the saved configuration is always a mirror of the running
 configuration.

 Applications which need more control over the persistence model might
 consider using NETCONF instead of YANG-API.

2.3.5. Defaults Model

 NETCONF has a rather complex defaults handling model for leafs.
 YANG-API attempts to avoid this complexity by restricting the
 operations that can be applied to a resource and fields within that
 resource.

 The GET method returns only nodes that exist, which will be
 determined by the server. There is no mechanism for the client to
 ask the server for the default values that would be used for any
 nodes not present, but some default value is in use by the server.
 (There is no

 retrieval mode like "with-defaults=report-all" in NETCONF.)

 If a leaf definition has a default value, and the leaf has not been
 given a value yet, the server SHOULD NOT return any value for the
 leaf in the response for a GET operation.

Bierman & Bjorklund Expires June 3, 2013 [Page 19]

Internet-Draft YANG-API November 2012

 Applications which need more control over the defaults model might
 consider using NETCONF instead of YANG-API.

2.4. Transaction Model

 The YANG-API protocol does not provide a complex transaction model
 that allows for multiple protocol operations, or even operations on
 multiple resources in one protocol operation. A very simple "one
 operation one one resource" per transaction model is used instead.

 Applications which need more control over the transaction model might
 consider using NETCONF instead of YANG-API.

2.5. Extensibility Model

 The YANG-API protocol is designed to be extensible for datastore
 content and data-model specific protocol operations. New protocol
 operations can be added without changing the entry point if they are
 optional and do not alter any existing operations.

 Separate namespaces for each YANG module are used. Content encoded
 in XML will indicate the module using the "namespace" URI value in
 the YANG module. Content encoded in JSON will indicate the module
 using the module name specified in the YANG module. JSON encoding
 rules for module namespaces are specified in
 [I-D.lhotka-netmod-json].

2.6. Versioning Model

 The version of a resource instance is identified with an entity tag,
 as defined by HTTP. The version identifiers in this section apply to
 the version of the schema definition of a resource. There are two
 types of schema versioning information used in the YANG-API protocol:

 o the YANG-API protocol version

 o data and operation resource definition versions

 The protocol version is identified by the string used for the well-
 known URI entry point "/yang-api". This would be changed (e.g.,
 "/yang-api2") if non-backward compatible changes are ever needed.
 Minor version changes that do not break backward-compatibility will
 not cause the entry point to change.

 The API "yang-api/version" field can be used by the client to
 identify the exact version of the YANG-API protocol implemented by
 the server. This value will include the complete YANG-API protocol
 version. The "/yang-api" entry point will only change (e.g.,

Bierman & Bjorklund Expires June 3, 2013 [Page 20]

Internet-Draft YANG-API November 2012

 "/yang-api2") if non-backward compatible changes are made to the
 protocol. The "/yang-api/version" field MUST be updated every time
 the protocol specification is republished.

 The resource definition version for a data or operation resource is a
 date string, which is the revision date of the YANG module that
 defines the resource. The resource version for all other resource
 types is a numeric string, defined by the "/yang-api/version" field.

2.7. Retrieval Filtering Model

 There are four types of filtering for retrieval of data resources in
 the YANG-API protocol.

 o conditional all-or-nothing: use some conditional test mechanism in
 the request headers and retrieve either a complete "200 OK"
 response if the condition is met, or a "304 Not Modified" Status-
 Line if the condition is not met.

 o data classification: request configuration or non-configuration
 data.

 o subset: request a subset of all possible instances of a list or
 leaf-list data resource.

 o filter: request a subset of all possible descendant nodes within
 the target resource. The "select" query parameter can be used for
 this purpose.

 Refer to Section 5.3.4 for details on data retrieval filtering.

2.8. Access Control Model

 The YANG-API protocol provides no granular access control for any
 content except for operation and data resources. The NETCONF Access
 Control Model (NACM) is defined in [RFC6536]. There is a specific
 mapping between YANG-API operations and NETCONF edit operations,
 defined in Table 1. The resource path also needs to be converted
 internally by the server to the corresponding YANG instance-
 identifier. Using this information, the server can apply the NACM
 access control rules to YANG-API messages.

 The server MUST NOT allow any operation to any resources that the
 client is not authorized to access.

Bierman & Bjorklund Expires June 3, 2013 [Page 21]

Internet-Draft YANG-API November 2012

3. Operations

 The YANG-API protocol uses HTTP methods to identify the CRUD
 operation requested for a particular resource or field within a
 resource. The following table shows how the YANG-API operations
 relate to NETCONF protocol operations:

 +----------+-------------------------------------+
 | YANG-API | NETCONF |
 +----------+-------------------------------------+
 | OPTIONS | none |
 | HEAD | none |
 | GET | <get-config>, <get> |
 | POST | <edit-config> (operation="create") |
 | PUT | <edit-config> (operation="replace") |
 | PATCH | <edit-config> (operation="merge") |
 | DELETE | <edit-config> (operation="delete") |
 +----------+-------------------------------------+

 Table 1: CRUD Operations in YANG-API

 The NETCONF "remove" operation attribute is not supported by the HTTP
 DELETE method. The resource must exist or the DELETE operation will
 fail.

 This section defines the YANG-API protocol usage for each HTTP
 method.

3.1. OPTIONS

 The OPTIONS method is sent by the client to discover which methods
 are supported by the server for a specific resource, or field within
 a resource. It is supported for all media types. Note that
 implementation of this operation is part of HTTP, and this section
 does not introduce any additional requirements.

 The request MUST contain a request URI that contains at least the
 entry point component.

 The server will return a "Status-Line" header containing "204 No
 Content". and include the "Allow" header in the response. This
 header will be filled in, based on the target resource media type.
 Other headers MAY also be included in the response.

 Example 1:

 A client might request the methods supported for a data resource
 called "library"

Bierman & Bjorklund Expires June 3, 2013 [Page 22]

Internet-Draft YANG-API November 2012

 OPTIONS /yang-api/datastore/jukebox/library HTTP/1.1
 Host: example.com

 The server might respond (for a config=true list):

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH,DELETE

 Example 2:

 A client might request the methods supported for a non-configuration
 leaf within a data resource:

 OPTIONS /yang-api/datastore/jukebox/library/
 song-count HTTP/1.1
 Host: example.com

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:02:00 GMT
 Server: example-server
 Allow: OPTIONS,HEAD,GET

 Example 3:

 A client might request the methods supported for an operation
 resource called "play":

 OPTIONS /yang-api/operations/play HTTP/1.1
 Host: example.com

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:02:00 GMT
 Server: example-server
 Allow: POST

3.2. HEAD

 The HEAD operation is sent by the client to retrieve just the headers
 that would be returned for the comparable GET operation, without the
 response body. The HTTP HEAD method is used for this operation. It
 is supported for all resource types, except operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 23]

Internet-Draft YANG-API November 2012

 The request MUST contain a request URI that contains at least the
 entry point component.

 The same query parameters supported by the GET operation are
 supported by the HEAD operation. For example, the "select" query
 parameter can be used to specify a field within the target resource.

 The access control behavior is enforced as if the method was GET
 instead of HEAD. The server MUST respond the same as if the method
 was GET instead of HEAD, except that no response body is included.

 Example:

 The client might request the response headers for the default (JSON)
 representation of the "library" resource:

 HEAD /yang-api/datastore/jukebox/library HTTP/1.1
 Host: example.com

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:02:40 GMT
 Server: example-server
 Content-Type: application/vnd.yang.data+json
 Cache-Control: no-cache
 Pragma: no-cache
 ETag: a74eefc993a2b
 Last-Modified: Mon, 23 Apr 2012 11:02:14 GMT

3.3. GET

 The GET operation is sent by the client to retrieve data and meta-
 data for a resource or field within a resource. The HTTP GET method
 is used for this operation. It is supported for all resource types,
 except operation resources. The request MUST contain a request URI
 that contains at least the entry point component.

 The following query parameters are supported by the GET operation:

 +--------+---------+--+
 | Name | Section | Description |
 +--------+---------+--+
config	3.8.1	Request either configuration or
		non-configuration data
depth	3.8.2	Control the depth of a retrieval request
format	3.8.3	Request either JSON or XML content in the
		response

Bierman & Bjorklund Expires June 3, 2013 [Page 24]

Internet-Draft YANG-API November 2012

 | select | 3.8.6 | Specify a field within the target resource |
 +--------+---------+--+

 GET Query Parameters

 The server MUST NOT return any data resources or fields within any
 data resources for which the user does not have read privileges.

 If the user is not authorized to read any portion of the target
 resource, an error response containing a "403 Forbidden" Status-Line
 is returned to the client.

 If the user is authorized to read some but not all of the target
 resource, the unauthorized content is omitted from the response
 message body, and the authorized content is returned to the client.

 Example:

 The client might request the response headers for a JSON
 representation of the "library" resource:

 GET /yang-api/datastore/jukebox/library/artist/
 1/album HTTP/1.1
 Host: example.com

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:02:40 GMT
 Server: example-server
 Content-Type: application/vnd.yang.data+json
 Cache-Control: no-cache
 Pragma: no-cache
 ETag: a74eefc993a2b
 Last-Modified: Mon, 23 Apr 2012 11:02:14 GMT

 {
 "album" : {
 "name" : "Wasting Light",
 "genre" : "example-jukebox:Alternative",
 "year" : 2011
 }
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 25]

Internet-Draft YANG-API November 2012

3.4. POST

 The POST operation is sent by the client for various reasons. The
 HTTP POST method is used for this purpose. The request MUST contain
 a request URI that contains a target resource that identifies one of
 the following resource types:

 +-------------+--------------------------------------+
 | Type | Description |
 +-------------+--------------------------------------+
 | Data | Create a configuration data resource |
 | Operation | Invoke protocol operation |
 | Transaction | Create a new transaction |
 +-------------+--------------------------------------+

 Resource Types that Support POST

 The following query parameters are supported by the POST operation:

 +--------+---------+---+
 | Name | Section | Description |
 +--------+---------+---+
 | insert | 3.8.4 | Specify where to insert a resource |
 | point | 3.8.5 | Specify the insert point for a resource |
 +--------+---------+---+

 POST Query Parameters

 If the POST operation succeeds, a "200 OK" Status-Line is returned if
 there is no response message body, and a "204 No Content" Status-Line
 is returned if there is a response message body.

 If the user is not authorized to invoke the target (operation)
 resource, or create the target resource, an error response containing
 a "403 Forbidden" Status-Line is returned to the client. All other
 error responses are handled according to the procedures defined in
 Section 6.

3.5. PUT

 The PUT operation is sent by the client to replace the target
 resource.

 The HTTP PUT method is used for this purpose. The request MUST
 contain a request URI that contains a target resource that identifies
 the data resource to replace.

 The following query parameters are supported by the PUT operation:

Bierman & Bjorklund Expires June 3, 2013 [Page 26]

Internet-Draft YANG-API November 2012

 +--------+---------+---------------------------------------+
 | Name | Section | Description |
 +--------+---------+---------------------------------------+
 | insert | 3.8.4 | Specify where to move a resource |
 | point | 3.8.5 | Specify the move point for a resource |
 +--------+---------+---------------------------------------+

 PUT Query Parameters

 If the PUT operation succeeds, a "200 OK" Status-Line is returned,
 and there is no response message body.

 If the user is not authorized to replace the target resource an error
 response containing a "403 Forbidden" Status-Line is returned to the
 client. All other error responses are handled according to the
 procedures defined in Section 6.

3.6. PATCH

 The PATCH operation uses the HTTP PATCH method defined in [RFC5789]
 to provide a "merge" editing mode for data resources. Instead of
 replacing all or part of the target resource, the supplied values are
 merged into the target resource.

 If the PATCH operation succeeds, a "200 OK" Status-Line is returned,
 and there is no response message body.

 If the user is not authorized to alter the target resource an error
 response containing a "403 Forbidden" Status-Line is returned to the
 client. All other error responses are handled according to the
 procedures defined in Section 6.

3.7. DELETE

 The DELETE operation uses the HTTP DELETE method to delete the target
 resource.

 If the DELETE operation succeeds, a "200 OK" Status-Line is returned,
 and there is no response message body.

 If the user is not authorized to delete the target resource then an
 error response containing a "403 Forbidden" Status-Line is returned
 to the client. All other error responses are handled according to
 the procedures defined in Section 6.

Bierman & Bjorklund Expires June 3, 2013 [Page 27]

Internet-Draft YANG-API November 2012

3.8. Query Parameters

 Each YANG-API operation allows zero or more query parameters to be
 present in the request URI. Refer to Section 3 for details on the
 query parameters used in the definition of each operation.

 Query parameters can be given in any order. Each parameter can
 appear zero or one time. A default value may apply if the parameter
 is missing.

 This section defines all the YANG-API query parameters.

3.8.1. "config" Parameter

 The "config" parameter is used to specify whether configuration or
 non-configuration data is requested.

 This parameter is only supported for the GET and HEAD methods. It is
 also only supported if the target resource is a data resource.

 syntax: config= true | false
 default: true

 Example:

 This example request by the client would retrieve only the non-
 configuration data nodes that exist within the second-level "library"
 resource.

 GET /yang-api/datastore/jukebox/library?config=false HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.data+xml

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/vnd.yang.data+json

 {
 "library" : {
 "artist-count" : 42,
 "album-count" : 59,
 "song-count" : 374
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 28]

Internet-Draft YANG-API November 2012

 }

3.8.2. "depth" Parameter

 The "depth" parameter is used to specify the number of nest levels
 returned in a response for a GET operation. A nest-level consists of
 the target resource and any child nodes which are optional data nodes
 (anyxml, leaf, or leaf-list). A non-presence container is
 transparent when determining the nest level. A child node (which is
 not a non-presence container) within a non-presence container is used
 to determine the nest-level.

 The start level is determined by the target resource for the
 operation.

 syntax: depth=<range: 1..max> | unbounded
 default: 1

 Example:

 This example operation would retrieve 2 levels of configuration data
 nodes that exist within the top-level "jukebox" resource.

 GET /yang-api/datastore/jukebox?depth=2 HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/vnd.yang.data+json

 {
 "jukebox" : {
 "library" : {
 "artist" : {
 "index" : 1,
 "name" : "Foo Fighters"
 }
 },
 "player" : {
 "gap" : 0.5
 }
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 29]

Internet-Draft YANG-API November 2012

 }

3.8.3. "format" Parameter

 The "format" parameter is used to specify the format of any content
 returned in the response. Note that the "Accept" header MAY be used
 instead of this parameter to identify the format desired in the
 response. For example:

 GET /yang-api/datastore/routing HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.data+xml

 This example request would retrieve only the configuration data nodes
 that exist within the top-level "routing" resource, and retrieve them
 in XML encoding instead of JSON encoding.

 The "format" parameter is only supported for the GET and HEAD
 methods. It is supported for all YANG-API media types.

 syntax: format= xml | json
 default: json

 Example:

 GET /yang-api/datastore/routing?format=xml HTTP/1.1
 Host: example.com

 This example URI would retrieve only the configuration data nodes
 that exist within the top-level "routing" resource, and retrieve them
 in XML encoding instead of JSON encoding.

3.8.4. "insert" Parameter

 The "insert" parameter is used to specify how a resource should be
 inserted (or moved) within the user-ordered list or leaf-list data
 resource.

 This parameter is only supported for the POST and PUT methods. It is
 also only supported if the target resource is a data resource, and
 that data represents a YANG list or leaf-list that is ordered by the
 user, not the system.

 If the values "before" or "after" are used, then a "point" parameter
 for the insertion parameter MUST also be present.

 syntax: insert= first | last | before | after
 default: last

Bierman & Bjorklund Expires June 3, 2013 [Page 30]

Internet-Draft YANG-API November 2012

 Example:

 Request from client:

 POST /yang-api/datastore/jukebox/library/artist/1/album
 /Wasting%20Light/song?insert=first HTTP/1.1
 Host: example.com
 Content-Type: application/vnd.yang.data+json

 {
 "song" : {
 "name" : "Bridge Burning",
 "location" : "/media/bridge_burning.mp3",
 "format" : "MP3",
 "length" : 286
 }
 }

 Response from server: 201 status

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 13:01:20 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT

 Location: http://example.com/yang-api/datastore/jukebox
 /library/artist/1/album?Wasting%20Light/song/1
 ETag: eeeada438af

3.8.5. "point" Parameter

 The "point" parameter is used to specify the insertion point for a
 data resource that is being created or moved within a user ordered
 list or leaf-list. It is ignored unless the "insert" query parameter
 is also present, and has the value "before" or "after".

 This parameter contains the instance identifier of the resource, or
 field within a resource, to be used as the insertion point for a POST
 or PUT operation. It is encoded according to the rules defined in
 Section 5.3.1. There is no default for this parameter.

 syntax: point= <instance-identifier of insertion point node>

 Example:

 In this example, the client is moving an existing "song" resource
 within an "album" resource after another song. The request URI is
 split for display purposes only.

Bierman & Bjorklund Expires June 3, 2013 [Page 31]

Internet-Draft YANG-API November 2012

 Request from client:

 PUT /yang-api/datastore/jukebox/library/artist/1/album/
 Wasting%20Light/song/2?insert=after
 &point=/yang-api/datastore/jukebox/library/artist/1/
 album/Wasting%20Light/song/4 HTTP/1.1
 Host: example.com

 Response from server:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 13:01:20 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
 ETag: abcada438af

3.8.6. "select" Parameter

 The "select" query parameter is used to specify an expression which
 can represent a subset of all data nodes within the target resource.
 It contains a relative path expression, using the target resource as
 the context node.

 It is supported for all resource types except operation resources.
 The contents are encoded according to the "api-select" rule defined
 in Section 5.3.1. This parameter is only allowed for GET and HEAD
 operations.

 [FIXME: the syntax of the select string is still TBD; XPath, schema-
 identifier, regular expressions, something else]

 Refer to Section 1.4.2 for example request messages using the
 "select" parameter.

3.9. Protocol Operations

 The YANG-API also allows data-model specific protocol operations to
 be invoked using the POST method. The media type
 "vnd.yang.operation+xml" or "vnd.yang.operation+json" MUST be used in
 the "Content-Type" field in the message header.

 Data model specific operations are supported. The syntax and
 semantics of these operations exactly correspond to the YANG "rpc"
 statement definition for the operation.

