
Internet Research Task Force P. Ashwood-Smith
Internet Draft Huawei
Intended status: Informational M. Soliman
Expires: February 03, 2014 Carleton University
 T. Wan
 Huawei
 July 03, 2013

 SDN State Reduction

 draft-ashwood-sdnrg-state-reduction-00.txt

Abstract

 This document makes the argument that to support the centralized
 control of a substantial number of forwarding devices (as Software
 Defined Networking (SDN) proposes) that the scale, speed, cost and
 general quality of such a solution will be improved by reducing
 the state needed to be distributed into the network of devices by
 the controller(s). To this end we re-visit forms of Source Routing
 (SR), in particular Strict Link Source Routing (SLSR) and suggest
 that light weight SLSR could allow substantial reduction in
 controller burden while potentially reducing the costs/complexity
 on forwarding devices. We discuss some simulation results that
 demonstrate these advantages and how the advantages grow
 substantially as the network diameter grows. We also look at
 various implementation possibilities including existing IPV4, V6,
 MPLS, new/modified MPLS vs. something brand new that could
 possibly be implemented with new SDN technology like Protocol
 Oblivious Forwarding-POF.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

Ashwood-Smith, et al. Expires February 03 2014 [Page 1]

Internet-Draft SDN state reduction July 2013

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on December 3, 2012.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

Table of Contents

 1. Terminology 3
 2. Introduction 3
 3. Logical Example 5
 4. Expressing a Path 6
 5. Computing a Path 7
 6. Downloading Forwarding State 8
 7. Logically Forwarding SLSR 10
 7.1. Ingress Logical Unicast Forwarding 10
 7.2. Tandem Logical Unicast Forwarding 11
 7.3. Egress Logical Unicast Forwarding 12
 8. Logical Multicast Forwarding SLSR Packets 13
 9. Failure Recovery 14
 10. Comparison of Logical Model to Existing Source Routing 15
 10.1. MPLS as a SLSR 15
 10.2. IPV4/6 Options as SLSR 18
 10.3. Protocol Oblivious Forwarding as SLSR mechanism 19
 11. Security Considerations 20
 12. Conclusions and Future work 21
 13. IANA Considerations 21
 14. References 21
 14.1. Informative References 21
 15. Authors’ Addresses 23
 16. Contributors 23
 17. Acknowledgements 23

Ashwood-Smith, et al. Expires February 18, 2012 [Page 2]

Internet-Draft SDN state reduction July 2013

1. Terminology

 ATM Asynchronous Transfer Mode (a cell based network)
 BGP Boarder Gateway Protocol
 CSPF Constrained Shortest Path First
 DOS Denial of Service (attack)
 ECMP Equal Cost Multi Path
 flow Logically related packets following the same path
 IS-IS Intermediate System to Intermediate System
 LACP Link Aggregation Control Protocol
 LAG Link Aggregation
 Loose A source route that enumerates only some of all hops
 MPLS Multi Protocol Label Switching
 MPLS-TE MPLS Traffic Engineering.
 NPU Network Processor Unit (programmable forwarding)
 OpenFlow Open data path programming protocol
 OSPF Open Shortest Path First
 PCE Path Computation Element (used with MPLS-TE)
 PNNI Private Network to Network Interface (link state ATM)
 POF Protocol Oblivious Forwarding - more generic OpenFlow)
 RSVP-TE Resource Reservation Protocol - Traffic Engineering
 SDN Software Defined Networking (as per [OPENFLOW])
 SDN-domain Set of forwarding devices controlled as a unit.
 SR Source Routing - enumerating hops to traverse
 SLSR Strict Link Source Routing - enumerating links [SLSR]
 SPF Shortest Path First - (Dijkstra etc.)
 SSRR Strict Source Record Route - IPV4 header option 9
 Strict Source route that enumerates every hop(unlike Loose)
 TE Traffic Engineering
 VFI Virtual Forwarding Instance (layer 2)
 VPLS Virtual Private Lan Service
 VRF Virtual Routing and Forwarding (layer 3)

2. Introduction

 The centralized control of a network is not a new idea. Indeed
 centralized control was widely deployed in voice networks and some
 early data networks but of course gave way to distributed control
 for IP.

 Centralized computation is however still widely used for traffic
 engineered networks, like MPLS-TE and GMPLS where a Path
 Computation Engine (PCE) makes use of a global view of a sub-
 network and its resource usage for the planning of new paths and
 their resources. The data path state distribution with these
 models is however not initiated centrally and relies on protocols
 like RSVP-TE to install the hop by hop state. In fact this form

Ashwood-Smith, et al. Expires February 18, 2012 [Page 3]

Internet-Draft SDN state reduction July 2013

 of distributed control with centralized traffic engineering
 computations is the norm today.

 Notwithstanding the massive deployment of this kind of hybrid
 distributed/central control, we have in the last several years
 seen a huge resurgence of interest in fully centralized control of
 at least a set of forwarding devices [ONF] [OPENFLOW] with
 Software Defined Networking (SDN). This SDN proposes a central
 controller (or controllers) using IP protocols such as TCP to talk
 to a set of arbitrarily interconnected (and cheap/dumb) forwarding
 devices (SDN-domain) and which is responsible for the
 configuration of the majority of forwarding state on those
 devices. This state may be produced either as a result of pro-
 active configuration, or based on re-active responses to packet
 flow indications from the forwarding devices themselves.

