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Abstract

   Ordinary TCP loss recovery takes at least one round-trip time and as
   such can increase application-perceived latency, especially for short
   flows such as Web transactions.  TCP Instant Recovery (TCP-IR) is an
   experimental algorithm that allows a receiving end to recover lost
   packets without retransmissions, thus potentially saving at least one
   full round-trip time compared to standard TCP.  TCP-IR achieves this
   by judiciously injecting encoded data segments within a TCP stream.
   This document describes the TCP-IR algorithm at the sending and
   receiving ends, along with the required protocol changes.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 16, 2014.

Copyright Notice
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   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
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   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   TCP Instant Recovery (TCP-IR) enables a receiver to recover lost data
   segments instantly without the need for retransmissions from a
   sender.  Standard TCP retransmission-based loss recovery takes at
   least one RTT for loss detection and recovery.

   The main motivation for TCP-IR is to reduce the tail latency of Web
   transactions.  Most Web transfers are short and could finish within a
   few round-trip times (RTTs), but losses can add multiple RTTs to
   transfer times and increase the variance in Web page download times.
   The goal of TCP-IR is to reduce loss detection and recovery to zero
   RTT while still employing TCP’s congestion control principles.

   Recovery mechanisms, such as fast recovery and retransmission
   timeout, are fundamentally RTT dependent.  Regardless of how fast
   network bandwidth grows, the number of RTTs that it takes to recover
   lost packets does not change.  TCP-IR employs forward error
   correction (FEC) to scale the recovery time inversely with bandwidth
   and make it independent of RTT.  It explicitly trades some network

Flach, et al.           Expires January 16, 2014                [Page 2]



Internet-Draft                   TCP-IR                        July 2013

   bandwidth to reduce RTTs for short transfers.  Most bandwidth in the
   Internet is used by large flows such as video, and thus short,
   latency-sensitive traffic can benefit using a small degree of FEC
   without hurting bulk flow throughput.

   In this document, we specify the TCP-IR mechanism, which requires
   both sender and receiver changes, to achieve 1-RTT recovery for
   commonly observed loss scenarios.  Instead of complete redundancy for
   every segment, we employ FEC within TCP.  The sender transmits extra
   FEC segments, which encode previously transmitted segments, so that
   the receiver can repair a small number of losses.  While the use of
   FEC for transport has been explored in the past, to our knowledge
   this is the first specification to place FEC within TCP in a way that
   is incrementally deployable across today’s networks with middleboxes.

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Protocol Overview

   The key idea in TCP-IR is the judicious introduction of a small
   number of checksum or XOR segments into TCP’s data stream such that a
   receiver can immediately recover lost segment(s) without the need for
   retransmissions.  The core design challenge is in injecting out of
   band XOR segments within the regular data stream.  We outline the
   main aspects of the protocol below.

   Several of the design choices we made are rooted in our measurements
   and observations of Internet loss patterns as documented in
   [RECOVERY-SIGCOMM13].  We find that among the flows experiencing
   losses, most flows lose only one or two consecutive packets, commonly
   at the tail of a burst.  As an example, for bursts of at most 10
   packets, ˜35% experienced exactly one loss, and an additional 10%
   experienced exactly two losses.  Further, the latter packets for any
   given burst size are more likely to be lost.  Given these findings,
   we chose a simple XOR-based encoding scheme that can perform instant
   recovery of a small amount (one or two segments) of packet loss.

   A TCP-IR sender and receiver first negotiate the use of instant
   recovery in the initial handshake.  If both hosts support the use of
   instant recovery, every packet in the connection includes a TCP-IR
   option.

   TCP-IR sender:
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   1.  Periodically in every round-trip time, a TCP-IR sender places the
   XOR of newly transmitted segments into a single MSS-length checksum
   packet.  The XOR is only computed for new segments not previously
   included in checksums.

   2.  Regardless of the sizes of original segments, the sender computes
   the XORs along MSS byte boundaries.  Because every packet carries a
   payload of at most MSS bytes, such an encoding guarantees that the
   receiver can instantly recover any single packet loss.

   3.  The encoded XOR packet uses the same sequence number as the first
   segment it encodes.  The encoded packet carries a flag in the TCP-IR
   option signaling that the payload is encoded.  A receiver uses the
   flag to disambiguate an encoded packet from a regular
   (re)transmission, since both segments carry the same sequence number.
   The option also includes the number of bytes that the payload
   encodes.

   There is no reliability provided for the XOR segments.