 Any input for a protocol operation is encoded in an element called
 "input", which corresponds to the <input> element in a NETCONF
 message. The child nodes of the "input" element are encoded

Bierman & Bjorklund Expires June 3, 2013 [Page 32]

Internet-Draft YANG-API November 2012

 according to the data definition statements in the input section of
 the "rpc" statement.

 Any output for a protocol operation is encoded in an element called
 "output", which corresponds to the <rpc-reply> element in a NETCONF
 message. The child nodes of the "output" element are encoded
 according to the data definition statements in the output section of
 the "rpc" statement.

Bierman & Bjorklund Expires June 3, 2013 [Page 33]

Internet-Draft YANG-API November 2012

4. Messages

 This section describes the messages that are used in the YANG-API
 protocol.

4.1. Request URI Structure

 Resources are represented with URIs following the structure for
 generic URIs in [RFC3986].

 A YANG-API operation is derived from the HTTP method and the request
 URI, using the following conceptual fields:

 <OP> /yang-api/<path>?<query>#<fragment>

 ^ ^ ^ ^ ^
 | | | | |
 method entry resource query fragment

 M M O O I

 M=mandatory, O=optional, I=ignored

 <text> replaced by client with real values

 o method: the HTTP method identifying the YANG-API operation
 requested by the client, to act upon the target resource specified
 in the request URI. YANG-API operation details are described in
 Section 3.

 o entry: the well-known YANG-API entry point ("/yang-api").

 o resource: the path expression identifying the resource that is
 being accessed by the operation. If this field is not present,
 then the target resource is the API itself, represented by the
 media type "vnd.yang.api".

 o query: the set of parameters associated with the YANG-API message.
 These have the familiar form of "name=value" pairs. There is a
 specific set of parameters defined, although the server MAY choose
 to support additional parameters not defined in this document.

 o fragment: This field is not used by the YANG-API protocol.

 The client SHOULD NOT assume the final structure of a URI path for a

Bierman & Bjorklund Expires June 3, 2013 [Page 34]

Internet-Draft YANG-API November 2012

 resource. Instead, existing resources can be discovered with the GET
 operation. When new resources are created by the client, a
 "Location" header is returned, which identifies the path of the newly
 created resource. The client MUST use this exact path identifier to
 access the resource once it has been created.

 The "target" of an operation is a resource. The "path" field in the
 request URI represents the target resource for the operation.

4.2. Message Headers

 There are several HTTP header lines utilized in YANG-API messages.
 Messages are not limited to the HTTP headers listed in this section.

 HTTP defines which header lines are required for particular
 circumstances. Refer to each operation definition section in
 Section 3 for examples on how particular headers are used.

 There are some request headers that are used within YANG-API, usually
 applied to data resources. The following tables summarize the
 headers most relevant in YANG-API message requests:

 +---------------------+---+
 | Name | Description |
 +---------------------+---+
Accept	Response Content-Types that are acceptable
Content-Type	The media type of the request body
Host	The host address of the server
If-Match	Only perform the action if the entity
	matches ETag
If-Modified-Since	Only perform the action if modified since
	time
If-Range	Only retrieve range if resource unchanged
If-Unmodified-Since	Only perform the action if un-modified
	since time
Range	Specify a range of data resource entries
 +---------------------+---+

 YANG-API Request Headers

 The following tables summarize the headers most relevant in YANG-API
 message responses:

Bierman & Bjorklund Expires June 3, 2013 [Page 35]

Internet-Draft YANG-API November 2012

 +---------------+---+
 | Name | Description |
 +---------------+---+
Allow	Valid actions when 405 error returned
Content-Type	The media type of the response body
Date	The date and time the message was sent
ETag	An identifier for a specific version of a
	resource
Last-Modified	The last modified date and time of a resource
Location	The resource identifier for a newly created
	resource
 +---------------+---+

 YANG-API Response Headers

4.3. Message Encoding

 YANG-API messages are encoded in HTTP according to RFC 2616. The
 "utf-8" character set is used for all messages. YANG-API message
 content is sent in the HTTP message body.

 Content is encoded in either JSON or XML format.

 XML encoding rules for data nodes are defined in [RFC6020]. The same
 encoding rules are used for all XML content. XML attributes are not
 used and will be ignored if present in an XML-encoded message.

 JSON encoding rules are defined in [I-D.lhotka-netmod-json]. Special
 encoding rules are needed to handle multiple module namespaces and
 provide consistent data type processing.

 Request input content encoding format is identified with the Content-
 Type header. This field MUST be present if message input is sent by
 the client.

 Response output content encoding format is identified with the Accept
 header, the "format" query parameter, or if neither is specified, the
 request input encoding format is used. If there was no request
 input, then the default output encoding is JSON. File extensions
 encoded in the request are not used to identify format encoding.

4.4. Return Status

 Each message represents some sort of resource access. An HTTP
 "Status-Line" header line is returned for each request. If a 4xx or
 5xx range status code is returned in the Status-Line, then the error
 information will be returned in the response, according to the format
 defined in Section 6.1.

Bierman & Bjorklund Expires June 3, 2013 [Page 36]

Internet-Draft YANG-API November 2012

4.5. Message Caching

 Since the datastore contents change at unpredictable times, responses
 from a YANG-API server generally SHOULD NOT be cached.

 The server SHOULD include a "Cache-Control" header in every response
 that specifies whether the response should be cached. A "Pragma"
 header specifying "no-cache" MAY also be sent in case the
 "Cache-Control" header is not supported.

 Instead of using HTTP caching, the client SHOULD track the "ETag"
 and/or "Last-Modified" headers returned by the server for the
 datastore resource (or data resource if the server supports it).

 A retrieval request for a resource can include headers such as
 "If-None-Match" or "If-Modified-Since" which will cause the server to
 return a "304 Not Modified" Status-Line if the resource has not
 changed.

 The client MAY use the HEAD operation to retrieve just the message
 headers, which SHOULD include the "ETag" and "Last-Modified" headers,
 if this meta-data is maintained for the target resource.

Bierman & Bjorklund Expires June 3, 2013 [Page 37]

Internet-Draft YANG-API November 2012

5. Resources

 The resources used in the YANG-API protocol are identified by the
 "path" component in the request URI. Each operation is performed on
 a target resource.

5.1. API Resource (/yang-api)

 The API resource contains the state and access points for the YANG-
 API features.

 It is the top-level resource and has the media type "application/
 vnd.yang.api+xml" or "application/vnd.yang.api+json". It is
 accessible through the well-known URI "/yang-api".

 This resource has the following fields:

 +------------+--------------------------------+
 | Field Name | Description |
 +------------+--------------------------------+
 | datastore | Link to "datastore" resource |
 | modules | YANG module capability URIs |
 | operations | Data-model specific operations |
 +------------+--------------------------------+

 YANG-API Resource Fields

5.1.1. /yang-api/datastore

 This mandatory resource represents the running configuration
 datastore and any non-configuration data available. It may be
 retrieved and edited directly. It cannot be created or deleted by
 the client. This resource type is defined in Section 5.2.

5.1.2. /yang-api/modules

 This mandatory field contains the identifiers for the YANG data model
 modules supported by the server. There MUST be exactly one instance
 of this field.

 The server MUST maintain a last-modified timestamp for this field,
 and return the "Last-Modified" header when this field is retrieved
 with the GET or HEAD methods.

5.1.3. /yang-api/operations

 This optional field provides access to the data-model specific
 protocol operations supported by the server. The server MAY omit

Bierman & Bjorklund Expires June 3, 2013 [Page 38]

Internet-Draft YANG-API November 2012

 this field if no data-model specific operations are advertised.

 Any data-model specific operations defined in the YANG modules
 advertised by the server SHOULD be available as child nodes of this
 field.

5.1.3.1. /yang-api/modules/module

 This mandatory field contains one URI string for each YANG data model
 module supported by the server. There MUST be an instance of this
 field for every YANG module that is accessible via an operation
 resource or a data resource.

 The server MAY maintain a last-modified timestamp for each instance
 of this resource, and return the "Last-Modified" header when this
 resource is retrieved with the GET or HEAD methods. If not supported
 then the timestamp for the parent "modules" field MUST NOT be used
 instead.

 The contents of this field are encoded with the "uri" derived type
 from the "ietf-iana-types" modules in [RFC6021].

 There are additional encoding requirements for this field. The URI
 MUST follow the YANG module capability URI formatting defined in
 section 5.6.4 of [RFC6020].

5.1.3.2. Retrieval Example

 In this example the client is retrieving the modules field from the
 server in the default JSON format:

 GET /yang-api?select=modules HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.api+json

 The server might respond as follows. Note that the content below is
 split across multiple lines for display purposes only:

Bierman & Bjorklund Expires June 3, 2013 [Page 39]

Internet-Draft YANG-API November 2012

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Last-Modified: Sun, 22 Apr 2012 01:00:14 GMT
 Content-Type: application/vnd.yang.api+json

 {
 "yang-api": {
 "modules": {
 "module": [
 "example.com?module=foo&revision=2012-01-02",
 "example.com?module=bar&revision=2011-10-10"
 "example.com?module=itf&revision=2011-10-10
 &feature=restore"
]
 }
 }
 }

5.1.4. /yang-api/version

 This mandatory field identifies the specific version of the YANG-API
 protocol implemented by the server.

 The same server-wide response MUST be returned each time this field
 is retrieved. It is assigned by the server when the server is
 started. The server MUST return the value "1.0" for this version of
 the YANG-API protocol.

 This field is encoded with the rules for an "enumeration" data type,
 using the following leaf definition:

 leaf version {
 config false;
 type enum {
 enum "1.0" {
 description
 "Version 1.0 of the YANG-API protocol.";
 }
 }
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 40]

Internet-Draft YANG-API November 2012

5.2. Datastore Resource

 A datastore resource represents the conceptual root of a tree of data
 resources.

 The server MUST maintain a last-modified timestamp for this resource,
 and return the "Last-Modified" header when this resource is retrieved
 with the GET or HEAD methods. Only changes to configuration data
 resources within the datastore affect this timestamp.

 The server SHOULD maintain a resource entity tag for this resource,
 and return the "ETag" header when this resource is retrieved with the
 GET or HEAD methods. The resource entity tag SHOULD be changed to a
 new previously unused value if changes to any configuration data
 resources within the datastore are made.

 A datastore resource can be retrieved with the GET operation, to
 retrieve either configuration data resources or non-configuration
 data resources within the datastore. The "config" query parameter is
 used to choose between them. Refer to Section 3.8.1 for more
 details.

 The depth of the subtrees returned in retrieval operations can be
 controlled with the "depth" query parameter. The number of nest
 levels, starting at the target resource, can be specified, or an
 unlimited number can be returned. Refer to Section 3.8.2 for more
 details.

 A datastore resource cannot be written directly with any edit
 operation. Only the configuration data resources within the
 datastore resource can be edited.

5.3. Data Resource

 A data resource represents a YANG data node that is a descendant node
 of a datastore resource.

 For configuration data resources, the server MAY maintain a last-
 modified timestamp for the resource, and return the "Last-Modified"
 header when it is retrieved with the GET or HEAD methods.

 For configuration data resources, the server MAY maintain a resource
 entity tag for the resource, and return the "ETag" header when it is
 retrieved as the target resource with the GET or HEAD methods. The
 resource entity tag SHOULD be changed to a new previously unused
 value if changes to the resource or any configuration field within
 the resource is altered.

Bierman & Bjorklund Expires June 3, 2013 [Page 41]

Internet-Draft YANG-API November 2012

 A data resource can be retrieved with the GET operation, to retrieve
 either configuration data resources or non-configuration data
 resources within the target resource. The "config" query parameter
 is used to choose between them. Refer to Section 3.8.1 for more
 details.

 The depth of the subtrees returned in retrieval operations can be
 controlled with the "depth" query parameter. The number of nest
 levels, starting at the target resource, can be specified, or an
 unlimited number can be returned. Refer to Section 3.8.2 for more
 details.

 A configuration data resource can be altered by the client with some
 of all of the edit operations, depending on the target resource and
 the specific operation. Refer to Section 3 for more details on edit
 operations.

5.3.1. Encoding YANG Instance Identifiers in the Request URI

 In YANG, data nodes are named with an absolute XPath expression, from
 the document root to the target resource. In YANG-API, URL friendly
 path expressions are used instead.

 The YANG "instance-identifier" (i-i) data type is represented in
 YANG-API with the path expression format defined in this section.

 +-------+---+
 | Name | Comments |
 +-------+---+
 | point | Insertion point is always a full i-i |
 | path | Request URI path is a full or partial i-i |
 +-------+---+

 YANG-API instance-identifier Type Conversion

 The "path" component of the request URI contains the absolute path
 expression that identifies the target resource. The "select" query
 parameter is used to optionally identify the requested data nodes
 within the target resource to be retrieved in a GET operation.

 A predictable location for a data resource is important, since
 applications will code to the YANG data model module, which uses
 static naming and defines an absolute path location for all data
 nodes.

 A YANG-API data resource identifier is not an XPath expression. It
 is encoded from left to right, starting with the top-level data node,
 according to the "api-path" rule in Section 5.3.1.1. The node name

Bierman & Bjorklund Expires June 3, 2013 [Page 42]

Internet-Draft YANG-API November 2012

 of each ancestor of the target resource node is encoded in order,
 ending with the node name for the target resource.

 If the "select" is present, it is encoded, starting with a child node
 of the target resource, according to the "api-select" rule defined in
 Section 5.3.1.1.

 If a data node in the path expression is a YANG list node, then the
 key values for the list (if any) are encoded according to the
 "key-value" rule. If the list node is the target resource, then the
 key values MAY be omitted, according to the operation. For example,
 the POST operation to create a new data resource for a list node does
 not allow the key values to be present in the request URI.

 The key leaf values for a data resource representing a YANG list MUST
 be encoded as follows:

 o The value of each leaf identified in the "key" statement is
 encoded in order.

 o All the components in the "key" statement MUST be encoded.
 Partial instance identifiers are not supported.

 o Each value is encoded using the "key-value" rule in
 Section 5.3.1.1, according to the encoding rules for the data type
 of the key leaf.

 o An empty string can be a valid key value (e.g., "/top/list/key1//
 key3").

 o The "/" character MUST be URL-encoded (i.e., "%2F").

 o All whitespace MUST be URL-encoded.

 o A "null" value is not allowed since the "empty" data type is not
 allowed for key leafs.

 o The XML encoding is defined in [RFC6020].

 o The JSON encoding is defined in [I-D.lhotka-netmod-json].

 o The entire "key-value" MUST be properly URL-encoded, according to
 the rules defined in [RFC3986].

 Notifications are not supported by YANG-API because they are not
 supported by HTTP. YANG notification statements are ignored by a
 YANG-API server.

Bierman & Bjorklund Expires June 3, 2013 [Page 43]

Internet-Draft YANG-API November 2012

 Examples:

 /yang-api/datastore/jukebox/library/artist/17&select=name

 /yang-api/datastore/newlist/17&select=nextlist/22/44/myleaf

 /yang-api/datastore/somelist/fred%20and%20wilma

 /yang-api/datastore/somelist/fred%20and%20wilma/address

5.3.1.1. ABNF For Data Resource Identifiers

 The following ABNF syntax is used to construct YANG-API path
 identifiers:

 api-path = "/" api-identifier
 0*("/" (api-identifier | key-value))

 [FIXME: the syntax for the select string is still TBD]
 api-select = api-identifier
 0*("/" (api-identifier | key-value))

 api-identifier = [module-name ":"] identifier

 module-name = identifier

 key-value = string

 ;; An identifier MUST NOT start with
 ;; ((’X’|’x’) (’M’|’m’) (’L’|’l’))
 identifier = (ALPHA / "_")
 *(ALPHA / DIGIT / "_" / "-" / ".")

 string = <an unquoted string>

5.3.2. Identifying YANG-defined Data Resources

 The data resources used in YANG-API are defined with YANG data
 definition statements.

 Not every data node defined in a YANG module should be treated as a
 resource. The YANG-API needs to know which YANG data nodes are
 resources, and which are fields within a resource.

 For data resources, YANG-API uses a simple algorithm for defining
 resource boundaries, within the conceptual sub-trees described by
 YANG data definition statements.

Bierman & Bjorklund Expires June 3, 2013 [Page 44]

Internet-Draft YANG-API November 2012

 All top-level data nodes are considered to be resources. For nodes
 within a top-level resource:

 o a presence container starts a new resource

 o a list starts a new resource

 o an optional terminal node (anyxml, leaf, or leaf-list) starts a
 new resource

 o a data node of type "anyxml" cannot have any sub-resources

 A non-configuration data node cannot be a separate resource from its
 parent. Only top-level data nodes are considered to be resources
 (which only support retrieval methods).

5.3.3. Identifying Optional Keys

 It is sometimes useful to have the server assign the key(s) for a new
 resource. The "Location" header will indicate the key value(s) that
 the server selected, so the client does not need to provide all the
 key leaf values.

 It is useful to identify in the YANG data model module which key
 leafs are optional to provide, and which are not. The YANG extension
 statement "optional-key" is provided to indicate that the leaf
 definition represents an optional key.

 The client MAY provide a value for a key leaf in a POST operation.
 Refer to Section 8 for details on the "optional-key" extension.
 Refer to Section 13 for usage examples of this YANG extension
 statement.

5.3.4. Data Resource Retrieval

 There are four types of filtering for retrieval of data resources.
 This section defines each mode.

5.3.4.1. Conditional Retrieval

 The HTTP headers (such as "If-Modified-Since" and "If-Match") can by
 used in for a request message for a GET operation to check a
 condition within the server state, such as the last time the
 datastore resource was modified, or the resource entity tag of the
 target resource.

 If the condition is met according to the header definition, a "200
 OK" Status-Line and the data requested is returned in the response

Bierman & Bjorklund Expires June 3, 2013 [Page 45]

Internet-Draft YANG-API November 2012

 message. If the condition is not met, a "304 Not Modified" Status-
 Line is returned in response message instead.

5.3.4.2. Data Classification Retrieval

 The "config" query parameter can be used with the GET operation to
 specify whether configuration or non-configuration data is requested.
 Refer to Section 3.8.1 for more details on the "config" query
 parameter.

