
TCP Maintenance Working Group T. Flach
Internet-Draft USC
Intended status: Experimental N. Dukkipati
Expires: January 16, 2014 Y. Cheng
 B. Raghavan
 Google
 July 15, 2013

 TCP Instant Recovery: Incorporating Forward Error Correction in TCP
 draft-flach-tcpm-fec-00.txt

Abstract

 Ordinary TCP loss recovery takes at least one round-trip time and as
 such can increase application-perceived latency, especially for short
 flows such as Web transactions. TCP Instant Recovery (TCP-IR) is an
 experimental algorithm that allows a receiving end to recover lost
 packets without retransmissions, thus potentially saving at least one
 full round-trip time compared to standard TCP. TCP-IR achieves this
 by judiciously injecting encoded data segments within a TCP stream.
 This document describes the TCP-IR algorithm at the sending and
 receiving ends, along with the required protocol changes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Flach, et al. Expires January 16, 2014 [Page 1]

Internet-Draft TCP-IR July 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Protocol Overview . 3
 3. Protocol Details . 5
 3.1. TCP-IR Option . 6
 3.2. Negotiation . 7
 3.3. Encoding Types . 8
 3.4. TCP-IR Sender . 9
 3.5. TCP-IR Receiver . 9
 3.6. Processing Acknowledgements 11
 4. Interaction with middleboxes 11
 5. Implementation and Performance 12
 6. Related Work . 13
 7. Security Considerations 13
 8. IANA Considerations . 13
 9. References . 13
 Authors’ Addresses . 14

1. Introduction

 TCP Instant Recovery (TCP-IR) enables a receiver to recover lost data
 segments instantly without the need for retransmissions from a
 sender. Standard TCP retransmission-based loss recovery takes at
 least one RTT for loss detection and recovery.

 The main motivation for TCP-IR is to reduce the tail latency of Web
 transactions. Most Web transfers are short and could finish within a
 few round-trip times (RTTs), but losses can add multiple RTTs to
 transfer times and increase the variance in Web page download times.
 The goal of TCP-IR is to reduce loss detection and recovery to zero
 RTT while still employing TCP’s congestion control principles.

 Recovery mechanisms, such as fast recovery and retransmission
 timeout, are fundamentally RTT dependent. Regardless of how fast
 network bandwidth grows, the number of RTTs that it takes to recover
 lost packets does not change. TCP-IR employs forward error
 correction (FEC) to scale the recovery time inversely with bandwidth
 and make it independent of RTT. It explicitly trades some network

Flach, et al. Expires January 16, 2014 [Page 2]

Internet-Draft TCP-IR July 2013

 bandwidth to reduce RTTs for short transfers. Most bandwidth in the
 Internet is used by large flows such as video, and thus short,
 latency-sensitive traffic can benefit using a small degree of FEC
 without hurting bulk flow throughput.

 In this document, we specify the TCP-IR mechanism, which requires
 both sender and receiver changes, to achieve 1-RTT recovery for
 commonly observed loss scenarios. Instead of complete redundancy for
 every segment, we employ FEC within TCP. The sender transmits extra
 FEC segments, which encode previously transmitted segments, so that
 the receiver can repair a small number of losses. While the use of
 FEC for transport has been explored in the past, to our knowledge
 this is the first specification to place FEC within TCP in a way that
 is incrementally deployable across today’s networks with middleboxes.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Protocol Overview

 The key idea in TCP-IR is the judicious introduction of a small
 number of checksum or XOR segments into TCP’s data stream such that a
 receiver can immediately recover lost segment(s) without the need for
 retransmissions. The core design challenge is in injecting out of
 band XOR segments within the regular data stream. We outline the
 main aspects of the protocol below.

 Several of the design choices we made are rooted in our measurements
 and observations of Internet loss patterns as documented in
 [RECOVERY-SIGCOMM13]. We find that among the flows experiencing
 losses, most flows lose only one or two consecutive packets, commonly
 at the tail of a burst. As an example, for bursts of at most 10
 packets, ˜35% experienced exactly one loss, and an additional 10%
 experienced exactly two losses. Further, the latter packets for any
 given burst size are more likely to be lost. Given these findings,
 we chose a simple XOR-based encoding scheme that can perform instant
 recovery of a small amount (one or two segments) of packet loss.