   TCP-IR receiver:

   1.  A receiver first establishes if the payload of the received
   segment is encoded, by checking a flag in the TCP-IR option.

   2.  Once the receiver establishes that the payload is encoded, it
   obtains the encoded range of bytes by using the sequence number of
   the TCP-IR packet and the the number of bytes encoded.

   3.  The receiver checks for holes in the encoded range.  If it
   received the entire sequence range, the receiver drops the encoded
   packet.  Otherwise, if it is missing at most MSS contiguous bytes,
   the receiver uses the encoded payload to recover the lost sequence
   range and forwards it to the regular reception routine, thus allowing
   0-RTT recovery.

   4.  For the purpose of recovering lost segments, a receiver buffers
   the last fifteen in-order MSS blocks that it ACKed, even if the
   application layer has already consumed these blocks.  Because an
   encoded packet is the XOR of at most sixteen MSS segments, the
   receiver can recover any single lost packet by computing the XOR of
   the encoded payload and the buffered data in the encoding range.

   5.  If too much data is missing for the encoded packet to recover,
   the receiver sends a duplicate ACK.  This ACK informs the sender that
   a recovery failed and also denotes the byte ranges lost via the TCP-
   IR option.  The sender marks the byte ranges as lost and triggers a
   fast retransmit and recovery.
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   6.  TCP-IR does not circumvent congestion control.  If the receiver
   were to simply ACK a recovered packet, it would mask the loss and
   prevent congestion control during a known loss episode.  To perform
   congestion window reduction upon a successful recovery at the
   receiver, TCP-IR uses a mechanism similar to explicit congestion
   notification (ECN).  Upon a successful recovery, the receiver enables
   an R_SUCC flag in the TCP-IR option in each outgoing ACK.  The sender
   in turn triggers a congestion window reduction and sets an R_ACK flag
   in the TCP-IR option of the next packet sent to the receiver.  Once
   the receiver observes R_ACK in an incoming packet, indicating that
   the sender reduced the congestion window, it disables R_SUCC for
   future packets.

   Figure 1 gives an example of TCP-IR in action.

      TCP A (Client)                              TCP B (Server)
      ______________                              _____________
            |                                           |
            |            < SYN + TCP-IR_OPT >           |
            |  -------------------------------------->  |
            |          < SYN/ACK + TCP-IR_OPT >         |
            |  <--------------------------------------  |
            |                                           |
            |                  < DATA >                 |
            |  <--------------------------------------  |
            |                  < DATA >                 |
            |  <--------------------------------------  |
            |      < DATA SEGMENT LOST in TRANSIT >     |
            |                  X <--------------------  |
            |                                           |
            |             < XOR SEGMENT >               |
            |  <--------------------------------------  |
   Recovery |                                           |
   of lost  |                                           |
   segment  |                                           |
            |    < ACK + SUCCESSFUL_RECOVERY_FLAG >     |
            |  -------------------------------------->  |
            |                                           |
            |                                           | CWND reduction
            |                                           | on successful
            |                                           | recovery.
            |       < ACK + WINDOW_REDUCED_FLAG >       |
            |  <--------------------------------------  |

                    Figure 1: Sample flow using TCP-IR

3.  Protocol Details
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   In the following, we describe the TCP-IR option design, negotiation
   of instant recovery, the supported encoding schemes, and finally the
   sender and receiver side algorithms.

3.1.  TCP-IR Option

   Both the server and the client use a new option to perform the
   following:

   o  Negotiate the use of TCP-IR, including the encoding type.
   o  Distinguish encoded packets from regular packets.
   o  Communicate the number of encoded bytes in an XOR packet.
   o  Acknowledge the recovery of segments and congestion window
      reductions.
   o  Indicate the loss of segments.

                               1                   2
           0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
         +---------------+---------------+---------------+
         |   Kind = TBD  |   Length = 1  | Encoding Type |
         +---------------+---------------+---------------+

       Figure 2: TCP-IR Option format for packets with SYN flag set

   During the initial handshake (for packets with the SYN flag set), the
   option has the format shown in Figure 2.  It contains the following
   fields:

   Kind (8 bits)
     This MUST be set to the option number for TCP-IR to be determined
     by IANA.

   Length (8 bits)
     This MUST be set to the length of the TCP option in octets; its
     value MUST be 1.