5.3.4.3. Subset Retrieval

 The "Range" header is used to request a specific subset of the
 instances of a list or leaf-list data resource that are returned by
 the server for a retrieval operation. Normally, if the target
 resource in a request message does not specify an instance, then all
 instances are returned.

 The YANG-API protocol uses the token "entries" instead of "bytes" as
 the range units.

 The entries are numbered starting from "0". A list or leaf-list can
 change order between requests so the client needs to be aware of the
 data model semantics, and whether the list contents are stable enough
 to use the subset retrieval mechanism.

 If the requested range cannot be returned because the range
 specification includes index values for entries that do not exist,
 then an error occurs, and the server MUST return a "416 Requested
 range not satisfiable" Status-Line.

 If the range request can be satisfied, then a "200 OK" Status-Line is
 returned, and the response MUST include a "Content-Range" header
 indicating which entries are returned. The response message body
 contains the data for the requested range of entries.

 Example:

 In this example, the client is requesting 5 "artist" resource
 entries, starting with the 10th entry:

Bierman & Bjorklund Expires June 3, 2013 [Page 46]

Internet-Draft YANG-API November 2012

 Request from client:

 GET /yang-api/datastore/jukebox/library/artist HTTP/1.1
 Host: example.com
 Accept: application/vnd.yang.data+json
 Range: entries 10-14

 Response from server:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 13:01:20 GMT
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/vnd.yang.data+json
 Content-Range: entries 10-14
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 02:12:20 GMT
 ETag: abcada438af

 {
 "artist" : {
 // content removed for brevity
 }
 }

5.3.4.4. Filtered Retrieval

 The "select" query parameter is used to specify a filter that should
 be applied to the target resource to request a subset of all possible
 descendant nodes within the target resource.

 The format of the "select" parameter string is defined in
 Section 3.8.6. The set of nodes selected by the filter expression is
 applied to each context node identified by the target resource.

5.4. Operation Resource

 An operation resource represents an protocol operation defined with
 the YANG "rpc" statement.

 All operation resources share the same module namespace as any top-
 level data resources, so the name of an operation resource cannot
 conflict with the name of a top-level data resource defined within
 the same module.

 If 2 different YANG modules define the same "rpc" identifier, then
 the module name MUST be used in the request URI. For example, if
 "module-A" and "module-B" both defined a "reset" operation, then

Bierman & Bjorklund Expires June 3, 2013 [Page 47]

Internet-Draft YANG-API November 2012

 invoking the operation from "module-A" would be requested as follows:

 POST /yang-api/operations/module-A:reset HTTP/1.1
 Server example.com

 Any usage of an operation resource from the same module, with the
 same name, refers to the same "rpc" statement definition. This
 behavior can be used to design protocol operations that perform the
 same general function on different resource types.

 If the "rpc" statement has an "input" section, then a message body
 MAY be sent by the client in the request, otherwise the request
 message MUST NOT include a message body. If the "rpc" statement has
 an "output" section, then a message body MAY be sent by the server in
 the response. Otherwise the server MUST NOT include a message body
 in the response message, and MUST send a "204 No Content" Status-Line
 instead.

5.4.1. Encoding Operation Input Parameters

 If the "rpc" statement has an "input" section, then the "input" node
 is provided in the message body, corresponding to the YANG data
 definition statements within the "input" section.

 Example:

 The following YANG definition is used for the examples in this
 section.

 rpc reboot {
 input {
 leaf delay {
 units seconds;
 type uint32;
 default 0;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }

 The client might send the following POST request message:

Bierman & Bjorklund Expires June 3, 2013 [Page 48]

Internet-Draft YANG-API November 2012

 POST /yang-api/datastore/operations/reboot HTTP/1.1
 Host: example.com
 Content-Type: application/vnd.yang.data+json

 {
 "input" : {
 "delay" : 600,
 "message" : "Going down for system maintenance",
 "language" : "en-US"
 }
 }

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 25 Apr 2012 11:01:00 GMT
 Server: example-server

5.4.2. Encoding Operation Output Parameters

 If the "rpc" statement has an "output" section, then the "output"
 node is provided in the message body, corresponding to the YANG data
 definition statements within the "output" section.

 Example:

 The following YANG definition is used for the examples in this
 section.

 rpc get-reboot-info {
 input {
 leaf reboot-time {
 units seconds;
 type uint32;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }

 The client might send the following POST request message:

 POST /yang-api/datastore/operations/get-reboot-info HTTP/1.1
 Host: example.com

 The server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 49]

Internet-Draft YANG-API November 2012

 HTTP/1.1 200 OK
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/vnd.yang.data+json

 {
 "output" : {
 "reboot-time" : 30,
 "message" : "Going down for system maintenance",
 "language" : "en-US"
 }
 }

5.4.3. Identifying YANG-defined Operation Resources

 The operation resources used in YANG-API are defined with YANG "rpc"
 statements. All "rpc" statements within a YANG module that are
 supported by the server are available as operation resources.

Bierman & Bjorklund Expires June 3, 2013 [Page 50]

Internet-Draft YANG-API November 2012

6. Error Reporting

 HTTP Status-Lines are used to report success or failure for YANG-API
 operations. The <rpc-error> element returned in NETCONF error
 responses contains some useful information. This error information
 is adapted for use in YANG-API, and error information is returned for
 "4xx" class of status codes.

 The following table summarizes the return status codes used
 specifically by YANG-API operations:

 +-------------------------------+-----------------------------------+
 | Status-Line | Description |
 +-------------------------------+-----------------------------------+
100 Continue	POST accepted, 201 should follow
200 OK	Success with response body
201 Created	POST to create a resource success
202 Accepted	POST to create a resource
	accepted
204 No Content	Success without response body
304 Not Modified	Conditional operation not done
400 Bad Request	Invalid request message
403 Forbidden	Access to resource denied
404 Not Found	Resource target or resource node
	not found
405 Method Not Allowed	Method not allowed for target
	resource
409 Conflict	Resource or lock in use
413 Request Entity Too Large	too-big error
414 Request-URI Too Large	too-big error
415 Unsupported Media Type	non YANG-API media type
416 Requested range not	If-Range error
satisfiable	
500 Internal Server Error	operation-failed
501 Not Implemented	unknown-operation
503 Service Unavailable	Recoverable server error
 +-------------------------------+-----------------------------------+

 HTTP Status Codes used in YANG-API

 Since an operation resource is defined with a YANG "rpc" statement, a
 mapping between the NETCONF <error-tag> value and the HTTP status
 code is needed. The specific error condition and response code to
 use are data-model specific and might be contained in the YANG
 "description" statement for the "rpc" statement.

Bierman & Bjorklund Expires June 3, 2013 [Page 51]

Internet-Draft YANG-API November 2012

 +-------------------------+-------------+
 | <error-tag> | status code |
 +-------------------------+-------------+
 | in-use | 409 |
 | invalid-value | 400 |
 | too-big | 413 |
 | missing-attribute | 400 |
 | bad-attribute | 400 |
 | unknown-attribute | 400 |
 | bad-element | 400 |
 | unknown-element | 400 |
 | unknown-namespace | 400 |
 | access-denied | 403 |
 | lock-denied | 409 |
 | resource-denied | 409 |
 | rollback-failed | 500 |
 | data-exists | 409 |
 | data-missing | 409 |
 | operation-not-supported | 501 |
 | operation-failed | 500 |
 | partial-operation | 500 |
 | malformed-message | 400 |
 +-------------------------+-------------+

 Mapping from error-tag to status code

6.1. Error Response Message

 When an error occurs for a request message on a data resource or an
 operation resource, and a "4xx" class of status codes (except for
 status code "403"), then the server SHOULD send a response body
 containing the information described by the following YANG data
 definition statement:

Bierman & Bjorklund Expires June 3, 2013 [Page 52]

Internet-Draft YANG-API November 2012

 container errors {
 config false;

 list error {
 reference "RFC 6241, Section 4.3";
 leaf error-type {
 mandatory true;
 type enumeration {
 enum transport;
 enum rpc;
 enum protocol;
 enum application;
 }
 }
 leaf error-tag {
 mandatory true;
 type string;
 }
 leaf error-app-tag {
 type string;
 }
 leaf error-path {
 type string; // YANG-API encoded instance-identifier
 }
 leaf error-message {
 type string;
 }
 container error-info {
 // anyxml content here
 }
 }
 }

 Example:

 The following example shows an error returned for an "lock-denied"
 error on a datastore resource.

 POST /yang-api/operations/lock-datastore HTTP/1.1
 Host: example.com

 The server might respond:

Bierman & Bjorklund Expires June 3, 2013 [Page 53]

Internet-Draft YANG-API November 2012

 HTTP/1.1 409 Conflict
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/vnd.yang.api+json

 {
 "errors": {
 "error": {
 "error-type": "protocol",
 "error-tag": "lock-denied",
 "error-message": "Lock failed, lock is already held",
 }
 }
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 54]

Internet-Draft YANG-API November 2012

7. RelaxNG Grammar

 TBD

Bierman & Bjorklund Expires June 3, 2013 [Page 55]

Internet-Draft YANG-API November 2012

8. YANG-API module

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-yang-api@2012-11-30.yang"

 module ietf-yang-api {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-api";
 prefix "api";

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "This module contains a collection of YANG language extensions
 to describe REST API Resources using YANG data definition
 statements.

 Copyright (c) 2012 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-bierman-netconf-yang-api-01.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2012-11-30 {

Bierman & Bjorklund Expires June 3, 2013 [Page 56]

Internet-Draft YANG-API November 2012

 description
 "Initial revision.";
 reference
 "RFC XXXX: YANG-API Protocol.";
 }

 /*
 * Extensions
 */

 extension optional-key {
 description
 "This extension is used to allow the client to create
 a new instance of a resource without providing a
 value for the key leaf containing this statement.
 This extension is ignored for NETCONF, and only
 applies to YANG-API resources and fields.
 This extension is ignored unless it appears
 directly within a ’leaf’ data definition statement.";
 }

 }

 <CODE ENDS>

Bierman & Bjorklund Expires June 3, 2013 [Page 57]

Internet-Draft YANG-API November 2012

9. IANA Considerations

 This document registers one URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-api
 Registrant Contact: The NETMOD WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-yang-api
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-api
 prefix: api
 reference: RFC XXXX

Bierman & Bjorklund Expires June 3, 2013 [Page 58]

Internet-Draft YANG-API November 2012

10. Security Considerations

 TBD

Bierman & Bjorklund Expires June 3, 2013 [Page 59]

Internet-Draft YANG-API November 2012

11. Change Log

 -- RFC Ed.: remove this section before publication.

11.1. 00-01

 o expanded introduction

 o removed transactions

 o removed capabilities

 o simplified editing model

 o removed global protocol operations from ietf-yang-api.yang

 o changed RPC operation terminology to protocol operation

 o updated JSON draft reference

 o updated open issues section

 o updated IANA section

Bierman & Bjorklund Expires June 3, 2013 [Page 60]

Internet-Draft YANG-API November 2012

12. Open Issues

 o Which WG should do this work? NETCONF? NETMOD? It is not clear
 since YANG-API builds on concepts and standards from documents
 owned by both working groups.

 o Resource creation order and other dependencies between resources
 are not well identified in YANG. YANG has leafrefs and instance-
 identifiers, which can be used to identify some order
 dependencies. Are any new mechanisms needed in YANG-API needed to
 identify resource creation order and other dependency
 requirements?

 o There is no "message-id" field in a YANG-API message. Is a
 message identifier needed? If so, should either the "Message-ID"
 or "Content-ID" header from RFC 2392 be used for this purpose?

 o Should sessions be used or not? Should "reusable sessions" be
 used? Better for auditing? How does locking of the /yang-api/
 datastore resource work for multiple edits if a session is 1
 operation? When does the server release the lock and decide it
 has been abandoned or client was disconnected?

 o What syntax should be used for the "select" query parameter?

 o Should the "/yang-api/modules" field within the API resource be a
 separate resource, with its own timestamp? Currently the API
 timestamp is coupled to any changes to the list of loaded modules.
 Should the API resource be static and cacheable?

 o What to do about no REMOVE operation, just DELETE? The effect is
 local to the request; in a NETCONF edit-config it is worse, since
 the netconf request might create/delete/modify many nodes

 o Should every YANG data node be a data resource and every YANG RPC
 statement an operation resource? Is a YANG extension needed to
 allow data modeler control of resource boundaries?

 o Encoding of leafrefs? Is there some additional meta-data needed?
 Do leafref nodes need to be identified in responses (RFC 5988) or
 is the YANG module definition sufficient to provide this meta-
 data?

 o What should the default algorithm be for defining data resources?
 Should the default for an augment from another namespace be to
 start a new resource? Top-level data node defaults as a resource
 OK?

Bierman & Bjorklund Expires June 3, 2013 [Page 61]

Internet-Draft YANG-API November 2012

 o Is the token "entries" legal in the YANG-API usage of Range? What
 units should be used? "bytes" is the only token defined by HTTP.

 o Are all header lines used by YANG-API supported by common
 application frameworks, such as FastCGI and WSGI? If not, then
 should query parameters be used instead, since the QUERY_STRING is
 widely available to WEB applications?

 o Should the <errors> element returned in error responses be a
 separate media type?

 o How should additional datastores be supported, which may be added
 to the NETCONF/NETMOD framework in the future?

Bierman & Bjorklund Expires June 3, 2013 [Page 62]

Internet-Draft YANG-API November 2012

13. Example YANG Module

 module example-jukebox {

 namespace "http://example.com/ns/example-jukebox";
 prefix "jbox";

 import ietf-yang-api { prefix api; }

 organization "Example, Inc.";
 description "Example Jukebox Data Model Module";
 revision "2012-05-30";

 identity genre {
 description "Base for all genre types";
 }

 // abbreviated list of genre classifications
 identity Alternative {
 base genre;
 }
 identity Blues {
 base genre;
 }
 identity Country {
 base genre;
 }
 identity Jazz {
 base genre;
 }
 identity Pop {
 base genre;
 }
 identity Rock {
 base genre;
 }

 container jukebox {
 presence
 "An empty container indicates that the jukebox
 service is available";

 container library {
 list artist {
 key index;
 unique name;

Bierman & Bjorklund Expires June 3, 2013 [Page 63]

Internet-Draft YANG-API November 2012

 leaf index {
 api:optional-key;
 type uint32;
 description
 "Optional key used instead of natural key for
 example. Also rare but possible artists with
 the same name are really different entities.";
 }
 leaf name {
 type string;
 }

 list album {
 key name;
 leaf name {
 type string {
 length "1 .. max";
 }
 }
 leaf genre {
 type identityref { base genre; }
 }
 leaf year {
 type uint16 {
 range "1900 .. max";
 }
 }
 list song {
 api:optional-key;
 key index;
 ordered-by user;
 leaf index {
 type uint32;
 }
 leaf name {
 mandatory true;
 type string;
 }
 leaf location {
 mandatory true;
 type string;
 }
 leaf format {
 type string;
 }
 leaf length {
 units "seconds";
 type uint32;

Bierman & Bjorklund Expires June 3, 2013 [Page 64]

Internet-Draft YANG-API November 2012

 }
 }
 }
 }
 leaf artist-count {
 config false;
 type uint32;
 units "songs";
 description "Number of artists in the library";
 }
 leaf album-count {
 config false;
 type uint32;
 units "albums";
 description "Number of albums in the library";
 }
 leaf song-count {
 type uint32;
 units "songs";
 description "Number of songs in the library";
 }
 }

 list playlist {
 description
 "Example configuration data resource";
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 list song {
 description
 "Example nested configuration data resource";
 ordered-by user;
 key index;
 leaf index {
 api:optional-key;
 type uint32;
 }
 leaf id {
 mandatory true;
 type instance-identifier;
 description
 "Song identifier. Must identify an instance of
 /jukebox/library/artist/album/song.

Bierman & Bjorklund Expires June 3, 2013 [Page 65]

Internet-Draft YANG-API November 2012

 The id is not the key to allow duplicates
 in a playlist";
 }
 }
 }

 container player {
 leaf gap {
 description "Time gap between each song";
 units "tenths of seconds";
 type decimal64 {
 fraction-digits 1;
 range "0.0 .. 2.0";
 }
 }
 }
 }

 rpc play {
 description "Control function for the jukebox player";
 input {
 leaf playlist {
 type string;
 mandatory true;
 description "playlist name";
 }
 leaf song-number {
 type uint32;
 mandatory true;
 description "Song number in playlist to play";
 }
 }
 }
 }

Bierman & Bjorklund Expires June 3, 2013 [Page 66]

Internet-Draft YANG-API November 2012

14. Normative References

 [I-D.lhotka-netmod-json]
 Lhotka, L., "Modeling JSON Text with YANG",
 draft-lhotka-netmod-yang-json-00 (work in progress),
 October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, March 2010.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 March 2012.

Bierman & Bjorklund Expires June 3, 2013 [Page 67]

Internet-Draft YANG-API November 2012

Authors’ Addresses

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

Bierman & Bjorklund Expires June 3, 2013 [Page 68]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Updates: 4253 (if approved) July 2014
Intended status: Standards Track
Expires: January 02, 2015

 NETCONF Call Home using SSH
 draft-ietf-netconf-reverse-ssh-06

Abstract

 This document presents a technique for a NETCONF server to request
 that a NETCONF client initiates a SSH connection to the NETCONF
 server, a technique referred to as ’call home’. Call home is needed
 to support deployments where the NETCONF client is otherwise unable
 to initiate a SSH connection to the NETCONF server directly.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 02, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Watsen Expires January 02, 2015 [Page 1]

Internet-Draft NETCONF Call Home using SSH July 2014

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Requirements Terminology 2
 2. Introduction . 2
 2.1. Applicability Statement 3
 2.2. Update to RFC 4253 3
 2.3. Draft Naming . 3
 3. Benefits to Device Management 3
 4. Protocol . 5
 5. SSH Server Identification and Verification 5
 6. Device Configuration . 6
 7. Security Considerations 7
 8. IANA Considerations . 8
 9. Acknowledgements . 8
 10. References . 8
 10.1. Normative References 8
 10.2. Informative References 9
 Appendix A. Change Log . 9
 A.1. 05 to 06 . 9
 A.2. 04 to 05 . 10
 A.3. 03 to 04 . 10
 A.4. 02 to 03 . 11
 A.5. 01 to 02 . 11
 A.6. 00 to 01 . 11

1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Introduction

Watsen Expires January 02, 2015 [Page 2]

Internet-Draft NETCONF Call Home using SSH July 2014

 This document presents a technique for a NETCONF server to request
 that a NETCONF [RFC6241] client initiates a SSH [RFC4251] connection
 to the NETCONF server, a technique referred to as ’call home’. Call
 home is needed to support deployments where the NETCONF client is
 otherwise unable to initiate a SSH connection to the NETCONF server
 directly.