 Since this central controller has knowledge of the entire sub-
 network of devices, and potentially of the traffic demands
 into/out of the sub-network, it can perform a variety of path
 optimization computations similar to CSPF/MPLS-TE/PCE/GMPLS, or
 even more elaborate forms of optimization (trading flows against
 each other rather than individually optimizing them, exploiting
 quiet areas of the network to offload busy areas etc), the output
 of which is forwarding state for all meta flows in the entire sub
 network of devices and a sub network which more optimally meets
 the desired local constraints. One such deployment reports a
 substantial increase in network utilization from 30% to 70%-90%
 [SDNGOOG].

 A central controller can also more effectively solve problems such
 as bin-packing and path blocking [SDNGOOG], which occur when flows
 are optimized individually with greedy type algorithms rather than
 considering other orderings of the flows. The finer grained
 ability to place traffic can also permit much more detailed
 placement of traffic after a failure, including traffic not
 directly affected by the failure but the replacement of which is
 critical to achieving fair/efficient use of the remaining
 bandwidth subsequent to the failure.

 Since the output of the controller is much closer to a TE (Traffic
 Engineered) type solution from a PCE (Path Control Element) than
 an SPF (Shortest Path First) solution the controller cannot simply
 install destination based forwarding entries. A controller either
 needs to install tunnels that follow the explicit routes it wishes
 and then map traffic to those tunnels at the edges, or it must
 install n-tuple < <source IP> <destination IP> <source port>
 <destination port> etc.> state and configure these n-tuple matches
 on every hop along the desired path. Packets which fail to match
 an n-tuple are either discarded or sent to the controller.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 4]

Internet-Draft SDN state reduction July 2013

 In the normal case of SDN (as given in [OPENFLOW]) the controller
 is required to send configuration information to all devices along
 the path from ingress of the SDN-domain of this controller to the
 egress of that SDN-domain, alternatively a tunnel setup protocol
 like RSVP-TE is required to be triggered to distribute the per hop
 state between the ingress and egress.

 This draft proposes that since the controller knows the exact end-
 to-end path (down to the level of the links it wishes the packets
 to traverse) and that the diameter of an SDN-domain is likely to
 be a reasonable number of hops, that the controller should instead
 simply insert into a header the exact links it wishes the packet
 to traverse and thereby not have to deal either with per hop n-
 tuple state installation (very expensive) or with MPLS tunnel
 installation via RSVP-TE(complex). Such a mechanism also
 eliminates any concerns about Equal Cost Multi Path (ECMP) and/or
 Link Aggregation (LAG) as the controller can place traffic on
 exact links.

 Operations, Administration and Management (OAM) is also greatly
 simplified since data packets will flow on invariant paths that
 are known by both ends of the flow and can be the same as any OAM
 packets that probe the flow. This OAM "fate sharing" property is
 widely valued by network operators and considerable effort has
 already been expended to permit similar fate sharing between OAM
 and data paths with other carrier scale networking protocols such
 as 802.1ag and MPLS-TP. Of course if a controller does not wish to
 enforce symmetry and congruence it need not.

3. Logical Example

 The following is an example of an idealized strict link based
 source routing (SLSR) forwarding. We talk about possible
 implementations including MPLS methods after looking at the
 logical ideal.

 Consider the simple 7 node network shown in Figure 1 below. Here
 the nodes are named {A, B, C, D, E, F, G} and where each node has
 locally numbered interfaces named {1, 2, 3, 4, 5, 6}.

 For example node A has interfaces named 1, 2, 3, 4 and where
 interfaces 4 and 2 both go to node B. Node B has local interfaces
 1, 2, 3, 4 and 5 but the two interfaces going back to node A are
 locally named 1 and 3. Clearly node interface names are likely
 (but not necessarily) different at both ends of a link.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 5]

Internet-Draft SDN state reduction July 2013

 +----+ +----+
 | | 4 ----- 3 | |
 | A | 2 ----- 1 | B |
 +----+ +----+
 1 3 4 2 5
 / \ / \ \
 3 4 3 2 3
 +----+ +----+ +----+
 | C | 2----1 | D | 2------1 | E |
 +----+ +----+ +----+
 1 6 5 4
 \ / \ /
 3 2 1 2
 +----+ +----+
 | F | 1-------3 | G |
 +----+ +----+

 Figure 1 - simple 7 node network with local link identifiers.

4. Expressing a Path

 A path through a network labeled as per Figure 1 can clearly be
 expressed as a sequence of link names (an SLSR).

 For example, between nodes C and E the following are all valid
 paths.

 C.3 -> A.2 -> B.2
 C.2 -> D.2
 C.1 -> F.2 -> D.2
 C.3 -> A.4 -> B.5

 Now since the links lead unambiguously to a known node, the paths
 can be more compactly expressed without the node names as follows:

 {3,2,2}
 {2,2}
 {1,2,2}
 {3,4,5}

 As long as we know the origin of the path (in this case node C),
 the list of link names unambiguously identifies a path and an
 egress point. In addition it identifies unambiguously which link
 from among parallel links between neighbors should be traversed.
 Of course it is possible to give a name to the set of links that
 all attach to the same neighbor and thereby leave the exact link
 in that path deliberately ambiguous and thereby subject to a local
 forwarding decision as to exactly which link in the set to follow.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 6]

Internet-Draft SDN state reduction July 2013

 Each path of course also has exactly one perfectly symmetric
 reverse. Note that the symmetric reverse path is not simply the
 same list of link names in reverse order. A reverse path has to be
 specified from the opposite end of the path so in this example the
 origin has to be E.

 The forward and corresponding reverse paths are therefore.