   Encoding Type (8 bits)
     This SHOULD be set to a value corresponding to a supported encoding
     type (see Section 3.3).
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                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------
   |   Kind = TBD  |   Length      |   Flags       |
   +---------------+---------------+---------------+---------------
       Range (optional)            |
   --------------------------------+

   Figure 3: TCP-IR Option format (except for packets with SYN flag set)

   For all other packets, the option has the format shown in Figure 3.
   It contains the following fields:

   Kind (8 bits)
     This MUST be set to the option number for TCP-IR to be determined
     by IANA.

   Length (8 bits)
     This MUST be set to the length of the TCP option in octets; its
     value MUST be 1, or 4 (if the "Range" field is appended).

   Flags (8 bits)
     The field can carry the following flags (each represented by one
     bit):

    Bit   Flag Name       Description
    0     R_CWR           Congestion Window Reduction Acknowledgement
    1     R_SUCCESS       Recovery successful
    2     R_FAIL          Recovery failed
    3     ENCODED         Packet is encoded
    4-7                   Unused

     The unused bits SHOULD NOT be set.

   Range (24 bits, optional)
     This field is only used if either the ENCODED or R_FAIL bit in the
     "Flags" field is set.  If the ENCODED bit is set, this field
     specifies the number of bytes encoded in the payload.  If the
     R_FAIL bit is set, this field specifies the number of bytes
     considered lost (see Section 3.4 and Section 3.6).

3.2.  Negotiation

   TCP-IR MUST be explicitly negotiated during the initial handshake.
   If the negotiation succeeds, both endpoints can send and receive TCP-
   IR packets.  More specifically TCP-IR is enabled if:
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   1.  The receiver sends the SYN packet carrying the TCP-IR option.
       The encoding type field MUST carry a valid encoding type (see
       Section 3.3).
   2.  The sender responds with a SYN/ACK carrying the TCP-IR option.
       The encoding type field MUST carry the same encoding type as the
       option in the corresponding SYN packet.
   3.  All following packets (transmitted by either sender or receiver)
       MUST carry the TCP-IR option.

   If any endpoint receives a packet (after negotiation succeeds) that
   does not carry the TCP-IR option, the connection MUST be reset.  This
   is necessary because a receiver can no longer distinguish between
   regular and TCP-IR packets.  We recommend tracking these cases to
   avoid TCP-IR negotiation on future connections.

3.3.  Encoding Types

   The client can select the encoding type to be used by the TCP-IR
   module but both endpoints have to support it and agree on it during
   the initial handshake (see Section 3.2).

   Currently the following encoding types are supported and are
   therefore valid values in the "Encoding Type" field of the TCP-IR
   option during negotiation:

   Value  Type               Description
   0      Undefined
   1      Basic XOR          TCP-IR packets carry the XOR of every MSS
                             length segment. One TCP-IR packet encodes
                             up to 16 MSS length segments.
   2      Interleaved XOR    TCP-IR packets carry the XOR of every other
                             MSS length segment. One TCP-IR packet
                             encodes up to 8 MSS length segments.
   3-255  Undefined

   We selected these encoding types to demonstrate the flexibility of
   TCP-IR with respect to user preferences (like the acceptable amount
   of redundancy) and connection properties.  Basic XOR can recover a
   single segment loss of up to MSS bytes in the encoding range.
   Interleaved XOR enables the recovery of two consecutive segments of
   up to MSS bytes.  This makes Interleaved XOR suitable for connections
   observing bursty losses, but can double the number of generated TCP-
   IR packets.
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   The currently supported encoding types use the MSS value to determine
   the block size for the encoding process.  If the MSS value changes
   after the initial handshake, TCP-IR MUST be disabled for the
   remainder of the connection.

3.4.  TCP-IR Sender

   All packets after the initial handshake carry the TCP-IR option to
   ensure that the receiver can always distinguish regular packets from
   encoded packets (packets carrying a payload encoded by the TCP-IR
   module), or detect the removal of the option by a middlebox.  Encoded
   packets MUST set the ENCODED bit in the "Flags" field of the TCP-IR
   option; all other packets MUST NOT set the ENCODED bit.

   The TCP-IR packet MUST use the same sequence number as the first byte
   it encodes.  This prevents enforcing reliability for encoded packets
   as well as the overhead of specifying the index of the first encoded
   byte in a separate option field.

   In addition to that, the option in encoded packets MUST carry the
   "Range" field.  The value in the "Range" field specifies the index of
   the byte after the last encoded byte in the payload relative to the
   sequence number of the encoded packet.

   TCP-IR adds a short delay in the transmission of encoded packets to
   the reduce the probability of losing both the original transmission
   and the encoded packet in the same loss burst.