2.1. Applicability Statement

 The techniques described in this document are suitable for network
 management scenarios such as the ones described in section 3.
 However, these techniques SHOULD only be used for a NETCONF server to
 initiate a connection to a NETCONF client, as described in this
 document.

 The reason for this restriction is that different protocols have
 different security assumptions. The NETCONF over SSH specification
 requires NETCONF clients and servers to verify the identity of the
 other party before starting the NETCONF protocol (section 6 of
 [RFC6242]). This contrasts with the base SSH protocol, which does
 not require programmatic verification of the other party (section
 9.3.4 of [RFC4251] and section 4 of [RFC4252]). In such
 circumstances, allowing the SSH server to contact the SSH client
 would open new vulnerabilities. Therefore, any use of call home with
 SSH for purposes other than NETCONF will need a thorough, contextual
 security analysis.

2.2. Update to RFC 4253

 This document updates the SSH Transport Layer Protocol [RFC4253] only
 by removing the restriction in Section 4 (Connection Setup) of
 [RFC4252] that the SSH Client must initiate the transport connection.
 Security implications related to this change are discussed in
 Security Considerations (Section 7).

2.3. Draft Naming

 (this section should be removed if this draft becomes an RFC)

 This draft’s name includes the string "reverse-ssh", and yet
 currently nowhere in this draft is there any reference to reversing
 SSH. This appearant ommision comes from the -05 edit of this draft,
 where "Reverse SSH" was changed to "Call Home" throughout. If this
 draft becomes an RFC, its name would no longer contain the obsolete
 "reverse-ssh" reference, thus self-correcting this inconsistency.

3. Benefits to Device Management

Watsen Expires January 02, 2015 [Page 3]

Internet-Draft NETCONF Call Home using SSH July 2014

 The SSH protocol is nearly ubiquitous for device management, as it is
 the transport for the command-line applications ‘ssh‘, ‘scp‘, and
 ‘sftp‘ and is the required transport for the NETCONF protocol
 [RFC6241]. However, all these SSH-based protocols expect the network
 element to be the SSH server.

 NETCONF over SSH Call Home enables the network element to
 consistently be the SSH server regardless of which peer initiates the
 underlying TCP connection. Maintaining the role of SSH server is
 both necessary and desirable. It is necessary because SSH channels
 and subsystems can only be opened on the SSH server. It is desirable
 because it conveniently leverages infrastructure that may be deployed
 for host-key verification and user authentication.

 Call home is useful for both initial deployment and on-going device
 management and may be used to enable any of the following scenarios:

 o The network element may proactively call home after being powered
 on for the first time to register itself with its management
 system.

 o The network element may access the network in a way that
 dynamically assigns it an IP address and it doesn’t register its
 assigned IP addressed to a mapping service.

 o The network element may be configured in "stealth mode" and thus
 doesn’t have any open ports for the management system to connect
 to.

 o The network element may be deployed behind a firewall that doesn’t
 allow SSH access to the internal network.

 o The network element may be deployed behind a firewall that
 implements network address translation (NAT) for all internal
 network IP addresses, thus complicating the ability for a
 management system to connect to it.

 o The operator may prefer to have network elements initiate
 management connections believing it is easier to secure one open-
 port in the data center than to have an open port on each network
 element in the network.

 One key benefit of using SSH as the transport protocol is its ability
 to multiplex an unspecified number of independently flow-controlled
 TCP sessions [RFC4254]. This is valuable as the network element only
 needs to be configured to initiate a single call home connection to a
 management system, regardless the number of NETCONF channels the
 management system wants to open.

Watsen Expires January 02, 2015 [Page 4]

Internet-Draft NETCONF Call Home using SSH July 2014

4. Protocol

 The NETCONF server’s perspective (e.g., the network element)

 o The NETCONF server initiates a TCP connection to the NETCONF
 client on the IANA-assigned SSH for NETCONF Call Home port YYYY.

 o The TCP connection is accepted and a TCP session is established.

 o Using this TCP connection, the NETCONF server immediately starts
 the SSH server protocol. That is, the next message sent on the
 TCP stream is SSH’s Protocol Version Exchange message (section
 4.2, [RFC4253]).

 o The SSH connection is established.

 The NETCONF client’s perspective (e.g., the management system)

 o The NETCONF client listens for TCP connections on the IANA-
 assigned NETCONF over SSH Call Home port YYYY.

 o The NETCONF client accepts an incoming TCP connection and a TCP
 session is established.

 o Using this TCP connection, the NETCONF client immediately starts
 the SSH Client protocol, starting with sending the SSH’s Protocol
 Version Exchange message (section 4.2, [RFC4253]).

 o The SSH connection is established.

5. SSH Server Identification and Verification

 When the management system accepts a new incoming TCP connection on
 the NETCONF over SSH Call Home port, it starts the SSH client
 protocol. As the SSH client, it MUST authenticate the SSH server, by
 both identifying the network element and verifying its SSH host key.

 Due to call home having the network element initiate the TCP
 connection, the management system MAY identify the remote peer using
 the source IP address of the TCP connection. However, identifying
 the remote peer using the source IP address of the TCP connection is
 NOT RECOMMENDED as it can only work in networks that use known static
 addresses.

 To support network elements having dynamically-assigned IP addresses,
 or deployed behind gateways that translate their IP addresses (e.g.,
 NAT), the management system MAY identify the device using its SSH
 host key. For instance, a fingerprint of the network element’s host

Watsen Expires January 02, 2015 [Page 5]

Internet-Draft NETCONF Call Home using SSH July 2014

 key could itself be used as an identifier since each device has a
 statistically unique host key. However, identifying the remote peer
 using its host key directly is NOT RECOMMENDED as it requires the
 host key to be manually verified the first time the network element
 connects and anytime its host key changes thereafter.

 Yet another option for identifying the network element is for its
 host key to encode the network element’s identity, such as if the
 host key were a certificate. This option enables the host key to
 change over time, so long as it continues to encode the same
 identity, but brings the next issue of how the management system can
 verify the network element’s host key is authentic.

 The security of SSH is anchored in the ability for the SSH client to
 verify the SSH server’s host key. Typically this is done by
 comparing the host key presented by the SSH server with one that was
 previously configured on the SSH client, looking it up in a local
 database using the identity of the SSH client as the lookup key.
 Nothing changes regarding this requirement due to the direction
 reversal of the underlying TCP connection. To ensure security, the
 management system MUST verify the network element’s SSH host key each
 time a SSH session is established.

 However, configuring distinct host keys on the management system
 doesn’t scale well, which is an important consideration to a network
 management system. A more scalable strategy for the management
 system is for the network element’s manufacturer to sign the network-
 element’s host key with a common trusted key, such as a certificate
 authority. Then, when the network-element is deployed, the
 management system only needs to trust a single certificate, which
 vouches for the authenticity of the various network element host
 keys.

 Since both the identification and verification issues are addressed
 using certificates, this draft RECOMMENDS network elements use a host
 key that can encode a unique identifier (e.g., its serial number) and
 be signed by a common trust anchor (e.g., a certificate authority).
 Examples of suitable public host keys are the X.509v3 keys defined in
 defined in [RFC6187] and the PGP keys defined in [RFC4253].

6. Device Configuration

 How to configure a device to initiate a NETCONF over SSH Call Home
 connection is outside the scope of this document, as implementations
 can support this protocol using a proprietary configuration data
 model. That said, a YANG [RFC6020] model to configure NETCONF over
 SSH Call Home is specified in [draft-ietf-netconf-server-model].

Watsen Expires January 02, 2015 [Page 6]

Internet-Draft NETCONF Call Home using SSH July 2014

7. Security Considerations

 This RFC deviates from standard SSH protocol usage by allowing the
 SSH server to initiate the TCP connection. This conflicts with
 section 4 of the SSH Transport Layer Protocol RFC [RFC4253], which
 states "The client initiates the connection". However this statement
 is made without rationalization and it’s not clear how it impacts the
 security of the protocol, so this section analyzes the security
 offered by having the client initiate the connection.

 First, assuming the SSH server is not using a public host key
 algorithm that certifies its identity, the security of the protocol
 doesn’t seem to be sensitive to which peer initiates the connection.
 That is, it is still the case that reliable distribution of host keys
 (or their fingerprints) should occur prior to first connection and
 that verification for subsequent connections happens by comparing the
 host keys in a locally cached database. It does not seem to matter
 if the SSH server’s host name is derived from user-input or extracted
 from the TCP layer, potentially via a reverse-DNS lookup. Once the
 host name-to-key association is stored in a local database, no man-
 in-the-middle attack is possible due to the attacker being unable to
 guess the real SSH server’s private key (Section 9.3.4 (Man-in-the-
 middle) of [RFC4251]).

 That said, this RFC recommends implementations use a public host key
 algorithm that certifies the SSH server’s identity. The identity can
 be any unique identifier, such as a device’s serial number or a
 deployment-specific value. If this recommendation is followed, then
 no information from the TCP layer would be needed to lookup the
 device in a local database and therefore the directionality of the
 TCP layer is clearly inconsequential.

 The SSH protocol negotiates which algorithms it will use during key
 exchange (Section 7.1 (Algorithm Negotiation) in [RFC4253]). The
 algorithm selected is essentially the first compatible algorithm
 listed by the SSH client that is also listed by the SSH server. For
 a network management application, there may be a need to advertise a
 large number of algorithms to be compatible with the various devices
 it manages. The SSH client SHOULD order its list of public host key
 algorithms such that all the certifiable public host key algorithms
 are listed first. Additionally, when possible, SSH servers SHOULD
 only list certifiable public host key algorithms. Note that since
 the SSH server would have to be configured to know which IP address
 it is to connect to, it is expected that it will also be configured
 to know which host key algorithm to use for the particular
 application, and hence only needs to list just that one public host
 key algorithm.

Watsen Expires January 02, 2015 [Page 7]

Internet-Draft NETCONF Call Home using SSH July 2014

 This RFC suggests implementations can use a device’s serial number as
 a form of identity. A potential concern with using a serial number
 is that the SSH protocol passes the SSH server’s host-key in the
 clear and many times serial numbers encode revealing information
 about the device, such as what kind of device it is and when it was
 manufactured. While there is little security in trying to hide this
 information from an attacker, it is understood that some deployments
 may want to keep this information private. If this is a concern,
 deployments SHOULD use an alternate unique identifier, if even just
 the hash of the device’s serial number.

 An attacker could DoS the application by having it perform
 computationally expensive operations, before deducing that the
 attacker doesn’t posses a valid key. This is no different than any
 secured service and all common precautions apply (e.g., blacklisting
 the source address after a set number of unsuccessful login
 attempts).

8. IANA Considerations

 This document requests that IANA assigns a TCP port number in the
 "Registered Port Numbers" range with the service name "netconf-ssh-
 ch". This port will be the default port for NETCONF over SSH Call
 Home protocol and will be used when the NETCONF server is to initiate
 a connection to a NETCONF client using SSH. Below is the
 registration template following the rules in [RFC6335].

 Service Name: netconf-ssh-ch
 Transport Protocol(s): TCP
 Assignee: IESG <iesg@ietf.org>
 Contact: IETF Chair <chair@ietf.org>
 Description: NETCONF over SSH Call Home
 Reference: RFC XXXX
 Port Number: YYYY

9. Acknowledgements

 The author would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Mehmet Ersue, Wes Hardaker, Stephen Hanna, David
 Harrington, Jeffrey Hutzelman, Radek Krejci, Alan Luchuk, Mouse, Russ
 Mundy, Tom Petch, Peter Saint-Andre, Joe Touch, Sean Turner, Bert
 Wijnen.

10. References

10.1. Normative References

Watsen Expires January 02, 2015 [Page 8]

Internet-Draft NETCONF Call Home using SSH July 2014

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels ", BCP 14, RFC 2119, March 1997.

 [RFC4250] Lehtinen, S. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Assigned Numbers ", RFC 4250, December 2005.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture ", RFC 4251, January 2006.

 [RFC4252] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol ", RFC 4252, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol ", RFC 4253, January 2006.

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol ", RFC 4254, January 2006.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF) ", RFC 6020,
 October 2010.

 [RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication ", RFC 6187, March 2011.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "NETCONF Configuration Protocol", RFC 6241, June
 2011.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", RFC 6335, August
 2011.

10.2. Informative References

 [draft-ietf-netconf-server-model]
 Watsen, K. and J. Schoenwaelder, "A YANG Data Model for
 NETCONF Server Configuration", RFC 6242, June 2011.

Appendix A. Change Log

A.1. 05 to 06

Watsen Expires January 02, 2015 [Page 9]

Internet-Draft NETCONF Call Home using SSH July 2014

 Changed title to "NETCONF Call Home using SSH"

 Revised the Abstract and Introduction to better explain what the
 document regards.

 Changed "MUST" to "SHOULD" in the Applicability Statement.

 Added a "Draft Naming" section explaining why, despite its name,
 reversing SSH is nowhere in the text

 Added PGP keys as another kind of SSH host key encoding identity
 and signed by a trust anchor.

 Revised the Device Considerations section to more clearly explain
 why a device configuration data model is out of scope, and hence
 an Informative reference.

 Clarified Security Considerations section on use of serial
 numbers.

A.2. 04 to 05

 Changed "Reverse SSH" to "Call Home"

 Added references to Applicability Statement

A.3. 03 to 04

 Changed title to "Reverse SSH for NETCONF Call Home" (changed
 again in -05)

 Removed statement on how other SSH channels might be used for
 other protocols

 Improved language on how the management system, as the SSH client,
 MUST authenticate the SSH server

 Clarified that identifying the network element using source IP
 address is NOT RECOMMENDED

 Clarified that identifying the NE using simple certificate
 comparison is NOT RECOMMENDED

 Device Configuration section now more clearly states that the YANG
 model is out of scope

 Change requested port name to "netconf-ssh-ch"

Watsen Expires January 02, 2015 [Page 10]

Internet-Draft NETCONF Call Home using SSH July 2014

 General edits for grammer, capitalization, and spellings

A.4. 02 to 03

 Updated Device Configuration section to reference
 [draft-ietf-netconf-server-model]

A.5. 01 to 02

 Added Applicability Statement

 Removed references to ZeroConf / ZeroTouch

 Clarified the protocol section

 Added a section for identification and verification

A.6. 00 to 01

 Removed the hmac-* family of algorithms

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires January 02, 2015 [Page 11]

NETCONF Working Group M. Badra
Internet-Draft Zayed University
Obsoletes: 5539 (if approved) A. Luchuk
Intended status: Standards Track SNMP Research, Inc.
Expires: October 12, 2015 J. Schoenwaelder
 Jacobs University Bremen
 April 10, 2015

 Using the NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication
 draft-ietf-netconf-rfc5539bis-10

Abstract

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 install, manipulate, and delete the configuration of network devices.
 This document describes how to use the Transport Layer Security (TLS)
 protocol with mutual X.509 authentication to secure the exchange of
 NETCONF messages. This revision of RFC 5539 documents the new
 message framing used by NETCONF 1.1 and it obsoletes RFC 5539.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 12, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Badra, et al. Expires October 12, 2015 [Page 1]

Internet-Draft NETCONF over TLS April 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Connection Initiation . 3
 3. Message Framing . 3
 4. Connection Closure . 3
 5. Certificate Validation 3
 6. Server Identity . 4
 7. Client Identity . 4
 8. Cipher Suites . 6
 9. Security Considerations 6
 10. IANA Considerations . 7
 11. Acknowledgements . 7
 12. References . 8
 12.1. Normative References 8
 12.2. Informative References 8
 Appendix A. Changes from RFC 5539 9
 Authors’ Addresses . 9

1. Introduction

 The NETCONF protocol [RFC6241] defines a mechanism through which a
 network device can be managed. NETCONF is connection-oriented,
 requiring a persistent connection between peers. This connection
 must provide integrity, confidentiality, peer authentication, and
 reliable, sequenced data delivery.

 This document defines how NETCONF messages can be exchanged over
 Transport Layer Security (TLS) [RFC5246]. Implementations MUST
 support mutual TLS certificate-based authentication [RFC5246]. This
 assures the NETCONF server of the identity of the principal who
 wishes to manipulate the management information. It also assures the
 NETCONF client of the identity of the server for which it wishes to
 manipulate the management information.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Badra, et al. Expires October 12, 2015 [Page 2]

Internet-Draft NETCONF over TLS April 2015

2. Connection Initiation

 The peer acting as the NETCONF client MUST act as the TLS client.
 The TLS client actively opens the TLS connection and the TLS server
 passively listens for the incoming TLS connections. The well-known
 TCP port number 6513 is used by NETCONF servers to listen for TCP
 connections established by NETCONF over TLS clients. The TLS client
 MUST send the TLS ClientHello message to begin the TLS handshake.
 The TLS server MUST send a CertificateRequest in order to request a
 certificate from the TLS client. Once the TLS handshake has
 finished, the client and the server MAY begin to exchange NETCONF
 messages. Client and server identity verification is done before the
 NETCONF <hello> message is sent. This means that the identity
 verification is completed before the NETCONF session is started.

3. Message Framing

 All NETCONF messages MUST be sent as TLS "application data". It is
 possible that multiple NETCONF messages be contained in one TLS
 record, or that a NETCONF message be transferred in multiple TLS
 records.

 The previous version of this document [RFC5539] used the framing
 sequence defined in [RFC4742]. This version aligns with [RFC6242]
 and adopts the framing protocol defined in [RFC6242] as follows:

 The NETCONF <hello> message MUST be followed by the character
 sequence]]>]]>. Upon reception of the <hello> message, the peers
 inspect the announced capabilities. If the :base:1.1 capability is
 advertised by both peers, the chunked framing mechanism defined in
 Section 4.2 of [RFC6242] is used for the remainder of the NETCONF
 session. Otherwise, the old end-of-message-based mechanism (see
 Section 4.3 of [RFC6242]) is used.