 C->E E->C

 {3,2,2} {2,1,1}
 {2,2} {1,1}
 {1,2,2} {1,6,3}
 {3,4,5} {3,3,1}

 Various very efficient encodings of these kinds of paths in source
 routed headers are possible. Even a simple encoding using 8 bits
 per hop can encode every path in a large 8 hop network with fewer
 bits than an IP in IP tunnel.

5. Computing a Path

 It should be obvious that the output of any graph based
 computation which has as its goal various optimization criteria
 for flows can express its results as a series of such paths where
 each path is expressed as a Strict Link based Source Route (SLSR).
 This includes multiple different metric Dijkstra computations
 (i.e. shortest path, multi topology shortest path), CSPF type and
 of course more elaborate linear-programming or other convex type
 optimizations.

 The expression of the path as an SLSR imposes no constraints on
 the type of computation being performed except possibly in path
 length. However in any real network under the control of a single
 controller it is not likely that path length would be a real issue
 unless perhaps unreasonably large link names are encoded.

 Convex and linear-programming type solutions to traffic placement
 are of particular interest because to do a good job they must
 exploit a considerable number of paths through a network (many
 more than shortest). These algorithms take the matrix of
 ingress/egress flows in a network together with all the usable
 paths between all sources and destinations and will assign
 percentages of the ingress/egress flows to the available paths in
 ratios that can optimize a number of simultaneous constraints. For
 example they can optimize the network’s total throughput, the
 average link utilization, the fairness of the bandwidth available
 to each flow and can even optimize different linear and non linear
 combinations of those goals. What is interesting about all of

Ashwood-Smith, et al. Expires February 18, 2012 [Page 7]

Internet-Draft SDN state reduction July 2013

 these kinds of optimizations however is that they need access to
 all of the reasonable paths across the network since it is by
 making trade-offs between busy and less busy parts of the network
 that they achieve their goals. Unfortunately the number of paths
 (shortest or otherwise) in a network grows exponentially with
 network size and with it the state distribution problem (or
 burden) the controller must deal with.

 It is important to make the distinction between a flow and a path.
 This draft concerns itself not with the immense numbers of micro
 flows but with the very large numbers of paths required to be
 supported onto which those micro flows are then aggregated. A set
 of micro flows can be treated as a single flow, and a single flow
 has a unique path through the network.

6. Downloading Forwarding State

 A controller likely takes as input the fields that identify the
 flow and its various statistical attributes. The controller then
 likely computes an end to end path for this flow either based on
 the single flow’s attributes (in a re-active manner), or on more
 global knowledge of multiple flow attributes (in a pro-active
 manner). Flows may be meta (many micro flows) or individual micro
 flows depending on the implementation and its scale. The output of
 course is just a list of links that must be traversed for this
 flow together with matching rules to identify the flow at the
 ingress.

 The controller then delivers the flow matching rules and the
 Strict Link Based Source Route to the *single* node where the flow
 is to be encapsulated (i.e. where the flow first enters the SDN-
 domain).

 The fact of only having to communicate with the *single* node at
 the head end of the path means that the controller experiences a
 reduction in its work load directly proportional to the number of
 hops in the path (as compared to traditional SDN which must
 program every hop along the path).

 Intuitively this translates to the following I/O burden reduction
 at the controller based on the number of links that must be
 traversed per average path.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 8]

Internet-Draft SDN state reduction July 2013

 +----------------+-------------------------+
 | #Avg Path Len | % I/O Burden Reduction |
 +----------------+-------------------------+
 | 1 | 0% |
 | 2 | 50% |
 | 3 | 66% |
 | 4 | 75% |
 | 5 | 80% |
 | .. | .. |
 | N | (100-100/n) % |
 +----------------+-------------------------+

 Since forwarding state download is typically a substantial part of
 a "normal" routers’ re-convergence time, it seems reasonable that
 this will become a similar bottleneck for a central controller and
 quite possibly be further aggravated by the increased delays and
 larger amount of state that the central device must deal with.

 As a result this reduction in state and I/O burden should have a
 marked impact on convergence times assuming there are appropriate
 forwarding mechanisms that can implement the Strict Link Source
 Route (SLSR). Note also that the position of the controller
 relative to the ingress/egress nodes is now more important than
 its position relative to all nodes. Therefore studies as to
 controller optimum placement as defined by the Controller
 Placement Problem [PLACEMENT] would require different optimization
 goals.

 An additional 50% reduction can also be obtained should the
 implementation of the forwarding be able to reverse the path on
 the fly. Such a reversal permits the implicit communication of the
 desired reverse path to the receiver thereby eliminating
 communication with the controller to obtain a reverse path. Of
 course if symmetry is not desired this further optimization is not
 possible.

 For example, consider a network with 1000 nodes. It therefore has
 O(1,000,000) meta flows and assuming 10 possible paths for each
 flow has O(10,000,000) ingress forwarding entries that must be
 centrally configured (its burden). If each path on average takes 5
 hops then the burden on the controller grows 5 fold to
 O(50,000,000) entries but with SLSR the burden remains at
 O(10,000,000). If path reversal is supported and symmetric routing
 is desired then the burden with SLSR drops further to
 O(5,000,000).