 A TCP-IR sender and receiver first negotiate the use of instant
 recovery in the initial handshake. If both hosts support the use of
 instant recovery, every packet in the connection includes a TCP-IR
 option.

 TCP-IR sender:

Flach, et al. Expires January 16, 2014 [Page 3]

Internet-Draft TCP-IR July 2013

 1. Periodically in every round-trip time, a TCP-IR sender places the
 XOR of newly transmitted segments into a single MSS-length checksum
 packet. The XOR is only computed for new segments not previously
 included in checksums.

 2. Regardless of the sizes of original segments, the sender computes
 the XORs along MSS byte boundaries. Because every packet carries a
 payload of at most MSS bytes, such an encoding guarantees that the
 receiver can instantly recover any single packet loss.

 3. The encoded XOR packet uses the same sequence number as the first
 segment it encodes. The encoded packet carries a flag in the TCP-IR
 option signaling that the payload is encoded. A receiver uses the
 flag to disambiguate an encoded packet from a regular
 (re)transmission, since both segments carry the same sequence number.
 The option also includes the number of bytes that the payload
 encodes.

 There is no reliability provided for the XOR segments.

 TCP-IR receiver:

 1. A receiver first establishes if the payload of the received
 segment is encoded, by checking a flag in the TCP-IR option.

 2. Once the receiver establishes that the payload is encoded, it
 obtains the encoded range of bytes by using the sequence number of
 the TCP-IR packet and the the number of bytes encoded.

 3. The receiver checks for holes in the encoded range. If it
 received the entire sequence range, the receiver drops the encoded
 packet. Otherwise, if it is missing at most MSS contiguous bytes,
 the receiver uses the encoded payload to recover the lost sequence
 range and forwards it to the regular reception routine, thus allowing
 0-RTT recovery.

 4. For the purpose of recovering lost segments, a receiver buffers
 the last fifteen in-order MSS blocks that it ACKed, even if the
 application layer has already consumed these blocks. Because an
 encoded packet is the XOR of at most sixteen MSS segments, the
 receiver can recover any single lost packet by computing the XOR of
 the encoded payload and the buffered data in the encoding range.

 5. If too much data is missing for the encoded packet to recover,
 the receiver sends a duplicate ACK. This ACK informs the sender that
 a recovery failed and also denotes the byte ranges lost via the TCP-
 IR option. The sender marks the byte ranges as lost and triggers a
 fast retransmit and recovery.

Flach, et al. Expires January 16, 2014 [Page 4]

Internet-Draft TCP-IR July 2013

 6. TCP-IR does not circumvent congestion control. If the receiver
 were to simply ACK a recovered packet, it would mask the loss and
 prevent congestion control during a known loss episode. To perform
 congestion window reduction upon a successful recovery at the
 receiver, TCP-IR uses a mechanism similar to explicit congestion
 notification (ECN). Upon a successful recovery, the receiver enables
 an R_SUCC flag in the TCP-IR option in each outgoing ACK. The sender
 in turn triggers a congestion window reduction and sets an R_ACK flag
 in the TCP-IR option of the next packet sent to the receiver. Once
 the receiver observes R_ACK in an incoming packet, indicating that
 the sender reduced the congestion window, it disables R_SUCC for
 future packets.

 Figure 1 gives an example of TCP-IR in action.

 TCP A (Client) TCP B (Server)
 ______________ _____________
 | |
 | < SYN + TCP-IR_OPT > |
 | --------------------------------------> |
 | < SYN/ACK + TCP-IR_OPT > |
 | <-------------------------------------- |
 | |
 | < DATA > |
 | <-------------------------------------- |
 | < DATA > |
 | <-------------------------------------- |
 | < DATA SEGMENT LOST in TRANSIT > |
 | X <-------------------- |
 | |
 | < XOR SEGMENT > |
 | <-------------------------------------- |
 Recovery | |
 of lost | |
 segment | |
 | < ACK + SUCCESSFUL_RECOVERY_FLAG > |
 | --------------------------------------> |
 | |
 | | CWND reduction
 | | on successful
 | | recovery.
 | < ACK + WINDOW_REDUCED_FLAG > |
 | <-------------------------------------- |

 Figure 1: Sample flow using TCP-IR

3. Protocol Details

Flach, et al. Expires January 16, 2014 [Page 5]

Internet-Draft TCP-IR July 2013

 In the following, we describe the TCP-IR option design, negotiation
 of instant recovery, the supported encoding schemes, and finally the
 sender and receiver side algorithms.