4. Connection Closure

 A NETCONF server will process NETCONF messages from the NETCONF
 client in the order in which they are received. A NETCONF session is
 closed using the <close-session> operation. When the NETCONF server
 processes a <close-session> operation, the NETCONF server SHALL
 respond and close the TLS session as described in Section 7.2.1 of
 [RFC5246].

5. Certificate Validation

 Both peers MUST use X.509 certificate path validation [RFC5280] to
 verify the integrity of the certificate presented by the peer. The
 presented X.509 certificate may also be considered valid if it

Badra, et al. Expires October 12, 2015 [Page 3]

Internet-Draft NETCONF over TLS April 2015

 matches one obtained by another trusted mechanism, such as using a
 locally configured certificate fingerprint. If X.509 certificate
 path validation fails and the presented X.509 certificate does not
 match a certificate obtained by a trusted mechanism, the connection
 MUST be terminated as defined in [RFC5246].

6. Server Identity

 The NETCONF client MUST check the identity of the server according to
 Section 6 of [RFC6125].

7. Client Identity

 The NETCONF server MUST verify the identity of the NETCONF client to
 ensure that the incoming request to establish a NETCONF session is
 legitimate before the NETCONF session is started.

 The NETCONF protocol [RFC6241] requires that the transport protocol’s
 authentication process results in an authenticated NETCONF client
 identity whose permissions are known to the server. The
 authenticated identity of a client is commonly referred to as the
 NETCONF username. The following algorithm is used by the NETCONF
 server to derive a NETCONF username from a certificate. (Note that
 the algorithm below is the same as the one described in the SNMP-TLS-
 TM-MIB MIB module defined in [RFC6353] and in the ietf-x509-cert-to-
 name YANG module defined in [RFC7407].)

 (a) The server maintains an ordered list of mappings of certificates
 to NETCONF usernames. Each list entry contains

 * a certificate fingerprint (used for matching the presented
 certificate),

 * a map type (indicates how the NETCONF username is derived
 from the certificate), and

 * optional auxiliary data (used to carry a NETCONF username if
 the map type indicates the user name is explicitly
 configured).

 (b) The NETCONF username is derived by considering each list entry
 in order. The fingerprint member of the current list entry
 determines whether the current list entry is a match:

 1. If the list entry’s fingerprint value matches the
 fingerprint of the presented certificate, then consider the
 list entry as a successful match.

Badra, et al. Expires October 12, 2015 [Page 4]

Internet-Draft NETCONF over TLS April 2015

 2. If the list entry’s fingerprint value matches that of a
 locally held copy of a trusted CA certificate, and that CA
 certificate was part of the CA certificate chain to the
 presented certificate, then consider the list entry as a
 successful match.

 (c) Once a matching list entry has been found, the map type of the
 current list entry is used to determine how the username
 associated with the certificate should be determined. Possible
 mapping options are:

 A. The username is taken from the auxiliary data of the current
 list entry. This means the username is explicitely
 configured (map type ’specified’).

 B. The subjectAltName’s rfc822Name field is mapped to the
 username (map type ’san-rfc822-name’). The local part of
 the rfc822Name is used unaltered but the host-part of the
 name must be converted to lowercase.

 C. The subjectAltName’s dNSName is mapped to the username (map
 type ’san-dns-name’). The characters of the dNSName are
 converted to lowercase.

 D. The subjectAltName’s iPAddress is mapped to the username
 (map type ’san-ip-address’). IPv4 addresses are converted
 into decimal-dotted quad notation (e.g., ’192.0.2.1’). IPv6
 addresses are converted into a 32-character all lowercase
 hexadecimal string without any colon separators.

 E. Any of the subjectAltName’s rfc822Name, dNSName, iPAddress
 is mapped to the username (map type ’san-any’). The first
 matching subjectAltName value found in the certificate of
 the above types MUST be used when deriving the name.

 F. The certificate’s CommonName is mapped to the username (map
 type ’common-name’). The CommonName is converted to UTF-8
 encoding. The usage of CommonNames is deprecated and users
 are encouraged to use subjectAltName mapping methods
 instead.

 (d) If it is impossible to determine a username from the list
 entry’s data combined with the data presented in the
 certificate, then additional list entries MUST be searched
 looking for another potential match. Similarily, if the
 username does not comply to the NETCONF requirements on
 usernames [RFC6241], then additional list entries MUST be

Badra, et al. Expires October 12, 2015 [Page 5]

Internet-Draft NETCONF over TLS April 2015

 searched looking for another potential match. If there are no
 further list entries, the TLS session MUST be terminated.

 The username provided by the NETCONF over TLS implementation will be
 made available to the NETCONF message layer as the NETCONF username
 without modification.

 The NETCONF server configuration data model
 [I-D.ietf-netconf-server-model] covers NETCONF over TLS and provides
 further details such as certificate fingerprint formats exposed to
 network configuration systems.

8. Cipher Suites

 Implementations MUST support TLS 1.2 [RFC5246] and are REQUIRED to
 support the mandatory-to-implement cipher suite. Implementations MAY
 implement additional TLS cipher suites that provide mutual
 authentication [RFC5246] and confidentiality as required by NETCONF
 [RFC6241]. Implementations SHOULD follow the recommendations given
 in [I-D.ietf-uta-tls-bcp].

9. Security Considerations

 NETCONF is used to access configuration and state information and to
 modify configuration information, so the ability to access this
 protocol should be limited to users and systems that are authorized
 to view the NETCONF server’s configuration and state or to modify the
 NETCONF server’s configuration.

 Configuration or state data may include sensitive information, such
 as usernames or security keys. So, NETCONF requires communications
 channels that provide strong encryption for data privacy. This
 document defines a NETCONF over TLS mapping that provides for support
 of strong encryption and authentication. The security considerations
 for TLS [RFC5246] and NETCONF [RFC6241] apply here as well.

 NETCONF over TLS requires mutual authentication. Neither side should
 establish a NETCONF over TLS connection with an unknown, unexpected,
 or incorrect identity on the opposite side. Note that the decision
 whether a certificate presented by the client is accepted can depend
 on whether a trusted CA certificate is white listed (see Section 7).
 If deployments make use of this option, it is recommended that the
 white listed CA certificate is used only to issue certificates that
 are used for accessing NETCONF servers. Should the CA certificate be
 used to issue certificates for other purposes, then all certificates
 created for other purposes will be accepted by a NETCONF server as
 well, which is likely not suitable.

Badra, et al. Expires October 12, 2015 [Page 6]

Internet-Draft NETCONF over TLS April 2015

 This document does not support third-party authentication (e.g.,
 backend Authentication, Authorization, and Accounting (AAA) servers)
 due to the fact that TLS does not specify this way of authentication
 and that NETCONF depends on the transport protocol for the
 authentication service. If third-party authentication is needed, the
 SSH transport [RFC6242] can be used.

 RFC 5539 assumes that the end-of-message (EOM) sequence,]]>]]>,
 cannot appear in any well-formed XML document, which turned out to be
 mistaken. The EOM sequence can cause operational problems and open
 space for attacks if sent deliberately in NETCONF messages. It is
 however believed that the associated threat is not very high. This
 document still uses the EOM sequence for the initial <hello> message
 to avoid incompatibility with existing implementations. When both
 peers implement :base:1.1 capability, a proper framing protocol
 (chunked framing mechanism; see Section 3) is used for the rest of
 the NETCONF session, to avoid injection attacks.

10. IANA Considerations

 Based on the previous version of this document, RFC 5539, IANA has
 assigned a TCP port number (6513) in the "Registered Port Numbers"
 range with the service name "netconf-tls". This port will be the
 default port for NETCONF over TLS, as defined in Section 2. Below is
 the registration template following the rules in [RFC6335].

 Service Name: netconf-tls
 Transport Protocol(s): TCP
 Assignee: IESG <iesg@ietf.org>
 Contact: IETF Chair <chair@ietf.org>
 Description: NETCONF over TLS
 Reference: RFC XXXX
 Port Number: 6513

 [[CREF1: RFC Editor: Please replace XXXX above with the allocated RFC
 number and remove this comment. --JS]]

11. Acknowledgements

 The authors like to acknowledge Martin Bjorklund, Olivier Coupelon,
 Mehmet Ersue, Stephen Farrell, Miao Fuyou, Ibrahim Hajjeh, David
 Harrington, Sam Hartman, Alfred Hoenes, Simon Josefsson, Barry Leiba,
 Tom Petch, Eric Rescorla, Dan Romascanu, Kent Watsen, Bert Wijnen,
 Stefan Winter and the NETCONF mailing list members for their comments
 on this document. Charlie Kaufman, Pasi Eronen, and Tim Polk
 provided a thorough review of previous versions of this document.

Badra, et al. Expires October 12, 2015 [Page 7]

Internet-Draft NETCONF over TLS April 2015

 Juergen Schoenwaelder was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

12. References

12.1. Normative References

 [I-D.ietf-uta-tls-bcp]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", draft-
 ietf-uta-tls-bcp-09 (work in progress), February 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165, RFC
 6335, August 2011.

12.2. Informative References

Badra, et al. Expires October 12, 2015 [Page 8]

Internet-Draft NETCONF over TLS April 2015

 [I-D.ietf-netconf-server-model]
 Watsen, K. and J. Schoenwaelder, "NETCONF Server and
 RESTCONF Server Configuration Models", draft-ietf-netconf-
 server-model-06 (work in progress), February 2015.

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC5539] Badra, M., "NETCONF over Transport Layer Security (TLS)",
 RFC 5539, May 2009.

 [RFC6353] Hardaker, W., "Transport Layer Security (TLS) Transport
 Model for the Simple Network Management Protocol (SNMP)",
 STD 78, RFC 6353, July 2011.

 [RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, December 2014.

Appendix A. Changes from RFC 5539

 This section summarizes major changes between this document and RFC
 5539.

 o Documented that NETCONF over TLS uses the new message framing if
 both peers support the :base:1.1 capability.

 o Removed redundant text that can be found in the TLS and NETCONF
 specifications and restructured the text. Alignment with
 [RFC6125].

 o Added a high-level description how NETCONF usernames are derived
 from certificates.

 o Removed the reference to BEEP.

Authors’ Addresses

 Mohamad Badra
 Zayed University

 Email: mbadra@gmail.com

Badra, et al. Expires October 12, 2015 [Page 9]

Internet-Draft NETCONF over TLS April 2015

 Alan Luchuk
 SNMP Research, Inc.
 3001 Kimberlin Heights Road
 Knoxville, TN 37920
 USA

 Phone: +1 865 573 1434
 Email: luchuk@snmp.com
 URI: http://www.snmp.com/

 Juergen Schoenwaelder
 Jacobs University Bremen
 Campus Ring 1
 28759 Bremen
 Germany

 Phone: +49 421 200 3587
 Email: j.schoenwaelder@jacobs-university.de
 URI: http://www.jacobs-university.de/

Badra, et al. Expires October 12, 2015 [Page 10]

Network Working Group T. Mizrahi
Internet Draft Y. Moses
Intended status: Experimental Technion, Israel Institute of Technology
Expires: April 2016 October 15, 2015

 Time Capability in NETCONF
 draft-mm-netconf-time-capability-09.txt

Abstract

 This document defines a capability-based extension to the Network
 Configuration Protocol (NETCONF) that allows time-triggered
 configuration and management operations. This extension allows
 NETCONF clients to invoke configuration updates according to
 scheduled times, and allows NETCONF servers to attach timestamps to
 the data they send to NETCONF clients.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 15, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Mizrahi, Moses Expires April 15, 2016 [Page 1]

Internet-Draft Time Capability in NETCONF October 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction...3
 2. Conventions used in this document..............................3
 2.1. Key words...3
 2.2. Abbreviations...4
 2.3. Terminology...4
 3. Using Time in NETCONF..4
 3.1. The Time Capability in a Nutshell.........................4
 3.2. Notifications and Cancellation Messages...................6
 3.3. Synchronization Aspects...................................8
 3.4. Scheduled Time Format.....................................9
 3.5. Scheduling Tolerance......................................9
 3.6. Near Future Scheduling vs. Far Future Scheduling.........10
 3.7. Time Interval Format.....................................12
 4. Time Capability...13
 4.1. Overview...13
 4.2. Dependencies...13
 4.3. Capability Identifier....................................13
 4.4. New Operations...13
 4.5. Modifications to Existing Operations.....................14
 4.5.1. Affected Operations.................................14
 4.5.2. Processing Scheduled Operations.....................15
 4.6. Interactions with Other Capabilities.....................15
 5. sched-max-futures...16
 5.1. <scheduled-time> Example.................................16
 5.2. <get-time> Example.......................................17
 5.3. Error Example..17
 6. Security Considerations.......................................18
 6.1. General Security Considerations..........................18
 6.2. YANG Module Security Considerations......................19
 7. IANA Considerations...20
 8. Acknowledgments...20
 9. References..21
 9.1. Normative References.....................................21
 9.2. Informative References...................................21
 Appendix A. YANG Module for the Time Capability..................22

Mizrahi, Moses Expires April 15, 2016 [Page 2]

Internet-Draft Time Capability in NETCONF October 2015

1. Introduction

 The Network Configuration Protocol (NETCONF) defined in [RFC6241]
 provides mechanisms to install, manipulate, and delete the
 configuration of network devices. NETCONF allows clients to configure
 and monitor NETCONF servers using remote procedure calls (RPC).

 NETCONF, as defined in [RFC6241], is asynchronous; when a client
 invokes an RPC, it has no control over the time at which the RPC is
 executed, nor does it have any feedback from the server about the
 execution time.

 Time-based configuration ([HotSDN], [TimeTR]) can be a useful tool
 that enables an entire class of coordinated and scheduled
 configuration procedures. Time-triggered configuration allows
 coordinated network updates in multiple devices; a client can invoke
 a coordinated configuration change by sending RPCs to multiple
 servers with the same scheduled execution time. A client can also
 invoke a time-based sequence of updates by sending n RPCs with n
 different update times, T1, T2, ..., Tn, determining the order in
 which the RPCs are executed.

 This memo defines the :time capability in NETCONF. This extension
 allows clients to determine the scheduled execution time of RPCs they
 send. It also allows a server that receives an RPC to report its
 actual execution time to the client.

 The NETCONF time capability is intended for scheduling RPCs that
 should be performed in the near future, allowing to coordinate
 simultaneous configuration changes, or to specify an order of
 configuration updates. Time-of-day-based policies and far-future
 scheduling, e.g., [Cond], are outside the scope of this memo.

 This memo is defined for experimental purposes, and will allow the
 community to experiment with the NETCONF time capability. It is
 expected that based on the lessons learned from this experience the
 NETCONF working group will be able to consider whether to adopt the
 time capability.

2. Conventions used in this document

2.1. Key words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Mizrahi, Moses Expires April 15, 2016 [Page 3]

Internet-Draft Time Capability in NETCONF October 2015

2.2. Abbreviations

 NETCONF Network Configuration Protocol

 RPC Remote Procedure Call

2.3. Terminology

 o Capability [RFC6241]: A functionality that supplements the base
 NETCONF specification.

 o Client [RFC6241]: Invokes protocol operations on a server. In
 addition, a client can subscribe to receive notifications from a
 server.

 o Execution time: The execution time of an RPC is defined as the
 time at which a server completes the execution of an RPC.

 o Scheduled RPC: an RPC that is scheduled to be performed at a
 predetermined time, which is included in the <rpc> message.

 o Scheduled time: The scheduled time of an RPC is the time at which
 the RPC should be invoked. The scheduled time is determined by the
 client, and enforced by the server.

 o Server [RFC6241]: Executes protocol operations invoked by a
 client. In addition, a server can send notifications to a client.

3. Using Time in NETCONF

3.1. The Time Capability in a Nutshell

 The :time capability provides two main functions:

 o Scheduling:
 When a client sends an RPC to a server, the RPC message MAY
 include the scheduled-time element, denoted by Ts in Figure 1. The
 server then executes the RPC at the scheduled time Ts, and once
 completed the server can respond with an RPC reply message.

 o Reporting:
 When a client sends an RPC to a server, the RPC message MAY
 include a get-time element (see Figure 2), requesting the server
 to return the execution time of the RPC. In this case, after the
 server performs the RPC it responds with an RPC reply that
 includes the execution time, Te.

Mizrahi, Moses Expires April 15, 2016 [Page 4]

Internet-Draft Time Capability in NETCONF October 2015

 RPC _________
 executed \
 \/
 Ts
 server ---------------+------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (Ts)/ \
 / \/
 client -----------------------------

 Figure 1 Scheduled RPC

 RPC _________
 executed \
 \/
 Te
 server ------------+---------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (get-time)/ \ (Te)
 / \/
 client -----------------------------

 Figure 2 Reporting the Execution Time of an RPC

 Example 1. A client needs to trigger a commit at n servers, so that
 the n servers perform the commit as close as possible to
 simultaneously. Without the time capability, the client sends a
 sequence of n commit messages, and thus each server performs the
 commit at a different time. By using the time capability, the client
 can send commit messages that are scheduled to take place at a chosen
 time Ts, for example 5 seconds in the future, causing the servers to
 invoke the commit as close as possible to time Ts.

 Example 2. In many applications it is desirable to monitor events or
 collect statistics regarding a common time reference. A client can
 send a set of get-config messages that is scheduled to be executed at
 multiple servers at the same time, providing a simultaneous system-
 wide view of the state of the servers. Moreover, a client can use the
 get-time element in its get-config messages, providing a time
 reference to the sampled element.

Mizrahi, Moses Expires April 15, 2016 [Page 5]

Internet-Draft Time Capability in NETCONF October 2015

 The scenarios of Figure 1 and Figure 2 imply that a third scenario
 can also be supported (Figure 3), where the client invokes an RPC
 that includes a scheduled time, Ts, as well as the get-time element.
 This allows the client to receive feedback about the actual execution
 time, Te. Ideally, Ts=Te. However, the server may execute the RPC at
 a slightly different time than Ts, for example if the server is tied
 up with other tasks at Ts.