Ashwood-Smith, et al. Expires February 18, 2012 [Page 9]

Internet-Draft SDN state reduction July 2013

 Simulations done by one of us in [SRSDN] provide additional weight
 to the above arguments. In particular we simulated for various
 network sizes and diameters the differences between hop by hop SDN
 and SLSR and saw up to 3 x performance improvements in convergence
 times with SLSR. There were also a number of other benefits such
 as a markedly reduced standard deviation in convergence times for
 the different nodes (81% decreases) and a significantly reduced
 sensitivity to the placement of the controller (80% reduction in
 standard deviation). The performance improvements can perhaps
 better be understood by an analogy comparing the work required to
 fill in the area of an object (traditional SDN) vs. simply drawing
 the circumference of that object (SLSR). Since the circumference
 varies as a function of the diameter but the area varies as a
 function of the diameter squared the relative burden reduction
 with just dealing with the circumference (the edge of the network)
 becomes apparent. In fact in this simulation study we varied the
 radius and then plotted the relative convergence times of SLSR and
 traditional hop by hop forwarded SDN and saw a ratio of
 convergence times as a function of radius that indicated a trend
 towards 1/R as expected. Simply stated, the bigger the centrally
 controlled network the better source routing performs compared to
 hop by hop.

7. Logically Forwarding SLSR

 There are three distinct phases to be performed to logically
 forward unicast SLSR. These are similar to any tunnel technology
 and consist of 1) Ingress Encapsulation, 2) Tandem Forwarding, and
 3) Egress Decapsulation and Forwarding. We address the generic
 concepts first before looking at possible existing or new
 encapsulations and their applicability.

 Multicast SLSR is also possible (but with limitations to keep the
 header sizes from growing too large) and is briefly discussed
 after unicast.

7.1. Ingress Logical Unicast Forwarding

 Here the flow information, likely IP header(s) + UDP/TCP header(s)
 is looked up and a sequence of link identifiers and a current hop
 must be placed on the packet, the packet must then be forwarded to
 the first of those links. This operation is identical to almost
 every tunnel protocol except that IP ECMP and/or LAG hash would
 potentially be unnecessary because the first link name would often
 resolve to a physical link not a LAG bundle. For example:

Ashwood-Smith, et al. Expires February 18, 2012 [Page 10]

Internet-Draft SDN state reduction July 2013

 +----------+----------+---------+--------+--------+
 |SrcIP | DstIP | SrcPrt | DstPrt | SLSR |
 +----------+----------+---------+--------+--------+
 |192.0.2.4 |192.0.2.9 | 1000 | 98 |{3,2,5} |
 |192.0.2.4 |192.0.2.9 | 1001 | 99 |{3,4,5} |
 +----------+----------+---------+--------+--------+

 Of course nothing precludes the use of LAG and the link identifier
 therefore identifying an entire LAG bundle rather than an element
 of that LAG. In fact it is possible to simultaneously support both
 concepts so that some traffic can be forwarded to the entire LAG
 while other traffic could be placed on a particular LAG bundle
 member at the discretion of the central computation.

 7.2. Tandem Logical Unicast Forwarding

 At tandem devices the operation would start by incrementing the
 current hop in the packet header (shown with a ^ symbol) and then
 forward to the link identified in the new current hop. If we
 support reversal, we change the previous link name to the local
 link name for that link. For example, referring to Figure 1 (and
 disregarding non relevant headers/options) after matching the
 first flow tuple at the ingress node C the packet is encapsulated
 with the SLSR header {3,2,5} and then leaves node C on interface 3
 toward A. Then:

 Packet arrives at node A on local interface 1 where it looks
 like this:

 +--------------------------------------˜˜˜------------+
 | 3 | 2 | 5 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +-^------------------------------------˜˜˜------------+

 Current hop is incremented while previous hop is changed to
 local interface name (3 changes to a 1).

 +--------------------------------------˜˜˜------------+
 | 1 | 2 | 5 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +-----^--------------------------------˜˜˜------------+

 Packet is forwarded to interface for current hop i.e. 2.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 11]

Internet-Draft SDN state reduction July 2013

 Packet arrives at node B on local interface 1.

 +--------------------------------------˜˜˜------------+
 | 1 | 2 | 5 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +-----^--------------------------------˜˜˜------------+

 Current hop is incremented while previous hop is changed to
 local interface name 1 (2 changes to a 1).

 +--------------------------------------˜˜˜------------+
 | 1 | 1 | 5 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +---------^----------------------------˜˜˜------------+

 Packet is forwarded to interface for current hop i.e. 5.

 Packet arrives at node E on local interface 3.

 +--------------------------------------˜˜˜------------+
 | 1 | 1 | 5 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +---------^----------------------------˜˜˜------------+

 Current hop is incremented while previous hop is changed to
 local interface name (5 changes to 3).

 +--------------------------------------˜˜˜------------+
 | 1 | 1 | 3 | 192.0.2.9 | 192.0.2.4 |.. <payload> |
 +-----------^--------------------------˜˜˜------------+

 We are at the end of the path, so egress processing begins.

 One additional step not described above is a reverse path check.
 Prior to substituting the reverse link identifier into the SLSR
 header, the link identifier from the neighbor can be validated and
 the packet discarded if the neighbor link identifier in the packet
 is incorrect for the port the packet arrived on. This would reduce
 the chances of mis-delivery of the packet should a link identifier
 change or a link destination change while a packet is in flight.

7.3. Egress Logical Unicast Forwarding

 Here the operation consists of normal IP/Ethernet etc. forwarding
 based on the IP destination / MAC or other ACL rules. Basically
 the SLSR header is stripped and the packet is submitted to the
 Virtual Forwarding Instance, or Virtual Forwarding Function (VFI
 or VRF) for further processing.

 Optionally the link identifier from the neighbor can be validated
 against what is expected and the packet discarded in the case of a

Ashwood-Smith, et al. Expires February 18, 2012 [Page 12]

Internet-Draft SDN state reduction July 2013

 mismatch. This reduces the chance of mis-delivery as in the tandem
 case.