3.1. TCP-IR Option

 Both the server and the client use a new option to perform the
 following:

 o Negotiate the use of TCP-IR, including the encoding type.
 o Distinguish encoded packets from regular packets.
 o Communicate the number of encoded bytes in an XOR packet.
 o Acknowledge the recovery of segments and congestion window
 reductions.
 o Indicate the loss of segments.

 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +---------------+---------------+---------------+
 | Kind = TBD | Length = 1 | Encoding Type |
 +---------------+---------------+---------------+

 Figure 2: TCP-IR Option format for packets with SYN flag set

 During the initial handshake (for packets with the SYN flag set), the
 option has the format shown in Figure 2. It contains the following
 fields:

 Kind (8 bits)
 This MUST be set to the option number for TCP-IR to be determined
 by IANA.

 Length (8 bits)
 This MUST be set to the length of the TCP option in octets; its
 value MUST be 1.

 Encoding Type (8 bits)
 This SHOULD be set to a value corresponding to a supported encoding
 type (see Section 3.3).

Flach, et al. Expires January 16, 2014 [Page 6]

Internet-Draft TCP-IR July 2013

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------
 | Kind = TBD | Length | Flags |
 +---------------+---------------+---------------+---------------
 Range (optional) |
 --------------------------------+

 Figure 3: TCP-IR Option format (except for packets with SYN flag set)

 For all other packets, the option has the format shown in Figure 3.
 It contains the following fields:

 Kind (8 bits)
 This MUST be set to the option number for TCP-IR to be determined
 by IANA.

 Length (8 bits)
 This MUST be set to the length of the TCP option in octets; its
 value MUST be 1, or 4 (if the "Range" field is appended).

 Flags (8 bits)
 The field can carry the following flags (each represented by one
 bit):

 Bit Flag Name Description
 0 R_CWR Congestion Window Reduction Acknowledgement
 1 R_SUCCESS Recovery successful
 2 R_FAIL Recovery failed
 3 ENCODED Packet is encoded
 4-7 Unused

 The unused bits SHOULD NOT be set.

 Range (24 bits, optional)
 This field is only used if either the ENCODED or R_FAIL bit in the
 "Flags" field is set. If the ENCODED bit is set, this field
 specifies the number of bytes encoded in the payload. If the
 R_FAIL bit is set, this field specifies the number of bytes
 considered lost (see Section 3.4 and Section 3.6).

3.2. Negotiation

 TCP-IR MUST be explicitly negotiated during the initial handshake.
 If the negotiation succeeds, both endpoints can send and receive TCP-
 IR packets. More specifically TCP-IR is enabled if:

Flach, et al. Expires January 16, 2014 [Page 7]

Internet-Draft TCP-IR July 2013

 1. The receiver sends the SYN packet carrying the TCP-IR option.
 The encoding type field MUST carry a valid encoding type (see
 Section 3.3).
 2. The sender responds with a SYN/ACK carrying the TCP-IR option.
 The encoding type field MUST carry the same encoding type as the
 option in the corresponding SYN packet.
 3. All following packets (transmitted by either sender or receiver)
 MUST carry the TCP-IR option.

 If any endpoint receives a packet (after negotiation succeeds) that
 does not carry the TCP-IR option, the connection MUST be reset. This
 is necessary because a receiver can no longer distinguish between
 regular and TCP-IR packets. We recommend tracking these cases to
 avoid TCP-IR negotiation on future connections.

3.3. Encoding Types

 The client can select the encoding type to be used by the TCP-IR
 module but both endpoints have to support it and agree on it during
 the initial handshake (see Section 3.2).