 RPC _________
 executed \
 \/
 Ts Te
 server -------------+-+------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (Ts + get-time)/ \ (Te)
 / \/
 client -----------------------------

 Figure 3 Scheduling and Reporting

3.2. Notifications and Cancellation Messages

Notifications

 As illustrated in Figure 1, after a scheduled RPC is executed the
 server sends an rpc-reply. The rpc-reply may arrive a long period of
 time after the RPC was sent by the client, leaving the client without
 a clear indication of whether the RPC was received.

 This document defines a new notification, the netconf-scheduled-
 message notification, which provides an immediate acknowledgement of
 the scheduled RPC.

 The <netconf-scheduled-message> is sent to the client if it is
 subscribed to the NETCONF notifications [RFC6470]; as illustrated in
 Figure 4, when the server receives a scheduled RPC it sends a
 notification to the client.

 The <netconf-scheduled-message> notification includes a <schedule-id>
 element. The <schedule-id> is a unique identifier that the server
 assigns to every scheduled RPC it receives. Thus, a client can keep
 track of all the pending scheduled RPCs; a client can uniquely
 identify a scheduled RPC by the tuple {server, schedule-id}.

Mizrahi, Moses Expires April 15, 2016 [Page 6]

Internet-Draft Time Capability in NETCONF October 2015

 RPC ____________
 executed \
 \/
 Ts
 server -------------------+--------- ----> time
 /\ \ \
 rpc / \notifi- \ rpc-reply
 (Ts)/ \cation \
 / \/ \/
 client -----------------------------

 Figure 4 Scheduled RPC with Notification

Cancellation Messages

 A client can cancel a scheduled RPC by sending a <cancel-schedule>
 RPC. The <cancel-schedule> RPC includes the <schedule-id> of the
 scheduled RPC that needs to be cancelled.

 The <cancel-schedule> RPC, defined in this document, can be used to
 perform a coordinated all-or-none procedure, where either all the
 servers perform the operation on schedule, or the operation is
 aborted.

 Example 3. A client sends scheduled RPC messages to server 1 and
 server 2, both scheduled to be performed at time Ts. Server 1 sends a
 notification indicating that it has successfully scheduled the RPC,
 while server 2 replies with an unknown-element error [RFC6241] that
 indicates that it does not support the time capability. The client
 sends a <cancel-schedule> RPC to server 1, and receives an rpc-reply.
 The message exchange between the client and server 1 in this example
 is illustrated in Figure 5.

Mizrahi, Moses Expires April 15, 2016 [Page 7]

Internet-Draft Time Capability in NETCONF October 2015

 RPC not __________
 executed \
 \/
 Ts
 server --------------------------------+--- ----> time
 /\ \ /\ \
 rpc / \notifi- /cancel- \ rpc-reply
 (Ts)/ \cation /schedule \
 / \/ / \/
 client ------------------------------------

 Figure 5 Cancellation Message

 A cancel-schedule message MUST NOT include the scheduled-time
 parameter. A server that receives a cancel-schedule should try to
 cancel the schedule as soon as possible. If the server is unable to
 cancel the scheduled RPC, for example because it has already been
 executed, it should respond with an rpc-error [RFC6241], in which the
 error-type is ’protocol’, and the error-tag is ’operation-failed’.

3.3. Synchronization Aspects

 The time capability defined in this document requires clients and
 servers to maintain clocks. It is assumed that clocks are
 synchronized by a method that is outside the scope of this document,
 e.g., [NTP] or [IEEE1588].

 This document does not define any requirements pertaining to the
 degree of accuracy of performing scheduled RPCs. Note that two
 factors affect how accurately the server can perform a scheduled RPC;
 one factor is the accuracy of the clock synchronization method used
 to synchronize the clients and servers, and the second factor is the
 server’s ability to execute real-time configuration changes, which
 greatly depends on how it is implemented. Typical networking devices
 are implemented by a combination of hardware and software. While the
 execution time of a hardware module can typically be predicted with a
 high level of accuracy, the execution time of a software module may
 be variable and hard to predict. A configuration update would
 typically require the server’s software to be involved, thus
 affecting how accurately the RPC can be scheduled.

 Another important aspect of synchronization, is monitoring; a client
 should be able to check whether a server is synchronized to a
 reference time source. Typical synchronization protocols, such as the
 Network Time Protocol [NTP] provide the means ([RFC5907], [RFC7317])

Mizrahi, Moses Expires April 15, 2016 [Page 8]

Internet-Draft Time Capability in NETCONF October 2015

 to verify that a clock is synchronized to a time reference by
 querying its Management Information Base (MIB). The get-time feature
 defined in this document (see Figure 2) allows a client to obtain a
 rough estimate of the time offset between the client’s clock and the
 server’s clock.

 Since servers do not perform configuration changes instantaneously,
 the processing time of an RPC should not be overlooked. The scheduled
 time always refers to the start time of the RPC, and the execution
 time always refers to its completion time.

3.4. Scheduled Time Format

 The scheduled time and execution time fields in RPC messages use a
 common time format field.

 The time format used in this document is the date-and-time format,
 that is defined in Section 5.6 of [RFC3339] and in Section 3 of
 [RFC6991].

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

3.5. Scheduling Tolerance

 When a client sends an RPC that is scheduled to Ts, the server MUST
 verify that the value Ts is not too far in the past or in the future.
 As illustrated in Figure 6, the server verifies that Ts is within the
 scheduling tolerance range.

Mizrahi, Moses Expires April 15, 2016 [Page 9]

Internet-Draft Time Capability in NETCONF October 2015

 RPC _________
 received \
 \/
 Ts
 -----+--------------+-----+------------+-------> time

 <------------> <---------------->
 sched-max-past sched-max-future

 <------------------------------->
 scheduling tolerance

 Figure 6 Scheduling Tolerance

 The scheduling tolerance is determined by two parameters,
 sched-max-future and sched-max-past. These two parameters use the
 time-interval format (Section 3.7.), and their default value is 15
 seconds.

 If the scheduled time, Ts is within the scheduling tolerance range,
 the scheduled RPC is performed; if Ts occurs in the past and within
 the scheduling tolerance, the server performs the RPC as soon as
 possible, whereas if Ts is a future time, the server performs the RPC
 at Ts.

 If Ts is not within the scheduling tolerance range, the scheduled RPC
 is discarded, and the server responds with an error message [RFC6241]
 with a bad-element error-tag. An example is provided in Section 5.3.

3.6. Near Future Scheduling vs. Far Future Scheduling

 The scheduling bound defined by sched-max-future guarantees that
 every scheduled RPC is restricted to a near future scheduling time.

 The scheduling mechanism defined in this document is intended for
 near future scheduling, on the order of seconds. Far future
 scheduling is outside the scope of this document.

 Example 1 is a typical example of using near future scheduling; the
 goal in the example is to perform the RPC at multiple servers at the
 same time, and therefore it is best to schedule the RPC to be
 performed a few seconds in the future.

Mizrahi, Moses Expires April 15, 2016 [Page 10]

Internet-Draft Time Capability in NETCONF October 2015

The Challenges of Far Future Scheduling

 When an RPC is scheduled to be performed at a far-future time, during
 the long period between the time at which the RPC is sent and the
 time at which it is scheduled to be executed the following erroneous
 events may occur:

 o The server may restart.

 o The client’s authorization level may be changed.

 o The client may restart and send a conflicting RPC.

 o A different client may send a conflicting RPC.

 In these cases if the server performs the scheduled operation it may
 perform an action that is inconsistent with the current network
 policy, or inconsistent with the currently active clients.

 Near future scheduling guarantees that external events such as the
 examples above have a low probability of occurring during the sched-
 max-future period, and even when they do, the period of inconsistency
 is limited to sched-max-future, which is a short period of time.

The Tradeoff in Setting the sched-max-future Value

 The sched-max-future parameter should be configured to a value that
 is high enough to allow the client to:

 1. Send the scheduled RPC, potentially to multiple servers.

 2. Receive notifications or rpc-error messages from the server(s), or
 wait for a timeout and decide that if no response has arrived then
 something is wrong.

 3. If necessary, send a cancellation message, potentially to multiple
 servers.

 On the other hand, sched-max-future should be configured to a value
 that is low enough to allow a low probability of the erroneous events
 above, typically on the order of a few seconds. Note that even if
 sched-max-future is configured to a low value, it is still possible
 (with a low probability) that an erroneous event will occur. However,
 this short potentially hazardous period is not significantly worse
 than in conventional (unscheduled) RPCs, as even a conventional RPC
 may in some cases be executed a few seconds after it was sent by the
 client.

Mizrahi, Moses Expires April 15, 2016 [Page 11]

Internet-Draft Time Capability in NETCONF October 2015

The Default Value of sched-max-future

 The default value of sched-max-future is defined to be 15 seconds.
 This duration is long enough to allow the scheduled RPC to be sent by
 the client, potentially to multiple servers, and in some cases to
 send a cancellation message, as described in Section 3.2. On the
 other hand, the 15 second duration yields a very low probability of a
 reboot or a permission change.

3.7. Time Interval Format

 The time-interval format is used for representing the length of a
 time interval, and is based on the date-and-time format. It is used
 for representing the scheduling tolerance parameters, as described in
 the previous section.

 While the date-and-time type uniquely represents a specific point in
 time, the time-interval type defined below can be used to represent
 the length of a time interval without specifying a specific date.

 The time-interval type is defined as follows:

 typedef time-interval {
 type string {
 pattern ’\d{2}:\d{2}:\d{2}(\.\d+)?’;
 }
 description
 "Defines a time interval, up to 24 hours.
 The format is specified as HH:mm:ss.f,
 consisting of two digits for hours,
 two digits for minutes, two digits
 for seconds, and zero or more digits
 representing second fractions.";
 }

Example

 The sched-max-future parameter is defined (Appendix A) as a
 time-interval, as follows:

 leaf sched-max-future {
 type time-interval;
 default 00:00:15.0;
 }

Mizrahi, Moses Expires April 15, 2016 [Page 12]

Internet-Draft Time Capability in NETCONF October 2015

 The default value specified for sched-max-future is 0 hours, 0
 minutes, and 15 seconds.

4. Time Capability

 The structure of this section is as defined in Appendix D of
 [RFC6241].

4.1. Overview

 A server that supports the time capability can perform time-triggered
 operations as defined in this document.

 A server implementing the :time capability:

 o MUST support the ability to receive <rpc> messages that include a
 time element, and perform a time-triggered operation accordingly.

 o MUST support the ability to include a time element in the <rpc-
 reply> messages that it transmits.

4.2. Dependencies

With-defaults Capability

 The time capability YANG module (Appendix A.) uses default values,
 and thus it is assumed that the with-defaults capability [RFC6243] is
 supported.

4.3. Capability Identifier

 The :time capability is identified by the following capability string
 (to be assigned by IANA - see Section 0):

 urn:ietf:params:netconf:capability:time:1.0

4.4. New Operations

<cancel-schedule>

 The cancel-schedule RPC is used for cancelling an RPC that was
 previously scheduled.

Mizrahi, Moses Expires April 15, 2016 [Page 13]

Internet-Draft Time Capability in NETCONF October 2015

 A cancel-schedule RPC MUST include the <cancelled-message-id>
 element, which specifies the message ID of the scheduled RPC that
 needs to be cancelled.

 A cancel-schedule RPC MAY include the <get-time> element. In this
 case the rpc-reply includes the <execution-time> element, specifying
 the time at which the scheduled RPC was cancelled.

4.5. Modifications to Existing Operations

4.5.1. Affected Operations

 The :time capability defined in this memo can be applied to any of
 the following operations:

 o get-config

 o get

 o copy-config

 o edit-config

 o delete-config

 o lock

 o unlock

 o commit

 Three new elements are added to each of these operations:

 o <scheduled-time>
 This element is added to the input of each operation, indicating
 the time at which the server is scheduled to invoke the operation.
 Every <rpc> message MAY include the <scheduled-time> element. A
 server that supports the :time capability and receives an <rpc>
 message with a <scheduled-time> element MUST perform the operation
 as close as possible to the scheduled time.

 The <scheduled-time> element uses the date-and-time format
 (Section 3.4.).

Mizrahi, Moses Expires April 15, 2016 [Page 14]

Internet-Draft Time Capability in NETCONF October 2015

 o <get-time>
 This element is added to the input of each operation. An <rpc>
 message MAY include a <get-time> element, indicating that the
 server MUST include an <execution-time> in its corresponding <rpc-
 reply>.

 o <execution-time>
 This element is added to the output of each operation, indicating
 the time at which the server completed the operation. An <rpc-
 reply> MAY include the <execution-time> element. A server that
 supports the :time capability and receives an operation with the
 <get-time> element MUST include the execution time in its
 response.

 The execution-time element uses the date-and-time format
 (Section 3.4.).

4.5.2. Processing Scheduled Operations

 A server that receives a scheduled RPC MUST start executing the RPC
 as close as possible to its scheduled execution time.

 If a session between a client and a server is terminated, the server
 MUST cancel all pending scheduled RPCs that were received in this
 session.

 Scheduled RPCs are processed serially, in an order that is defined by
 their scheduled times. Thus, the server sends <rpc-reply> messages to
 scheduled RPCs according to the order of their corresponding
 schedules. Note that this is a modification to the behavior defined
 in [RFC6241], which states that replies are sent in the order the
 requests were received. Interoperability with [RFC6241] is guaranteed
 by the NETCONF capability exchange; a server that does not support
 the :time capability responds to RPCs in the order the requestes were
 received. A server that supports the :time capability replies to
 conventional (non-scheduled) RPCs in the order they were received,
 and replies to scheduled RPCs in the order of their scheduled times.

 If a server receives two or more RPCs that are scheduled to be
 performed at the same time, the server executes the RPCs serially in
 an arbitrary order.

4.6. Interactions with Other Capabilities

Confirmed Commit Capability

Mizrahi, Moses Expires April 15, 2016 [Page 15]

Internet-Draft Time Capability in NETCONF October 2015

 The confirmed commit capability is defined in Section 8.4 of
 [RFC6241]. According to [RFC6241], a confirmed <commit> operation
 MUST be reverted if a confirming commit is not issued within the
 timeout period (which by default is 600 seconds).

 When the time capability is supported, and a confirmed <commit>
 operation is used with the <scheduled-time> element, the confirmation
 timeout MUST be counted from the scheduled time, i.e., the client
 begins the timeout measurement starting at the scheduled time.

5. Examples

5.1. <scheduled-time> Example

 The following example extends the example presented in Section 7.2 of
 [RFC6241] by adding the time capability. In this example, the
 <scheduled-time> element is used to specify the scheduled execution
 time of the configuration update (as shown in Figure 1).

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <scheduled-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 2015-10-21T04:29:00.235Z
 </scheduled-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>

Mizrahi, Moses Expires April 15, 2016 [Page 16]

Internet-Draft Time Capability in NETCONF October 2015

 </rpc-reply>

5.2. <get-time> Example

 The following example is similar to the one presented in Section 5.1.
 , except that in this example the client includes a <get-time>
 element in its RPC, and the server consequently responds with an
 <execution-time> element (as shown in Figure 2).

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <get-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 </get-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 <execution-time>
 2015-10-21T04:29:00.235Z
 </execution-time>
 </rpc-reply>

5.3. Error Example

 The following example presents a scenario in which the scheduled-time
 is not within the scheduling tolerance, i.e., it is too far in the
 past, and therefore an rpc-error is returned.

Mizrahi, Moses Expires April 15, 2016 [Page 17]

Internet-Draft Time Capability in NETCONF October 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <scheduled-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 2010-10-21T04:29:00.235Z
 </scheduled-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>bad-element</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>scheduled-time</bad-element>
 </error-info>
 </rpc-error>
 </rpc-reply>

6. Security Considerations

6.1. General Security Considerations

 The security considerations of the NETCONF protocol in general are
 discussed in [RFC6241].

 The usage of the time capability defined in this document can assist
 an attacker in gathering information about the system, such as the

Mizrahi, Moses Expires April 15, 2016 [Page 18]

Internet-Draft Time Capability in NETCONF October 2015

 exact time of future configuration changes. Moreover, the time
 elements can potentially allow an attacker to learn information about
 the system’s performance. Furthermore, an attacker that sends
 malicious RPC messages can use the time capability to amplify her
 attack; for example, by sending multiple RPC messages with the same
 scheduled time. It is important to note that the security measures
 described in [RFC6241] can prevent these vulnerabilities.

 The time capability relies on an underlying time synchronization
 protocol. Thus, by attacking the time protocol an attack can
 potentially compromise NETCONF when using the time capability. A
 detailed discussion about the threats against time protocols and how
 to mitigate them is presented in [TimeSec].

 The time capability can allow an attacker to attack a NETCONF server
 by sending malicious RPCs that are scheduled to take place in the
 future. For example, an attacker can send multiple scheduled RPCs
 that are scheduled to be performed at the same time. Another possible
 attack is to send a large number of scheduled RPCs to a NETCONF
 server, potentially causing the server’s buffers to overflow. These
 attacks can be mitigated by a carefully designed NETCONF server; when
 a server receives a scheduled RPC that exceeds its currently
 available resources, it should reply with an rpc-error, and discard
 the scheduled RPC.

 Note that if an attacker has been detected and revoked, its future
 scheduled RPCs are not executed; as defined in Section 4.5.2. , once
 the session with the attacker has been terminated, the corresponding
 scheduled RPCs are discarded.

6.2. YANG Module Security Considerations

 This memo defines a new YANG module, as specified in Appendix A.

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory to implement secure
 transport is SSH [RFC6242]. The NETCONF access control model
 [RFC6536] provides the means to restrict access for particular
 NETCONF users to a pre-configured subset of all available NETCONF
 protocol operations and content.

 This YANG module defines <sched-max-future> and <sched-max-past>,
 which are writable/creatable/deletable. These data nodes may be
 considered sensitive or vulnerable in some network environments. An
 attacker may attempt to maliciously configure these parameters to a
 low value, thereby causing all scheduled RPCs to be discarded. For

Mizrahi, Moses Expires April 15, 2016 [Page 19]

Internet-Draft Time Capability in NETCONF October 2015

 instance, if a client expects <sched-max-future> to be 15 seconds,
 but in practice it is maliciously configured to 1 second, then a
 legitimate scheduled RPC that is scheduled to be performed 5 seconds
 in the future will be discarded by the server.