 In addition, if path reversal is supported, the reverse path is
 compared against the current reverse path for this reverse flow
 and if it has changed the local forwarding state for the reverse
 flow would be updated. This would allow the head end to always
 dictate the forward and reverse path to be used for all packets in
 the flow without involving the controller on the egress side (and
 of course not needing to communicate with any tandem device).

 Processing the reverse flow/path in this manner means that a flow
 is already present for the reverse direction without having to re-
 actively or pro-actively consult the controller. This results in a
 further 50% reduction in controller load. In the case of asymmetry
 this optimization is of course not possible.

8. Logical Multicast Forwarding SLSR Packets

 Multicasting packets usually involve one of two approaches.

 The first approach simply re-uses unicast and sends multiple
 copies to a pre-determined list of receivers. There is little to
 discuss with this approach as we can replicate SLSR based unicast
 packets just as easily as any other tunneling mechanism. Clearly
 such a serial unicast approach has nearly identical bandwidth
 overhead as other protocols like VPLS which also use this serial
 unicast mechanism.

 It is therefore interesting to look at more efficient methods that
 involve the second multicast mechanism, which uses replication
 points in the network. These replication points are chosen so that
 copies are more efficiently made thereby eliminating multiple
 copies of the packet traversing any given link. Various logical
 tree structures are usually involved e.g. STP, SPB, TRILL, PIM,
 MOSPF etc.

 These tree based mechanisms could in theory be implemented without
 requiring tandem state as an SLSR by introducing a branch point
 concept into the list of indexes. In this manner a complete tree
 as a pre-order traversal could be encoded along with the packet
 payload. It is not difficult to define a variety of different
 encodings that would accomplish this. The obvious objection to
 such a scheme is the sheer size of header required especially
 where a large network with many multicast receivers is concerned.
 It is therefore unlikely to be practical to encode any large tree
 of receivers and the SLSRs between them in any single header.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 13]

Internet-Draft SDN state reduction July 2013

 This leads to a hybrid approach which would encode a subset of the
 tree, say a single replication point and 5 or so recipients. This
 little tree or ’tree-let’, would efficiently get a single packet
 to 5 (or some suitably small number) of recipients with an SLSR to
 the replication point and then SLSRs to each of the receivers.
 Such an encoding is much more reasonable than trying to encode all
 receivers and all replication points of a single tree in one
 packet. However, since this one packet would not reach all
 receivers, the head end would have to generate as many copies of
 the data packets as necessary to cover all recipients. As a result
 this approach would be a compromise between a full tree, and full
 head end replication. Variations in the size of the ’tree-let’
 header would allow for space v.s. bandwidth efficiency trade-offs
 while meeting the goal of remaining stateless in the core.

 In the literature there are also non-exact methods to multicast
 without state such as with Bloom filters [BLOOM]. In this approach
 the links to be traversed are logically mapped into a field which
 is carried in the packet (for example if the links are given
 unique 128 bit sparse addresses then a 128 bit union of all the
 links to be traversed on the tree is encoded in the header). These
 mechanisms guarantee that all receivers will get a copy of the
 packet (because they check each link for inclusion in the Bloom
 Filter at each hop) however they do so at the expense of sending
 false positive copies to unintended receivers which must then
 filter the unwanted packets egress. Depending on the size of the
 Bloom Filter and the link identifiers various statistical trade-
 offs in false positives vs. packet header size can be made.

 Other exact methods to encode and methods to compute SLSR
 multicast etc. are FFS.

9. Failure Recovery

 A variety of failure recovery techniques can be employed with
 SLSR. The most obvious is to just re-compute all affected paths on
 indication of a link failure. This won’t be discussed further.

 More interesting are the so called fast restoration mechanisms.
 These can broadly be broken down into head end and tandem
 restoration.

 Head end mechanisms that provide 1+1 protection have been around
 for a long time with MPLS-TP, PBT and SONET/DWDM. Similar
 mechanisms can be used with any tunnel type and of course SLSR is
 no exception. Probes can be sent down one source route, reflected
 back along the reverse source route and in this manner the forward
 and reverse paths can be simultaneously probed for failure. In the
 event of a failure a diverse alternate source route can rapidly be

Ashwood-Smith, et al. Expires February 18, 2012 [Page 14]

Internet-Draft SDN state reduction July 2013

 added to the packet and the flow restored. The advantage of course
 with SLSR is that no state is required for either the primary or
 the backup path. As a result there is little added cost to having
 even greater redundancy than 1+1 with SLSR. The mechanisms to
 accomplish this are fairly obvious. Having the reverse path
 available at the egress means that fate sharing the forward and
 reverse probes is easy.

 In addition to 1+1 protection it is possible to do hop by hop fast
 reroute type detour protection. This can be done by substitution
 of a failed link identifier with a set of link identifiers that
 merge with the path downstream of the failure. An example is given
 further below for MPLS label stacks, however many other
 possibilities exist when a history of the packet’s path is
 available to the detour mechanism. The history would permit the
 detour mechanism to spread the failing packets over different
 detours and thereby reduce the concentration of additional load
 imposed by the failure on the same set of links.

10. Comparison of Logical Model to Existing Source Routing

 There are a number of existing protocols that support forms of
 source routing (or can be used to do something close to source
 routing). IPV4 and V6 had strict and loose node-by-node source
 routing options (now deprecated) and we’ll discuss them briefly.
 Likewise MPLS behavior can be used to do strict link source
 routing where a label stack represents a list of link names, this
 has recently been called segment routing in [SEGMENT].