   The encoding and transmission routine works as follows:

   1.  Before a regular data packet is forwarded to the IP layer, the
       TCP-IR timer is armed (unless the timer is already armed).  In
       our prototype implementation the timer is set to a value of RTT/
       4.
   2.  Once the timer fires, all transmitted segments not encoded before
       are now encoded according to the negotiated encoding type and the
       corresponding encoded packets are transmitted immediately.  The
       maximum number of MSS length segments which can be encoded in a
       single TCP-IR packet depends on the negotiated encoding type (see
       Section 3.3).  As a result, the number of encoded packets created
       in this step depends on the encoding type and the number of
       previously un-encoded segments.  The option fields in the encoded
       packet are populated as described in Section 3.1.

3.5.  TCP-IR Receiver

   Receivers distinguish TCP-IR packets from regular packets by checking
   the ENCODED bit in the "Flags" field of the TCP-IR option.  Encoded
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   packets are forwarded to the TCP-IR reception routine (described
   below).  If the packet does not carry the TCP-IR option it is
   discarded and TCP-IR is disabled for the remainder of the connection.
   To inform the sender that TCP-IR can no longer be used, the receiver
   sends an acknowledgement without the TCP-IR option.

   Additionally, the regular reception routine is modified as follows.
   The last 15 ACKed MSS length segments remain in the buffer, even if
   the application layer has already consumed these segments.  Segments
   received out-of-order are already buffered by default and cannot be
   consumed by the application layer.  Since a single TCP-IR packet
   encodes at most 8 (interleaved XOR) or 16 (basic XOR) MSS length
   segments, any single segment loss (up to MSS length) in the encoding
   range can be recovered by the decoder.

   The reception routine for TCP-IR packets works as follows:

   1.  The encoding range of the TCP-IR packet is extracted.  As
       mentioned earlier, the sequence number of the packet specifies
       the sequence number of the first encoded byte.  The sequence
       number plus the value stored in the "Range" field in the TCP-IR
       option minus 1 specifies the sequence number of the last encoded
       byte.
   2.  If all bytes in the encoding range were already received, skip to
       Step 5.
   3.  If lost segments in the encoding range can be recovered (in the
       case of XOR encoding, a loss of at most one MSS length segment in
       the encoding range can be handled):

       a.  The lost segments are reconstructed.  The matching packet
           headers are appended to the reconstructed segments and the
           packets are forwarded to the regular reception routine.
       b.  The R_SUCCESS bit in the "Flags" field of the TCP-IR option
           is set for all future packets.  This includes the
           (potentially delayed) acknowledgement for the recovered
           segment.  Further details are described in Section 3.6.
   4.  If none of the segments in the encoding range are recoverable:

       a.  The sequence number of the last byte lost is extracted.  The
           offset between the sequence number of the next expected byte
           (RCV.NXT) and the last byte lost defines the loss range.
       b.  An acknowledgement is generated with the following
           requirements for the TCP-IR option.

           +  The R_FAIL bit in the "Flags" field is set.
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           +  The option carries the "Range" field.  The "Range" field
              encodes the loss range, as described above.  The context
              is maintained, since the acknowledgement number will be
              set to RCV.NXT.
   5.  The TCP-IR packet is discarded.

3.6.  Processing Acknowledgements

   If a receiver instantly recovers losses we want to ensure the sender
   learns of it so as to not circumvent congestion control [RFC5681].
   The R_SUCCESS bit in the "Flags" field of the TCP-IR option informs
   the sender that the receiver successfully recovered a lost packet.
   Once the sender observes the R_SUCCESS bit in a packet the following
   steps are executed:

   1.  The sender reduces its congestion window.
   2.  The sender sets the R_CWR bit in the "Flags" field of the TCP-IR
       option in the next outgoing packet only.
   3.  The sender does not act on any future observations of the
       R_SUCCESS bit being set until SND.UNA advances past the SND.NXT
       value observed at the time when Step 2 was executed.  This
       ensures the congestion window is not reduced multiple times in
       the same loss episode.
   4.  Once the receiver observes the R_CWR bit being set in any
       incoming packet, the R_SUCCESS bit is reset for all future
       packets.

   A failed recovery on the receiver side triggers an explicit
   acknowledgment sent to the sender to inform it about the segments
   that are considered lost.  This is indicated by the R_FAIL bit being
   set in the "Flags" field of the TCP-IR option.  If the sender
   observes this bit being set, the following steps are executed:

   1.  The sender extracts the loss range from the "Range" field in the
       TCP-IR option.  The sequence numbers of the first and last byte
       lost are defined by the acknowledgement number of the packet, and
       the acknowledgement number plus the loss range value.
   2.  The sender marks the appropriate byte range as lost and triggers
       Fast Retransmit/Recovery.