 This YANG module defines the <cancel-schedule> RPC. This RPC may be
 considered sensitive or vulnerable in some network environments.
 Since the value of the <schedule-id> is known to all the clients that
 are subscribed to notifications from the server, the <cancel-
 schedule> RPC may be used maliciously to attack servers by canceling
 their pending RPCs. This attack is addressed in two layers: (i)
 security at the transport layer, limiting the attack only to clients
 that have successfully initiated a secure session with the server,
 and (ii) the authorization level required to cancel an RPC should be
 the same as the level required to schedule it, limiting the attack
 only to attackers with an authorization level that is equal to or
 higher than that of the client that initiated the scheduled RPC.

7. IANA Considerations

 This document proposes to register the following capability
 identifier URN in the ’Network Configuration Protocol (NETCONF)
 Capability URNs’ registry:

 urn:ietf:params:netconf:capability:time:1.0

 This document proposes to register the following XML namespace URN
 in the ’IETF XML registry’, following the format defined in
 [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-time

 This document proposes to register a module name in the ’YANG Module
 Names’ registry, defined in [RFC6020].

 name: ietf-netconf-time

 prefix: nct

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-time

 RFC: TBD

8. Acknowledgments

 The authors gratefully acknowledge Joe Marcus Clarke, Andy Bierman,
 Balazs Lengyel, Jonathan Hansford, John Heasley, Robert Sparks, Al

Mizrahi, Moses Expires April 15, 2016 [Page 20]

Internet-Draft Time Capability in NETCONF October 2015

 Morton, Olafur Gudmundsson, Juergen Schoenwaelder, Joel Jaeggli,
 Alon Schneider and Eylon Egozi for their insightful comments.

 This work was supported in part by Israel Science Foundation grant
 ISF 1520/11.

 This document was prepared using 2-Word-v2.0.template.dot.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC
 3688, January 2004.

 [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,
 Ed., Bierman, A., Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, February 2012.

9.2. Informative References

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC
 6020, October 2010.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

 [RFC6243] Bierman, A., Lengyel, B., "With-defaults Capability
 for NETCONF", RFC 6243, June 2011.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 March 2012.

Mizrahi, Moses Expires April 15, 2016 [Page 21]

Internet-Draft Time Capability in NETCONF October 2015

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, August 2014.

 [Cond] Watsen, K., "Conditional Enablement of Configuration
 Nodes", draft-kwatsen-conditional-enablement-00
 (expired), 2013.

 [HotSDN] Mizrahi, T., Moses, Y., "Time-based Updates in
 Software Defined Networks", the second workshop on hot
 topics in software defined networks (HotSDN), 2013.

 [IEEE1588] IEEE TC 9 Instrumentation and Measurement Society,
 "1588 IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems Version 2", IEEE Standard, 2008.

 [NTP] Mills, D., Martin, J., Burbank, J., Kasch, W.,
 "Network Time Protocol Version 4: Protocol and
 Algorithms Specification", RFC 5905, June 2010.

 [RFC5907] Gerstung, H., Elliott, C., Haberman, B., "Definitions
 of Managed Objects for Network Time Protocol Version 4
 (NTPv4", RFC 5907, June 2010.

 [TimeSec] Mizrahi, T., "Security Requirements of Time Protocols
 in Packet Switched Networks", RFC 7384, October 2014.

 [TimeTR] Mizrahi, T., Moses, Y., "Time-based Updates in
 OpenFlow: A Proposed Extension to the OpenFlow
 Protocol", Technion - Israel Institute of Technology,
 technical report, CCIT Report #835, EE Pub No. 1792,
 2013.
 http://tx.technion.ac.il/˜dew/OFTimeTR.pdf

Appendix A. YANG Module for the Time Capability

 This section is normative.

 <CODE BEGINS> file "ietf-netconf-time@2015-09-01.yang"

 module ietf-netconf-time {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-time";

 prefix nct;

Mizrahi, Moses Expires April 15, 2016 [Page 22]

Internet-Draft Time Capability in NETCONF October 2015

 import ietf-netconf { prefix nc; }

 import ietf-yang-types { prefix yang; }

 import ietf-netconf-monitoring { prefix ncm; }

 organization
 "IETF";

 contact
 "Editor: Tal Mizrahi
 <dew@tx.technion.ac.il>
 Editor: Yoram Moses
 <moses@ee.technion.ac.il>";

 description
 "This module defines a capability-based extension to the
 Network Configuration Protocol (NETCONF) that allows
 time-triggered configuration and management operations.
 This extension allows NETCONF clients to invoke configuration
 updates according to scheduled times, and allows NETCONF
 servers to attach timestamps to the data they send to NETCONF
 clients.

 Copyright (c) 2015 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

 revision 2015-09-01 {
 description
 "Initial version.";
 reference
 "draft-mm-netconf-time-capability:
 Time Capability in NETCONF";
 }

 typedef time-interval {
 type string {

Mizrahi, Moses Expires April 15, 2016 [Page 23]

Internet-Draft Time Capability in NETCONF October 2015

 pattern ’\d{2}:\d{2}:\d{2}(\.\d+)?’;
 }
 description
 "Defines a time interval, up to 24 hours.
 The format is specified as HH:mm:ss.f,
 consisting of two digits for hours,
 two digits for minutes, two digits
 for seconds, and zero or more digits
 representing second fractions.";
 }

 grouping scheduling-tolerance-parameters {
 leaf sched-max-future {
 type time-interval;
 default 00:00:15.0;
 description
 "When the scheduled time is in the future, i.e., greater
 than the present time, this leaf defines the maximal
 difference between the scheduled time
 and the present time that the server is willing to
 accept. If the difference exceeds this number, the
 server responds with an error.";
 }

 leaf sched-max-past {
 type time-interval;
 default 00:00:15.0;
 description
 "When the scheduled time is in the past, i.e., less
 than the present time, this leaf defines the maximal
 difference between the present time
 and the scheduled time that the server is willing to
 accept. If the difference exceeds this number, the
 server responds with an error.";
 }

 description
 "Contains the parameters of the scheduling tolerance.";
 }

Mizrahi, Moses Expires April 15, 2016 [Page 24]

Internet-Draft Time Capability in NETCONF October 2015

 // extending the get-config operation
 augment /nc:get-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <get-config>.";
 }

 augment /nc:get-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <get-config>.";
 }

 augment /nc:get/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;

Mizrahi, Moses Expires April 15, 2016 [Page 25]

Internet-Draft Time Capability in NETCONF October 2015

 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <get>.";
 }

 augment /nc:get/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <get>.";
 }

 augment /nc:copy-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <copy-config>.";
 }

 augment /nc:copy-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;

Mizrahi, Moses Expires April 15, 2016 [Page 26]

Internet-Draft Time Capability in NETCONF October 2015

 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <copy-config>.";
 }

 augment /nc:edit-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <edit-config>.";
 }

 augment /nc:edit-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <edit-config>.";
 }

 augment /nc:delete-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description

Mizrahi, Moses Expires April 15, 2016 [Page 27]

Internet-Draft Time Capability in NETCONF October 2015

 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <delete-config>.";
 }

 augment /nc:delete-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }
 description
 "Adds the time element to <delete-config>.";
 }

 augment /nc:lock/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <lock>.";
 }

Mizrahi, Moses Expires April 15, 2016 [Page 28]

Internet-Draft Time Capability in NETCONF October 2015

 augment /nc:lock/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <lock>.";
 }

 augment /nc:unlock/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <unlock>.";
 }

 augment /nc:unlock/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <unlock>.";
 }

Mizrahi, Moses Expires April 15, 2016 [Page 29]

Internet-Draft Time Capability in NETCONF October 2015

 augment /nc:commit/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <commit>.";
 }

 augment /nc:commit/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <commit>.";
 }

 augment /ncm:netconf-state {
 container scheduling-tolerance {
 uses scheduling-tolerance-parameters;
 description
 "The scheduling tolerance when the time capability
 is enabled.";
 }
 description
 "The scheduling tolerance of the server.";
 }

 rpc cancel-schedule {

Mizrahi, Moses Expires April 15, 2016 [Page 30]

Internet-Draft Time Capability in NETCONF October 2015

 description
 "Cancels a scheduled message.";
 reference
 "draft-mm-netconf-time-capability:
 Time Capability in NETCONF";

 input {
 leaf cancelled-message-id {
 type string;
 description
 "The ID of the message to be cancelled.";
 }
 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include
 the execution-time.";
 }
 }
 output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }
 }
 }

 notification netconf-scheduled-message {
 leaf schedule-id {
 type string;
 description
 "The ID of the scheduled message.";
 }

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

Mizrahi, Moses Expires April 15, 2016 [Page 31]

Internet-Draft Time Capability in NETCONF October 2015

 description
 "Indicates that a scheduled message was received.";
 reference
 "draft-mm-netconf-time-capability:
 Time Capability in NETCONF";
 }

 }
 <CODE ENDS>

Authors’ Addresses

 Tal Mizrahi
 Department of Electrical Engineering
 Technion - Israel Institute of Technology
 Technion City, Haifa, 32000, Israel

 Email: dew@tx.technion.ac.il

 Yoram Moses
 Department of Electrical Engineering
 Technion - Israel Institute of Technology
 Technion City, Haifa, 32000, Israel

 Email: moses@ee.technion.ac.il

Mizrahi, Moses Expires April 15, 2016 [Page 32]

NETCONF Working Group R. Varga
Internet-Draft Pantheon Technologies SRO
Intended status: Standards Track March 3, 2014
Expires: September 02, 2014

 Efficient XML Interchange Capability for NETCONF
 draft-varga-netconf-exi-capability-02

Abstract

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 install, manipulate, and delete the configuration of network devices
 via exchange of XML messages in textual representation. Efficient
 XML Interchange (EXI) is a W3C-recommended binary representation of
 XML Information Set, which is more efficient from both CPU and
 bandwidth utilization perspective. This document defines a
 capability-based extension to the NETCONF protocol that allows peers
 to agree to exchange protocol messages using EXI encoding.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 02, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Varga Expires September 02, 2014 [Page 1]

Internet-Draft EXI Capability March 2014

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. EXI Capability . 3
 3.1. Overview . 3
 3.2. Dependencies . 3
 3.3. Capability Identifier 3
 3.4. Dynamic Schema-informed Encoding Negotiation 4
 3.5. New Mandatory Operations 5
 3.5.1. <start-exi> . 5
 3.5.2. <stop-exi> . 8
 3.6. New Optional Operations 8
 3.6.1. <enable-schema-encoding> 8
 3.6.2. <disable-schema-encoding> 9
 4. YANG module for <start-exi> and <stop-exi> Operations 9
 5. IANA considerations . 14
 6. Security Considerations 14
 7. Acknowledgements . 14
 8. Normative References . 14
 Author’s Address . 14

1. Introduction

 The NETCONF protocol [RFC6241] is defined in terms of two peers,
 client and server, exchanging XML messages in an RPC pattern. These
 messages are encoded as XML text documents, which makes the exchange
 easily understandable by human operators by simply observing them on
 the wire. Unfortunately, this feature takes its toll on both
 computation and network resources, as the representation contains
 redundant information and verbose names.

 Efficient XML Interchange [W3C.REC-exi-20110310] is a W3C
 Recommendation which defines a more efficient way of encoding XML
 Information Set than the usual text representation. This is achieved
 by a combination of reduced verbosity, binary encoding and,
 optionally, pruning of non-essential information like comments.

 It seems advantageous to allow clients and servers participating on a
 NETCONF session to sacrifice human readability to increase processing
 efficiency, especially in environments with high transactional
 activity and/or limited computing resources.

Varga Expires September 02, 2014 [Page 2]

Internet-Draft EXI Capability March 2014

2. Terminology

 This document uses the following terms defined in [RFC6241]:

 o capability

 o client

 o message

 o protocol operation

 o remote procedure call

 o server

3. EXI Capability

3.1. Overview

 The :exi capability indicates that the peer supports EXI message
 encoding and is willing to use it. The capability has no effect on
 data being handled by the NETCONF protocol, nor does it affect
 protocol message exchanges.

3.2. Dependencies

 EXI-encoded documents are binary data, this capability may only be
 used when the underlying transport is 8-bit clean and preserves
 message boundaries in face of arbitrary binary data. Notably this
 requires use of Chunked Framing mechanism as described in [RFC6242]
 when used with SSH transport.

 The optional Dynamic Schema-informed Encoding Negotiation mechanism
 relies on NETCONF Monitoring as defined in [RFC6022].

3.3. Capability Identifier

 The EXI capability is identified by the following capability string:

 urn:ietf:params:netconf:capability:exi:1.0

 The identifier MAY have a the following parameters:

 compression: This indicates that the sender is willing to perform EXI
 compression. The parameter MUST contain a positive integral
 value, which indicates maximum compression block size which the
 sender can process.

 schemas: This indicates that the sender can use schema-informed
 grammars for EXI encoding. The parameter MUST contain a value,
 which has to be one of "builtin", "base:1.1" or "dynamic".

Varga Expires September 02, 2014 [Page 3]

Internet-Draft EXI Capability March 2014

 builtin Indicates the ability to use the XML schema built into the
 EXI specification.

 base:1.1 Superset of "builtin", indicates that the sender
 additionally supports schema-informed EXI encoding, based on
 netconf.xsd schema published in [RFC6241].

 dynamic Superset of "base:1.1", indicates that the sender
 additionally supports dynamic schema-informed encoding
 negotiation outlined below.

 Examples:

 urn:ietf:params:netconf:capability:exi:1.0?compression=1000000

 urn:ietf:params:netconf:capability:exi:1.0?schemas=builtin

 urn:ietf:params:netconf:capability:exi:1.0?schemas=base:1.1

 urn:ietf:params:netconf:capability:exi:1.0?compression=20000&schem
 as=builtin

 urn:ietf:params:netconf:capability:exi:1.0?schemas=dynamic

3.4. Dynamic Schema-informed Encoding Negotiation

 The core of this extension relies on shared knowledge between the
 server and the client where schema-informed encoding is concerned.
 This limits the encoding efficiency as the actual data transferred
 over the session is encoded using the equivalent of the builtin
 schema. Alleviating this limitation requires a mechanism for
 discovering data schemas and a protocol for synchronizing their
 activation.

 The base schema discovery mechanism is already present in [RFC6022].
 This document extends the /netconf-state/schemas/schema subtree with
 a new leaf, exi-useable, which indicates whether the server supports
 the use of that particular schema in the EXI schema-informed encoding
 process.

 The negotiation of use of a particular schema for encoding has
 multiple aspects. First and foremost is the concern of constrained
 environments, which may have limited resources and thus their ability
 to dedicate them to improving encoding efficiency may change over
 lifetime of a NETCONF session. The second issue comes from the need
 to synchronize the values used in the "schema" EXI header field.
 Both end of the session need to map names to the same schemas,
 otherwise the decoding process will not succeed. This name is
 carried verbatim in the stream, so it should be as concise as
 possible.

Varga Expires September 02, 2014 [Page 4]

Internet-Draft EXI Capability March 2014

 When the peers have both indicated support for Dynamic Schema-
 informed Encoding, encoding starts in base:1.1 mode. The client then
 queries the server for the list of schemas, looking for schemas which
 have the exi-useable leaf set to true. It then selects the schemas
 it can use in EXI encoding process, potentially requesting them from
 the server. Finally it prioritizes them and sends a <enable-schema-
 encoding> request for each of them. Once the server has assigned a
 EXI schema-id and communicated it back the the client, both parties
 can use this schema in EXI encoding. The client can request the end
 of use of a particular schema via the <disable-schema-encoding> RPC,
 which the server SHOULD NOT fail.

3.5. New Mandatory Operations

3.5.1. <start-exi>

 Description: The <start-exi> operation requests that the message
 encoding be switched to EXI. The operation is invoked by the
 client and validated by the server. If the server finds the
 parameters acceptable, it will issue a positive response in the
 current session encoding. It MUST encode all subsequent messages
 using EXI encoding with the supplied parameters. It will also
 expect all incoming messages to be EXI-encoded. The client MUST
 NOT send any messages to the server between the time is sends this
 request and the time it receives a response. Once it receives a
 positive reply, it MUST encode all subsequent messages using the
 EXI encoding with the parameters supplied in the RPC. If the
 operation fails, the session message encoding remains unchanged.

 Parameters:

 alignment: Requested EXI alignment. If this parameter is not
 present, bit-packed is assumed. The following values are
 valid:

 bit-packed: Set EXI alignment to bit-packed.

 byte-aligned: Set EXI alignment to byte-aligned.

 pre-compression: Set EXI alignment to pre-compression.

 compressed: Do not specify EXI alignment, but perform EXI
 compression instead.

 fidelity: Requested EXI fidelity options. If this parameter is
 not present or empty, all fidelity options are disabled. The

Varga Expires September 02, 2014 [Page 5]

Internet-Draft EXI Capability March 2014

 following items may be specified:

 <comments/>: Preserve.comments EXI Fidelity option

 <dtd/>: Preserve.dtd EXI Fidelity option

 <lexical-values/>: Preserve.lexicalValues EXI Fidelity option

 <pis/>: Preserve.pis EXI Fidelity option

 <prefixes/>: Preserve.prefixes EXI Fidelity option

 schema: Optional parameter. This specifies what schema options
 should be enabled in the EXI encoding process. The following
 values are valid:

 none Do not use schema-informed grammars at all. This
 translates to using schemaId of <xsd:nil>true</xsd:nil> in
 the EXI Options header.

 builtin Do no use schema-informed grammars, but use the built-
 in XML data types. This translates to using an empty
 schemaId in the EXI Options header.

 base:1.1 Use schema-informed grammar based on netconf.xsd as
 published in [RFC6241] in non-strict mode. The value
 "base:1.1" should be carried in the schemaId field in the
 EXI Options.

 dynamic Same as base:1.1 with the additional support for
 dynamically modifying which schemas are available for
 schema-informed encoding.

 Positive Response: If the device was able to satisfy the request, an
 <rpc-reply> is sent that contains an <ok> element.

 Negative Response: An <rpc-error> element is included in the <rpc-
 reply> if the request cannot be completed for any reason.