 10.1. MPLS as a SLSR

 MPLS is of course not a source routed forwarding protocol, at
 least not by design. Rather, packets follow an arbitrary path by
 substitution of a previous hop label with a next hop label and
 each hop must be pre-configured with the <incoming port, label> to
 <outgoing port, label> relationship. This is clearly not source
 routing because tandem configuration is required per path and per
 hop. However MPLS has a stacking mechanism that can be exploited
 to create a consumable list of link names to be traversed as they
 are popped.

 The MPLS label stack can therefore be used to implement a flavor
 of SLSR. This is accomplished by pre-assigning a locally unique
 MPLS label to each outgoing link of a node. For example in figure
 1, node D’s link 3 would be assigned MPLS label 3 (but more likely
 a label value which is 1:1 related to link 3, however we stick
 with label=link for simplicity of explanation).

Ashwood-Smith, et al. Expires February 18, 2012 [Page 15]

Internet-Draft SDN state reduction July 2013

 The tunnel encapsulation operation would therefore be to push a
 set of labels onto the frame where each label indicates which link
 to follow at that given exact strict hop. For example:

 +----------+----------+--------+--------+-----------------------+
 |SrcIP | DstIP | SrcPrt | DstPrt | MPLS SLSR |
 +----------+----------+--------+--------+-----------------------+
 |192.0.2.4 |192.0.2.9 | 1000 | 98 |push(3,push(2,push(5)))|
 |192.0.2.4 |192.0.2.9 | 1001 | 99 |push(3,push(4,push(5)))|
 +----------+----------+--------+--------+-----------------------+

 The tunnel tandem operation would then be to pop the label on the
 incoming frame (after optionally validating its reverse link
 identifier) and forward to the interface specified by the just
 popped label value. Every tandem node would be pre-configured
 approximately as per below. Note that as with any source routing
 mechanism, this tandem pre-configuration is independent of the
 actual paths that traverse the node. A table like the one below,
 with a few hundred interfaces and hence a few hundred labels,
 could support the transit of an infinite number of TE (or SPF)
 paths. For clarity we use label N = interface/N but in reality it
 would be label N = F(interface/N) since a 1:1 mapping ’F’ is
 almost certainly required.

 +-------------------+-------+--------------------------------+
 |Incoming Interface | Label | Actions |
 +-------------------+-------+--------------------------------+
any	1	Pop, forward to interface/1
any	2	Pop, forward to interface/2
:	:	:
any	N	Pop, forward to interface/N
 +-------------------+-------+--------------------------------+

 If reverse validation is required the tables would be a bit
 different because they must match the label to the incoming
 interface and then pop it and then forward based on the next
 label. Reverse validation therefore requires two label lookups per
 forwarding operation.

 Finally the tunnel egress operation would be normal forwarding to
 a VFI or VRF.

 MPLS in this manner could be made to do SLSR of unicast frames but
 cannot be made to reverse the route because the route is consumed
 in transit. This method also uses many more bits than are really
 necessary. Each label consumes 32 bits which is rather more than
 required to express the number of links/adjacencies on a typical
 switch or router. For example, if the average packet size if 512
 bytes, a 5 hop MPLS source route imposes a 4% overhead (20/512) on

Ashwood-Smith, et al. Expires February 18, 2012 [Page 16]

Internet-Draft SDN state reduction July 2013

 some links with the largest overhead on the first few links. For
 larger packets this is likely not an issue, for smaller packets it
 is possibly a concern.

 A more realistic number actually required per hop is probably 8 or
 12 bits (256-4K links) and if more bits are required two hops can
 be consumed by any node with such a large nodal degree. The MPLS
 label also has an 8 bit TTL which is of course redundant in any
 source routing mechanism. This begs the question of if a smaller
 MPLS label would not be more suitable?

 There are other issues with the use of MPLS, in particular current
 hardware can usually not stack very many labels at a time (3 on
 some popular ASICs). This would limit the network diameter to 4
 hops. Of course NPUs or new ASICs could be extended to allow
 further ingress stacking.

 It does not seem possible to do SLSR multicast with MPLS except of
 course via head end replication.

 The hop(ingress stack size) limit, lack of reverse, consumable
 route and lack of efficient multicast still do not invalidate use
 of MPLS source routing for many networks and its use would have a
 noticeable positive impact on the scale/speed of a central
 controller in such environments.

 MPLS fast reroute mechanisms can also be implemented locally in a
 similar fashion thus further improving controller scale by
 alleviating the need for 50ms responses network wide from the
 controller and giving the controller more lee-way to recover after
 the fast reroutes have detoured traffic around the failed nodes
 and/or links.

 Consider possible local actions when the link A.2 between nodes A
 and B in Figure 1 fails. Since there is still a link A.4
 available, the node A can locally change the action associated
 with label 2 to instead send to interface 4 when interface 2
 fails. If an entire adjacency fails, such as would happen when
 both A.2 and A.4 fail, then a link detour can be locally performed
 by reprogramming the actions for labels 2 and 4 to now push labels
 3,3 and send to interface 3. This will cause a detour via D back
 to B. More elaborate kinds of detour are possible by processing
 two link names ahead instead of one, including nodal detours.
 These can be done locally without end to end path knowledge and
 hence scale independently to the number of paths. Eventually the
 controller will detect the failure and reconstruct the SLSRs at
 the head end and the use of the detour will stop without having to
 withdraw any state in the core.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 17]

Internet-Draft SDN state reduction July 2013

 If MPLS is of use in the context of SLSR then it would be worth
 considering a number of future extensions to MPLS. Some things to
 consider could be a smaller MPLS label option, say 16 bits with no
 TTL and the possibility of not popping but rotating the label to
 the bottom of the stack to preserve the path history for OAM and
 reversibility reasons. While these sorts of things are of course
 not possible with existing ASICs they are easy to do on existing
 NPU’s and new work on Protocol Oblivious Forwarding [POF] allows
 near arbitrary bit pattern/action matches to be programmed by an
 SDN controller permitting a more optimal data path encoding of
 SLSR than can be obtained by simply reusing MPLS.