 Currently the following encoding types are supported and are
 therefore valid values in the "Encoding Type" field of the TCP-IR
 option during negotiation:

 Value Type Description
 0 Undefined
 1 Basic XOR TCP-IR packets carry the XOR of every MSS
 length segment. One TCP-IR packet encodes
 up to 16 MSS length segments.
 2 Interleaved XOR TCP-IR packets carry the XOR of every other
 MSS length segment. One TCP-IR packet
 encodes up to 8 MSS length segments.
 3-255 Undefined

 We selected these encoding types to demonstrate the flexibility of
 TCP-IR with respect to user preferences (like the acceptable amount
 of redundancy) and connection properties. Basic XOR can recover a
 single segment loss of up to MSS bytes in the encoding range.
 Interleaved XOR enables the recovery of two consecutive segments of
 up to MSS bytes. This makes Interleaved XOR suitable for connections
 observing bursty losses, but can double the number of generated TCP-
 IR packets.

Flach, et al. Expires January 16, 2014 [Page 8]

Internet-Draft TCP-IR July 2013

 The currently supported encoding types use the MSS value to determine
 the block size for the encoding process. If the MSS value changes
 after the initial handshake, TCP-IR MUST be disabled for the
 remainder of the connection.

3.4. TCP-IR Sender

 All packets after the initial handshake carry the TCP-IR option to
 ensure that the receiver can always distinguish regular packets from
 encoded packets (packets carrying a payload encoded by the TCP-IR
 module), or detect the removal of the option by a middlebox. Encoded
 packets MUST set the ENCODED bit in the "Flags" field of the TCP-IR
 option; all other packets MUST NOT set the ENCODED bit.

 The TCP-IR packet MUST use the same sequence number as the first byte
 it encodes. This prevents enforcing reliability for encoded packets
 as well as the overhead of specifying the index of the first encoded
 byte in a separate option field.

 In addition to that, the option in encoded packets MUST carry the
 "Range" field. The value in the "Range" field specifies the index of
 the byte after the last encoded byte in the payload relative to the
 sequence number of the encoded packet.

 TCP-IR adds a short delay in the transmission of encoded packets to
 the reduce the probability of losing both the original transmission
 and the encoded packet in the same loss burst.

 The encoding and transmission routine works as follows:

 1. Before a regular data packet is forwarded to the IP layer, the
 TCP-IR timer is armed (unless the timer is already armed). In
 our prototype implementation the timer is set to a value of RTT/
 4.
 2. Once the timer fires, all transmitted segments not encoded before
 are now encoded according to the negotiated encoding type and the
 corresponding encoded packets are transmitted immediately. The
 maximum number of MSS length segments which can be encoded in a
 single TCP-IR packet depends on the negotiated encoding type (see
 Section 3.3). As a result, the number of encoded packets created
 in this step depends on the encoding type and the number of
 previously un-encoded segments. The option fields in the encoded
 packet are populated as described in Section 3.1.

3.5. TCP-IR Receiver

 Receivers distinguish TCP-IR packets from regular packets by checking
 the ENCODED bit in the "Flags" field of the TCP-IR option. Encoded

Flach, et al. Expires January 16, 2014 [Page 9]

Internet-Draft TCP-IR July 2013

 packets are forwarded to the TCP-IR reception routine (described
 below). If the packet does not carry the TCP-IR option it is
 discarded and TCP-IR is disabled for the remainder of the connection.
 To inform the sender that TCP-IR can no longer be used, the receiver
 sends an acknowledgement without the TCP-IR option.

 Additionally, the regular reception routine is modified as follows.
 The last 15 ACKed MSS length segments remain in the buffer, even if
 the application layer has already consumed these segments. Segments
 received out-of-order are already buffered by default and cannot be
 consumed by the application layer. Since a single TCP-IR packet
 encodes at most 8 (interleaved XOR) or 16 (basic XOR) MSS length
 segments, any single segment loss (up to MSS length) in the encoding
 range can be recovered by the decoder.