 Example:

Varga Expires September 02, 2014 [Page 6]

Internet-Draft EXI Capability March 2014

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <start-exi>
 <alignment>pre-compression</alignment>
 <fidelity>
 <dtd/>
 <lexical-values/>
 </fidelity>
 </start-exi>

Varga Expires September 02, 2014 [Page 7]

Internet-Draft EXI Capability March 2014

 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

3.5.2. <stop-exi>

 Description: The <stop-exi> operation requests that the message
 encoding be switched to textual XML. The operation is invoked by
 the client and validated by the server. If the server is able to
 switch the encoding to XML, it will issue a positive response in
 the current session encoding. It MUST encode all subsequent
 messages using standard XML encoding. It will also expect all
 incoming messages to be XML-encoded. The client MUST NOT send any
 messages to the server between the time is sends this request and
 the time it receives a response. Once it receives a positive
 reply, it MUST encode all subsequent messages using the standard
 XML encoding. If the operation fails, the session message
 encoding remains unchanged. If the session currently uses XML
 encoding, this RPC is a no-operation and SHOULD NOT fail.

 Positive Response: If the device was able to satisfy the request, an
 <rpc-reply> is sent that contains an <ok> element.

 Negative Response: An <rpc-error> element is included in the <rpc-
 reply> if the request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <stop-exi/>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

3.6. New Optional Operations

3.6.1. <enable-schema-encoding>

 Description: The <enable-schema-encoding> requests the device assign
 a numeric identifier for use of a specific schema for EXI Schema-
 informed encoding.

 Parameters:

 identifier: Schema identifier, as defined in [RFC6022].

 version: Schema version, as defined in [RFC6022].

Varga Expires September 02, 2014 [Page 8]

Internet-Draft EXI Capability March 2014

 format: Schema format, as defined in [RFC6022].

 Positive Response: If the device was able to satisfy the request, an
 <rpc-reply> is sent that contains an <exi-schema-id> element,
 which contains the numeric identifier which should be used in the
 schemaId EXI header field. This identifier has to be unique.

 Negative Response: An <rpc-error> element is included in the <rpc-
 reply> if the request cannot be completed for any reason.

3.6.2. <disable-schema-encoding>

 Description: The <disable-schema-encoding> requests the device to
 deallocate the schema ID from use on this session and stop using
 it for encoding data towards the client.

 Parameters:

 exi-schema-id: EXI Schema ID, as assigned by a previous <enable-
 schema-encoding> call.

 Positive Response: If the device was able to satisfy the request, an
 <rpc-reply> is sent that contains an <ok> element.

 Negative Response: An <rpc-error> element is included in the <rpc-
 reply> if the request cannot be completed for any reason.

4. YANG module for <start-exi> and <stop-exi> Operations

 The following YANG module defines the new operations introduced in
 this document. The YANG language is defined in [RFC6020]. Every
 NETCONF speaker that supports the :exi capability MUST implement this
 YANG module.

Varga Expires September 02, 2014 [Page 9]

Internet-Draft EXI Capability March 2014

 <CODE BEGINS> file "ietf-netconf-exi@2014-03-03.yang"

 module ietf-netconf-exi {
 // vi: set et smarttab sw=4 tabstop=4:
 namespace "urn:ietf:params:xml:ns:netconf:exi:1.0";

 prefix exi;

 import ietf-netconf-monitoring {
 prefix ncm;
 revision-date "2010-10-04";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "Robert Varga <robert.varga@pantheon.sk>";

 description
 "NETCONF Protocol Operations for Efficient XML Interchange.";

 revision 2014-03-03 {
 description
 "Updated with dynamic schema negotiation.";
 reference
 "I-D.varga-netconf-exi-capability-02";
 }

 revision 2013-10-21 {
 description
 "Initial revision";
 reference
 "I-D.varga-netconf-exi-capability-01";
 }

 typedef exi-alignment {
 type enumeration {
 enum bit-packed {
 description
 "Use bit-packed EXI alignment";
 }
 enum byte-aligned {
 description
 "Use byte-aligned EXI alignment";
 }
 enum pre-compression {
 description
 "Use pre-compression EXI alignment";
 }
 enum compressed {
 description

Varga Expires September 02, 2014 [Page 10]

Internet-Draft EXI Capability March 2014

 "Do not set EXI alignment, use EXI compression
 instead";
 }
 }

 description "EXI alignment specification.";
 }

 typedef exi-fidelity {
 type enumeration {
 enum comments {
 description
 "Preserve.comments EXI Fidelity option";
 }
 enum dtd {
 description
 "Preserve.dtd EXI Fidelity option";
 }
 enum lexical-values {
 description
 "Preserve.lexicalValues EXI Fidelity option";
 }
 enum pis {
 description
 "Preserve.pis EXI Fidelity option";
 }
 enum prefixes {
 description
 "Preserve.prefixes EXI Fidelity option";
 }
 }

 description "EXI fidelity options.";
 }

 rpc start-exi {
 description
 "Start encoding protocol messages in Efficient XML
 Interchange format.";

 reference "I-D.varga-netconf-exi-capability";

 input {
 leaf alignment {
 type exi-alignment;
 default "bit-packed";
 description "EXI alignment to use.";
 }

 leaf-list fidelity {
 type exi-fidelity;
 description "EXI fidelity options to use.";
 }
 }

Varga Expires September 02, 2014 [Page 11]

Internet-Draft EXI Capability March 2014

 }

 rpc stop-exi {
 description
 "Stop encoding protocol messages in Efficient XML
 Interchange format. Revert back to using the usual text
 XML encoding.";
 }

 grouping schema-identifier {
 description
 "The globally-unique identifier of a schema. This
 grouping contains the verbatim transcription of arguments
 to <get-schema> RPC as defined in RFC6022, except all
 leaves are made mandatory.";

 leaf identifier {
 type string;
 mandatory true;
 description
 "Identifier for the schema list entry.";
 }

 leaf version {
 type string;
 description
 "Version of the schema requested. If this parameter
 is not present, and more than one version of the
 schema exists on the server, a ’data-not-unique’
 error is returned, as described above.";
 }

 leaf format {
 type identityref {
 base ncm:schema-format;
 }
 description
 "The data modeling language of the schema. If this
 parameter is not present, and more than one formats
 of the schema exists on the server, a
 ’data-not-unique’ error is returned, as described
 above.";
 }
 }

 typedef exi-schema-id {
 type uint16;
 description
 "Schema identifier for use in the EXI stream header.";
 }

 augment "/ncm:netconf-state/ncm:schemas/ncm:schema" {
 description
 "Additional information about schemas useful for EXI

Varga Expires September 02, 2014 [Page 12]

Internet-Draft EXI Capability March 2014

 encoding";

 leaf exi-useable {
 type boolean;
 default false;
 description
 "Set to true if the device can use the schema for EXI
 Schema-informed encoding.";
 }
 leaf exi-schema-id {
 type exi-schema-id;
 description
 "The EXI schema ID currently assigned to this schema.
 This value has meaning only within the session and
 may differ on other sessions.";
 }
 }

 rpc enable-schema-encoding {
 description
 "Request the use of specificied schema in EXI message
 encoding. This request is sent by the client to the
 server. If the server is able to transition into using
 the schema, it assigns it a unique EXI integer
 identifier. This identifier is to be used in the EXI
 header as schema identifier.

 The server may start using the identifier as soon as it
 enqueus the response. The client may start using the
 identifier as soon as it sees this RPC complete.";
 input {
 uses schema-identifier;
 }
 output {
 leaf exi-schema-id {
 type exi-schema-id;
 mandatory true;
 description
 "The EXI Schema ID assigned to this schema for
 encoding purposes.";
 }
 }
 }

 rpc disable-schema-encoding {
 description
 "This RPC is send by the client when it stops using a
 particular exi-schema-id.";
 input {
 leaf exi-schema-id {
 type exi-schema-id;
 mandatory true;
 description
 "The EXI Schema ID which should be disabled.";

Varga Expires September 02, 2014 [Page 13]

Internet-Draft EXI Capability March 2014

 }
 }
 }
 }

5. IANA considerations

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol (NETCONF) Capability URNs’
 registry: urn:ietf:params:netconf:capability:exi:1.0

6. Security Considerations

 The compression option present in EXI specification may increase CPU
 and memory requirements for encoding the response. Devices should
 ensure this overhead is acceptable before agreeing to using EXI
 encoding, such that no operational risks are introduced.

7. Acknowledgements

 The author would like to thank Anton Tkacik, Miroslav Miklus and
 Stefan Kobza for their contributions to this document.

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6022] Scott, M. and M. Bjorklund, "YANG Module for NETCONF
 Monitoring", RFC 6022, October 2010.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

 [W3C.REC-exi-20110310]
 Schneider, J. and T. Kamiya, "Efficient XML Interchange
 (EXI) Format 1.0", World Wide Web Consortium
 Recommendation REC-exi-20110310, March 2011, <http://
 www.w3.org/TR/2011/REC-exi-20110310>.

Author’s Address

Varga Expires September 02, 2014 [Page 14]

Internet-Draft EXI Capability March 2014

 Robert Varga
 Pantheon Technologies SRO
 Mlynske Nivy 56
 Bratislava 821 05
 Slovakia

 Email: robert.varga@pantheon.sk

Varga Expires September 02, 2014 [Page 15]

Network Working Group S. Yang
Internet-Draft X. Ji
Intended status: Experimental T. Zou
Expires: January 12, 2014 G. Yan
 Huawei Technologies
 July 11, 2013

 NETCONF rpc-error extension
 draft-ysc-netconf-rpc-error-extension-00

Abstract

 The NETCONF is a machine-machine interface, it is easy to expand.
 This document will expand the rpc-error message to make multiple
 language support easily.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 12, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Yang, et al. Expires January 12, 2014 [Page 1]

Internet-Draft NETCONF rpc-error extension July 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. The definition in NETCONF Protocol 2
 3. The solution . 3
 4. Error-parameters Capability 3
 4.1. Overview . 3
 4.2. Dependencies . 4
 4.3. Capability Identifier 4
 4.4. New Operation . 4
 4.5. Modifications to Existing Operations 4
 4.6. Interactions with Other Capabilities 5
 5. Use Case in NMS . 5
 6. YANG Module for the <error-parameters> 5
 7. IANA Considerations . 7
 8. Security Considerations 8
 9. Acknowledgements . 8
 10. Normative References . 8
 Authors’ Addresses . 9

1. Introduction

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 install, manipulate, and delete the configuration of network devices.
 It uses a RPC-based communication model. NETCONF peer use <rpc> and
 <rpc-reply> elements to provide transport protocol-independent
 framing of NETCONF requests and responses. The <rpc> element is used
 to enclose a NETCONF request sent from the client to the server. The
 <rpc-reply> message is sent in response to an <rpc> message. The
 <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request. The error-message
 is part of rpc-error information; it contains a string suitable for
 human display that describes the error condition.

 The network device of one producer may be used in many industries and
 be integrated with many NMS all over the world, each industry or NMS
 has different custom and demand in the GUI style. So there is a need
 for the error-message to support multiple language and customization.

2. The definition in NETCONF Protocol

Yang, et al. Expires January 12, 2014 [Page 2]

Internet-Draft NETCONF rpc-error extension July 2013

 Although NETCONF already support identify the language type by
 xml:lang="en" in the error-message, but it’s very difficult for
 network devices to support multiple languages or customization for
 error-message, because of storage limitation, complexity on software
 release, unexpected customization requirement, and so on.

 This document describes another solution to resolve this issue by
 extending the rpc-error with a new capability: error-parameters.

3. The solution

 First of all, we classify all languages into two types: common
 language and local language. English is specified as common
 language, and all other languages are specified as local language.
 Each error-message contains 2 parts, static format string and dynamic
 error parameters, each format string mapping to a unique an error-
 app-tag. NMS could translate the format string from common language
 to local language for each error-app-tag, and network devices could
 return the error parameters in the rpc-reply. So network devices
 only need support common language in error-message, NMS could support
 local language for error-message by combining the format string of
 local language and error-parameters. It’s similar to customization,
 network device only need support default error-message in common
 language, and NMS could support customization for error-message.

 Example:

 error-app-tag: 00010001

 Error message: MTU value 25000 of interface ethernet1/0/1 is not
 within range 256..9192

 Error-message definition for common language:

 Error-parameters:25000, ethernet1/0/1, 256, 9192

 Format string: MTU value $1 of interface $2 is not within range
 $3..$4

4. Error-parameters Capability

4.1. Overview

 The :error-parameters capability indicates that the device supports
 to carry error parameters which are referred by error-message in the
 rpc-error. The error-parameters could be used to support local
 language and customization for error-message by NMS.

Yang, et al. Expires January 12, 2014 [Page 3]

Internet-Draft NETCONF rpc-error extension July 2013

4.2. Dependencies

 None.

4.3. Capability Identifier

 The :error-parameters capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:error-parameters:1.0

4.4. New Operation

 None.

4.5. Modifications to Existing Operations

 All operation which may cause an rpc-error carrying error-message
 which refers error parameter.

 The rpc-reply will carry error parameters which are referred by the
 error-message in the rpc-error.

 For example:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>invalid-value</error-tag>
 <error-severity>error</error-severity>
 <error-app-tag>00010001</error-app-tag>
 <error-path xmlns:t="http://example.com/schema/1.2/config">
 /t:top/t:interface[t:name="Ethernet1/0/1"]/t:mtu
 </error-path>
 <error-message xml:lang="en">
 MTU value 25000 of interface ethernet1/0/1 is not within range 256..9192
 </error-message>
 <error-parameters xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-error-pa
rameters">
 <error-parameter>25000</error-parameter>
 <error-parameter>ethernet1/0/1</error-parameter>
 <error-parameter>256</error-parameter>
 <error-parameter>9192</error-parameter>
 </error-parameters>
 </rpc-error>
 </rpc-reply>

Yang, et al. Expires January 12, 2014 [Page 4]

Internet-Draft NETCONF rpc-error extension July 2013

4.6. Interactions with Other Capabilities

 None.

5. Use Case in NMS

 One example is provided to describe how this solution support local
 language for error-message in NMS.

 Example:

 error-app-tag: 00010001

 Error message: MTU value 25000 of interface ethernet1/0/1 is not
 within range 256..9192

 Error-message definition for common language:

 Error-parameters:25000, ethernet1/0/1, 256, 9192

 Format string: MTU value $1 of interface $2 is not within range
 $3..$4

 Major work in NMS for each error-message:

 1. Translation format string to local language:

 Format string: La valeur MTU $1 de l’interface $2 n’est pas dans la
 plage de $3 a $4.

 Remark: The order of error-parameters in the format string of local
 language may be different with format string of common language.

 2. Search the error-message by error-app-tag and combine the error-
 parameters into the format string in local language to generate the
 error-message for local language

 La valeur MTU 25000 de l’interface ethernet1/0/1 n’est pas dans la
 plage de 256 a 9192.

6. YANG Module for the <error-parameters>

 <CODE BEGINS> file="ietf-netconf-error-parameters@2013-07-11.yang"

 module ietf-netconf-error-parameters {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters";

Yang, et al. Expires January 12, 2014 [Page 5]

Internet-Draft NETCONF rpc-error extension July 2013

 prefix ncep;

 import yuma-netconf { prefix nc; }

 organization
 "IETF NETCONF (Network Configuration Protocol) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>

 WG List: <netconf@ietf.org>

 WG Chair: Bert Wijnen
 <bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue
 <mehmet.ersue@nsn.com>

 Editor: Andy Bierman
 <andy.bierman@brocade.com>

 Editor: Balazs Lengyel
 <balazs.lengyel@ericsson.com>";

 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF server to return error parameters in
 the rpc-error which are refered in the error-message.

 Copyright (c) 2013 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-ysc-netconf-rpc-error-extension-00.txt

Yang, et al. Expires January 12, 2014 [Page 6]

Internet-Draft NETCONF rpc-error extension July 2013

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.

 revision 2013-07-11 {
 description
 "Initial version.";
 reference
 "RFC XXXX: NETCONF rpc-error extension";
 }

 grouping ErrorParameters {
 description
 "Contains the <error-parameters> for the <rpc-error> extension.";

 container error-parameters {
 description
 "The container of all error parameters in the <rpc-error>";
 reference
 "RFC XXXX; Section 4.5";

 leaf-list error-parameter {
 type string;
 description
 "error-parameter element";
 reference
 "RFC XXXX; Section 4.5";
 }
 }
 }

 // extending the rpc-error
 augment /nc:rpc-reply/nc:rpc-error {
 description
 "Adds the <error-parameters> parameter to the <rpc-error>.";
 reference
 "RFC XXXX; Section 4.5";

 uses ErrorParameters;
 }
 }

 <CODE ENDS>

7. IANA Considerations

Yang, et al. Expires January 12, 2014 [Page 7]

Internet-Draft NETCONF rpc-error extension July 2013

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol (NETCONF) Capability URNs’
 registry:

 urn:ietf:params:netconf:capability:error-parameters:1.0

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-netconf-error-parameters

 prefix: ncep

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-error-parameters

 RFC: XXXX

8. Security Considerations

 This document does not introduce any further security issues other
 than that discussed in [RFC6241].

9. Acknowledgements

 NA

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

Yang, et al. Expires January 12, 2014 [Page 8]

Internet-Draft NETCONF rpc-error extension July 2013

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

Authors’ Addresses

 Shouchuan Yang
 Huawei Technologies
 Huawei Bld., No.156 Beiqing Rd.
 Beijing 100095
 China

 Email: yangshouchuan@huawei.com

 Xiaofeng Ji
 Huawei Technologies
 Huawei Bld., No.156 Beiqing Rd.
 Beijing 100095
 China

 Email: jixiaofeng@huawei.com

 Ting Zou
 Huawei Technologies
 Santa Clara-2330 Central Expressway
 Santa Clara, CA 95050
 America

 Email: Tina.Tsou.Zouting@huawei.com

 Gang Yan
 Huawei Technologies
 Huawei Bld., No.156 Beiqing Rd.
 Beijing 100095
 China

 Email: yangang@huawei.com

Yang, et al. Expires January 12, 2014 [Page 9]

	draft-bierman-netconf-yang-api-01
	draft-ietf-netconf-reverse-ssh-06
	draft-ietf-netconf-rfc5539bis-10
	draft-mm-netconf-time-capability-09
	draft-varga-netconf-exi-capability-02
	draft-ysc-netconf-rpc-error-extension-00