10.2. IPV4/6 Options as SLSR

 IP header option 9 [RFC791] defined (but now deprecated) the
 Strict Source and Record Route (SSRR) option for IPV4 packets.
 This option has(had) a ’length’ field, a ’pointer’ field and an
 array of ’route data’ fields. The element in the array of ’route
 data’ indexed by the ’pointer’ field contains the IP address of
 the immediate next hop towards which the packet must be forwarded,
 the ’pointer’ field is incremented, and the previous hop is filled
 in with the IP address of the current device prior to actually
 forwarding the packet. Up to 9 hops could be specified in this
 manner. IPV6 also had a similar option "RH0" which is also now
 deprecated [SRBAD].

 IPV4 and V6 Strict Source and Record Route methods could be used
 to implement Strict Link Source Routing. This would be
 accomplished by assigning a 32 bit number to the link and then
 using the 32 bit number in place of the IPV4 or V6 address in the
 route list.

 In both IPV4 and IPV6 the source routing options were found to be
 harmful to the Internet at large for a number of reasons. These
 reasons are described in [SRBAD] but briefly there were two broad
 classes of problem encountered. 1) Harm to intermediate links and
 2) harm to end hosts. For example:

 - Since it was possible to list a waypoint more than once in the
 route data, it was possible to loop traffic around multiple times
 (9 times in the case of IPV4 and 90 times in the case of IPV6).
 This looping allowed saturation of high speed links by hosts that
 had an order (or two) smaller bandwidth access to the Internet. A
 congestion style DOS was therefore possible from low speed access
 links against higher speed core links.

 - Various schemes such as bypassing of firewalls etc. are of
 course easy to do when a host can specify waypoints that detour
 around a firewall.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 18]

Internet-Draft SDN state reduction July 2013

 - Spoofing using the reverse route. Since the reverse source route
 is installed against the IP SA by a host that receives it, it is
 possible to use a bogus IP SA in combination with a reverse source
 route that detours the packets to the imposter host.

10.3. Protocol Oblivious Forwarding as SLSR mechanism

 The OpenFlow [OPENFLOW] protocol defines methods for an external
 controller to cause the manipulation of known packet headers and
 fields within those headers by a forwarding element. As such it is
 currently limited to matching on known fields like MPLS, IP,
 Ethernet etc. and taking actions on those fields. While flexible
 there are still many things at the data path level that OpenFlow
 cannot do including generic source routing such as SLSR.

 The Protocol Oblivious Forwarding [POF] protocol is a proposed
 extension to OpenFlow which permits arbitrary bit pattern
 matching/actions and is therefore much more flexible. The goal of
 POF is to allow a controller to define a new data path in addition
 to a new control plane and to then program the data path on the
 forwarding elements to its specifications. POF is therefore not
 limited to existing IP, MPLS, Ethernet fields.

 It would therefore be possible with POF to implement a highly
 flexible SDN tunnel data plane that closely resembles the
 idealized SLSR data path. Strictly by way of example POF could
 implement a flexible SLSR header along the following lines:

 +----------+---------+---------+------+------+-˜˜------+
 | NextHop | Hop | Hop | Hop | Hop | Hop |
 | Index:4 | Count:4 | Size:4 | 0 | 1 | N |
 +----------+---------+---------+------+------+-˜˜------+

 With only five bytes, this header could represent 3 hops with 256
 links per hop, 4 hops with 64 links per hop, or 6 hops with 16
 links per hop, etc. With additional bytes of course more/longer
 combinations are possible with very reasonable overhead. This is
 considerably more compact than the other described options and
 without sacrificing reversibility or giving up the OAM benefits of
 knowing the exact path the packet has taken.

 POF however could also implement other variations of SLSR based on
 MPLS. For example POF could implement a smaller MPLS label, say a
 16 bit label without a TTL. POF could theoretically also implement
 a rotating label list instead of a popping label stack.

 POF appears to be ideally suited for SLSR developments beyond what
 can currently be done with MPLS.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 19]

Internet-Draft SDN state reduction July 2013

11. Security Considerations

 Source Routing security concerns are also discussed in the
 previous section related to IPV4 and IPV6 now deprecated nodal
 source routing.

 This draft is proposing link based source routing and that it be
 used as a tunneling mechanism only. This means that only devices
 that are at the edge of an SDN sub-network would be allowed to
 insert strict link source routes. Note that an MPLS label can only
 be inserted by a Label Edge Router (LER) and processed by Label
 Switch Routers (LSR) and not by end hosts. Therefore SLSR should
 be no more or less secure than MPLS. In fact the absence of
 signaling protocols like RSVP-TE removes a point of attack. The
 fact that this mechanism is intended for use by a central
 controller further mitigates the possible attacks as encrypted
 communications are used to the edge devices which are the only
 device able to insert the strict link source routes.