 The reception routine for TCP-IR packets works as follows:

 1. The encoding range of the TCP-IR packet is extracted. As
 mentioned earlier, the sequence number of the packet specifies
 the sequence number of the first encoded byte. The sequence
 number plus the value stored in the "Range" field in the TCP-IR
 option minus 1 specifies the sequence number of the last encoded
 byte.
 2. If all bytes in the encoding range were already received, skip to
 Step 5.
 3. If lost segments in the encoding range can be recovered (in the
 case of XOR encoding, a loss of at most one MSS length segment in
 the encoding range can be handled):

 a. The lost segments are reconstructed. The matching packet
 headers are appended to the reconstructed segments and the
 packets are forwarded to the regular reception routine.
 b. The R_SUCCESS bit in the "Flags" field of the TCP-IR option
 is set for all future packets. This includes the
 (potentially delayed) acknowledgement for the recovered
 segment. Further details are described in Section 3.6.
 4. If none of the segments in the encoding range are recoverable:

 a. The sequence number of the last byte lost is extracted. The
 offset between the sequence number of the next expected byte
 (RCV.NXT) and the last byte lost defines the loss range.
 b. An acknowledgement is generated with the following
 requirements for the TCP-IR option.

 + The R_FAIL bit in the "Flags" field is set.

Flach, et al. Expires January 16, 2014 [Page 10]

Internet-Draft TCP-IR July 2013

 + The option carries the "Range" field. The "Range" field
 encodes the loss range, as described above. The context
 is maintained, since the acknowledgement number will be
 set to RCV.NXT.
 5. The TCP-IR packet is discarded.

3.6. Processing Acknowledgements

 If a receiver instantly recovers losses we want to ensure the sender
 learns of it so as to not circumvent congestion control [RFC5681].
 The R_SUCCESS bit in the "Flags" field of the TCP-IR option informs
 the sender that the receiver successfully recovered a lost packet.
 Once the sender observes the R_SUCCESS bit in a packet the following
 steps are executed:

 1. The sender reduces its congestion window.
 2. The sender sets the R_CWR bit in the "Flags" field of the TCP-IR
 option in the next outgoing packet only.
 3. The sender does not act on any future observations of the
 R_SUCCESS bit being set until SND.UNA advances past the SND.NXT
 value observed at the time when Step 2 was executed. This
 ensures the congestion window is not reduced multiple times in
 the same loss episode.
 4. Once the receiver observes the R_CWR bit being set in any
 incoming packet, the R_SUCCESS bit is reset for all future
 packets.

 A failed recovery on the receiver side triggers an explicit
 acknowledgment sent to the sender to inform it about the segments
 that are considered lost. This is indicated by the R_FAIL bit being
 set in the "Flags" field of the TCP-IR option. If the sender
 observes this bit being set, the following steps are executed:

 1. The sender extracts the loss range from the "Range" field in the
 TCP-IR option. The sequence numbers of the first and last byte
 lost are defined by the acknowledgement number of the packet, and
 the acknowledgement number plus the loss range value.
 2. The sender marks the appropriate byte range as lost and triggers
 Fast Retransmit/Recovery.

 Explicit notification of loss ranges has the benefit that lost
 segments are retransmitted faster, avoiding the extra wait time until
 the RTO fires.

4. Interaction with middleboxes

 An important design goal of TCP-IR is compatibility with middleboxes
 and support for graceful fallback to standard TCP behavior in

Flach, et al. Expires January 16, 2014 [Page 11]

Internet-Draft TCP-IR July 2013

 situations where middlebox interference prevents proper use of TCP-
 IR.

 Even if hosts negotiate TCP-IR during the initial handshake, it is
 possible for a middlebox to strip the option from a later packet. To
 be robust to this, if either host receives a packet without the
 option, it MUST discard the packet and reset the connection. This is
 necessary since receivers are no longer able to distinguish TCP-IR
 packets from regular packets.

 TCP-IR uses relative sequence numbers to convey metadata (such as the
 encoding range) between endpoints. This prevents issues in the cases
 of middleboxes performing sequence number translations.

 Some problems caused by middlebox interference (and their solutions
 in TCP-IR) are not discussed in the current version of this draft:

 o Rewriting of the acknowledgement number if the acknowledged
 segment was not observed by the middlebox. With TCP-IR this can
 occur after recovering a lost segment. This issue can be
 circumvented by retransmitting the recovered segment, even though
 it is not needed by the other endpoint anymore. This plugs the
 "sequence hole" in the state of the middlebox.
 o Rewriting payloads of previously seen segments.
 o Packet coalescing and splitting.