   Explicit notification of loss ranges has the benefit that lost
   segments are retransmitted faster, avoiding the extra wait time until
   the RTO fires.

4.  Interaction with middleboxes

   An important design goal of TCP-IR is compatibility with middleboxes
   and support for graceful fallback to standard TCP behavior in
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   situations where middlebox interference prevents proper use of TCP-
   IR.

   Even if hosts negotiate TCP-IR during the initial handshake, it is
   possible for a middlebox to strip the option from a later packet.  To
   be robust to this, if either host receives a packet without the
   option, it MUST discard the packet and reset the connection.  This is
   necessary since receivers are no longer able to distinguish TCP-IR
   packets from regular packets.

   TCP-IR uses relative sequence numbers to convey metadata (such as the
   encoding range) between endpoints.  This prevents issues in the cases
   of middleboxes performing sequence number translations.

   Some problems caused by middlebox interference (and their solutions
   in TCP-IR) are not discussed in the current version of this draft:

   o  Rewriting of the acknowledgement number if the acknowledged
      segment was not observed by the middlebox.  With TCP-IR this can
      occur after recovering a lost segment.  This issue can be
      circumvented by retransmitting the recovered segment, even though
      it is not needed by the other endpoint anymore.  This plugs the
      "sequence hole" in the state of the middlebox.
   o  Rewriting payloads of previously seen segments.
   o  Packet coalescing and splitting.

5.  Implementation and Performance

   We implemented TCP-IR in Linux TCP in about 1600 lines of code. 20%
   of the modular implementation includes the parts common to both the
   sender and receiver, which are option encoding/decoding, and
   negotiation during connection setup. 50% of the implementation is the
   receiver components including detection of an encoded packet,
   decoding the TCP-IR payload, and generating the right
   acknowledgements upon a successful or failed recovery.  The remainder
   30% of the implementation is the sender component which consists
   mainly of payload encoding and transmission.

   We conducted two kinds of experiments.  The first was in an emulated
   setting using loss patterns similar to those observed in our
   measurement of real traffic.  We used the netem module to emulate a
   200 ms RTT and both random and correlated loss rates of 2%. TCP-IR
   reduced the latency for short transfers in lossy environments by 28%
   in the 90th percentile.  The benefits diminish as the minimum number
   of RTTs necessary to complete the transaction increases (due to the
   message size) because the time to recover from losses no longer
   dominates the overall transmission time.  TCP-IR is better suited for
   small transfers common in today’s Web.
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   In the second set of experiments, we used the Web-page-replay tool
   and dummynet to replay HTTP resource transfers for actual Web page
   downloads through controlled, emulated network conditions.  We tested
   a variety of popular Web sites, and ran separate tests for Web pages
   tailored for desktop and mobile clients.  As an example, with TCP-IR,
   the New York Times website takes 15% less time in the 90th percentile
   until the first objects are rendered on the screen.

   Details on performance experiments with TCP-IR are in
   [RECOVERY-SIGCOMM13].

6.  Related Work

   Applying FEC to transport, at nearly every layer, is an old idea.
   [Coding-IEEE2011] suggested placing network coding in TCP, and
   [CodedTCP-2013] extended this work by implementing a variant over UDP
   mainly for high loss rate wireless environments.  Among others,
   [AdaptiveFEC-2004] and Tickoo et al.  [LT-TCP-2005] explored
   extending TCP to incorporate FEC.  Finally, Maelstrom is an FEC
   variant for long-range communication between data centers leveraging
   the benefits of combining and encoding data from multiple sources
   into a single stream [Maelstrom-2011].  The focus of all of this work
   is on the performance aspects of using FEC over lossy links.  None
   address the protocol level changes required in TCP to incorporate
   FEC.

7.  Security Considerations

   The security considerations outlined in [RFC5681] apply to this
   document.  At this time we did not find any additional security
   problems with TCP-IR.

8.  IANA Considerations

   The two Options for TCP-IR used during negotiation and subsequently
   in every packet of the connection require IANA allocate one value
   from the TCP option Kind namespace.  Experimentation prior to the
   allocation SHOULD follow [EXPOPT] and use experimental option kind
   254 and two magic bytes 0xDC60, and migrate to the new option after
   the allocation accordingly.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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