 There is however the possibility that an attacker could attach to
 a core device and inject strict link source routed packets.
 Methods to prevent this however are not hard, in particular the
 adjacency would have to be reported to the controller and the
 controller would have to enable packet forwarding. Unless the
 controller recognized both ends of the link as being part of its
 controlled domain it should not enable the strict link source
 routing capability on that interface thus preventing the threat.

 Other interfaces, such as those facing a network of hosts or
 devices not in the domain of the controller would, as with current
 BCP’s, drop any source routed frame in any format (new or old).

 As previously mentioned there are ways to spread the link names
 into a 32 bit space such that the exact mappings are only known by
 the controller and the tandem node in question. This would prevent
 any easy form of guessing being used to construct an SLSR. One
 such example of this kind of secure source routing is given in
 [SANE].

 Source Routing also is unique in that the packets themselves give
 details about slices/cuts through the topology, therefore with
 sufficient interception of packets from diverse sources and
 destinations in the network, an attacker could build up a detailed
 view of the network topology, this would be a concern for a
 carrier SDN network in particular where details of topology are
 considered a valuable asset, although exploiting knowledge of the
 topology would be more challenging given the secure protocols that
 exist between a controller and the forwarding entities.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 20]

Internet-Draft SDN state reduction July 2013

 In the SDN context there appears to be little need for a loose
 source route. Loose source routing adds additional security
 concerns because it does not require knowledge of the entire path
 to construct an attack. If loose source routing is included the
 security concerns should be addressed.

12. Conclusions and Future work

 SDN where a central controller creates either pro-actively or re-
 actively the state for a sub-network of forwarding devices will
 have performance limitations that are related to network
 diameter/size, network recovery requirements and the amount of
 state they need to distribute. Strict Link Source Routing
 mechanisms can alleviate these problems allowing greater scale and
 faster recovery. MPLS can be used to implement this on a small
 scale with some of the benefits. IPV4 and IPV6 source routing
 options can be used to implement this on a larger scale with more
 of the benefits but at much larger packet overhead but are however
 perceived as risky and have been deprecated from IP. These risks
 however can be mitigated in this specific use. No existing
 mechanism however is optimum, and therefore there is room for a
 new mechanism that addresses these requirements and includes
 multicast methods and more efficient encoding of link names than
 is currently possible. One possible solution is to look at a
 smaller MPLS label for this purpose and to look at ways to retain
 the popped labels for the purposes of end to end path reversal and
 OAM. New work in SDN, in particular Protocol Oblivious Forwarding
 may make these kinds of things possible in a generic manner.

13. IANA Considerations

 This memo includes no request to IANA.

14. References

14.1. Informative References

 [BLOOM] Active Bloom Filters for Multicast Addressing,
 Z. Heszberger et. al. Budapest
 University of Technology and Economics.

 [OPENFLOW] www.openflow.org

 [ONF] www.opennetworking.org

 [POF] Protocol Oblivious Forwarding:
 http://www.poforwarding.org/

Ashwood-Smith, et al. Expires February 18, 2012 [Page 21]

Internet-Draft SDN state reduction July 2013

 [PLACEMENT] The Controller Placement Problem, Nick McKeon,
 Brandon Heller, Rob Sherwood. HotSDN’12, August
 13, 2012, Helsinki, Finland. 2012 ACM 978-1-
 4503-1477-0/12/08,
 http://conferences.sigcomm.org/sigcomm/2012/paper
 /hotsdn/p7.pdf

 [RFC791] Internet Protocol, Information Sciences
 Institute, RFC 791, September 1981.

 [SANE] SANE: A Protection Architecture for Enterprise
 Networks, Martin Casado, Nick McKeown,
 http://yuba.stanford.edu/˜casado/sane.pdf,
 Stanford and ICSI 2005.

 [SDNGOOG] SDN at Google - Opportunities for WAN
 optimization, E. Crabbe, V. Valancius, 8/1/2012.
 Presentation at IETF84 SDN BOF.

 [SEGMENT] Segment Routing with IS-IS, S.Previdi et. Al.
 http://tools.ietf.org/html/draft-previdi-
 filsfils-isis-segment-routing-00

 [SLSR] Software Defined Networking and Centralized
 Controller State Distribution Reduction,
 www.ieee802.org/1/files/public/
 docs2012/new-
 ashwood-sdn-optimizations-0712-v01.pdf

 [SRBAD] Deprecation of Source Routing Options in IPV4
 http://tools.ietf.org/html/draft-reitzel-ipv4-
 source-routing-is-evil-00

 [SRSDN] Source Routed Forwarding with SDN, M. Soliman
 http://conferences.sigcomm.org/co-
 next/2012/eproceedings/student/p43.pdf

Ashwood-Smith, et al. Expires February 18, 2012 [Page 22]

Internet-Draft SDN state reduction July 2013

15. Authors’ Addresses

 Peter Ashwood-Smith
 Huawei Canada Inc.
 303 Terry Fox Drive, Suite 400, Kanata, Ontario K2K 3J1
 Email: Peter.AshwoodSmith@huawei.com

 Mourad Soliman
 Carleton University,
 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 Canada
 Email: MouradSoliman@cmail.carleton.ca

 Tao Wan
 Huawei Canada Inc.
 303 Terry Fox Drive, Suite 400, Kanata, Ontario K2K 3J1
 Email: Tao.Wan@huawei.com

16. Contributors

 We invite more contributors.

17. Acknowledgements

 We gratefully appreciate the feedback of Nigel Bragg, Sue Hares,
 Peter Willis, Biswajit Nandy and Linda Dunbar.

Ashwood-Smith, et al. Expires February 18, 2012 [Page 23]