5. Implementation and Performance

 We implemented TCP-IR in Linux TCP in about 1600 lines of code. 20%
 of the modular implementation includes the parts common to both the
 sender and receiver, which are option encoding/decoding, and
 negotiation during connection setup. 50% of the implementation is the
 receiver components including detection of an encoded packet,
 decoding the TCP-IR payload, and generating the right
 acknowledgements upon a successful or failed recovery. The remainder
 30% of the implementation is the sender component which consists
 mainly of payload encoding and transmission.

 We conducted two kinds of experiments. The first was in an emulated
 setting using loss patterns similar to those observed in our
 measurement of real traffic. We used the netem module to emulate a
 200 ms RTT and both random and correlated loss rates of 2%. TCP-IR
 reduced the latency for short transfers in lossy environments by 28%
 in the 90th percentile. The benefits diminish as the minimum number
 of RTTs necessary to complete the transaction increases (due to the
 message size) because the time to recover from losses no longer
 dominates the overall transmission time. TCP-IR is better suited for
 small transfers common in today’s Web.

Flach, et al. Expires January 16, 2014 [Page 12]

Internet-Draft TCP-IR July 2013

 In the second set of experiments, we used the Web-page-replay tool
 and dummynet to replay HTTP resource transfers for actual Web page
 downloads through controlled, emulated network conditions. We tested
 a variety of popular Web sites, and ran separate tests for Web pages
 tailored for desktop and mobile clients. As an example, with TCP-IR,
 the New York Times website takes 15% less time in the 90th percentile
 until the first objects are rendered on the screen.

 Details on performance experiments with TCP-IR are in
 [RECOVERY-SIGCOMM13].

6. Related Work

 Applying FEC to transport, at nearly every layer, is an old idea.
 [Coding-IEEE2011] suggested placing network coding in TCP, and
 [CodedTCP-2013] extended this work by implementing a variant over UDP
 mainly for high loss rate wireless environments. Among others,
 [AdaptiveFEC-2004] and Tickoo et al. [LT-TCP-2005] explored
 extending TCP to incorporate FEC. Finally, Maelstrom is an FEC
 variant for long-range communication between data centers leveraging
 the benefits of combining and encoding data from multiple sources
 into a single stream [Maelstrom-2011]. The focus of all of this work
 is on the performance aspects of using FEC over lossy links. None
 address the protocol level changes required in TCP to incorporate
 FEC.

7. Security Considerations

 The security considerations outlined in [RFC5681] apply to this
 document. At this time we did not find any additional security
 problems with TCP-IR.

8. IANA Considerations

 The two Options for TCP-IR used during negotiation and subsequently
 in every packet of the connection require IANA allocate one value
 from the TCP option Kind namespace. Experimentation prior to the
 allocation SHOULD follow [EXPOPT] and use experimental option kind
 254 and two magic bytes 0xDC60, and migrate to the new option after
 the allocation accordingly.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

9. References

 [RECOVERY-SIGCOMM13]

Flach, et al. Expires January 16, 2014 [Page 13]

Internet-Draft TCP-IR July 2013

 Flach, T., Dukkipati, N., Terzis, A., Raghavan, B.,
 Cardwell, N., Cheng, Y., Jain, A., Hao, S., Katz-Bassett,
 E., and R. Govindan, "Reducing Web Latency: the Virtue of
 Gentle Aggression", Proceedings of the 2013 ACM SIGCOMM ,
 2013.

 [Coding-IEEE2011]
 Sundararajan, J., Shah, D., Medard, M., Jakubczak, S.,
 Mitzenmacher, M., and J. Barros, "Network Coding Meets
 TCP: Theory and Implementation", Proceedings of the IEEE ,
 2011.

 [CodedTCP-2013]
 Kim, M., Cloud, J., ParandehGheibi, A., Urbina, L., Fouli,
 K., Leith, D., and M. Medard, "Network Coded TCP (CTCP)",
 arXiv:1212.2291. , 2013.

 [AdaptiveFEC-2004]
 Baldantoni, L., Lundqvist, H., and G. Karlsson, "Adaptive
 end-to-end FEC for improving TCP performance over wireless
 links", IEEE Communications Society , 2004.

 [LT-TCP-2005]
 Tickoo, O., Subramanian, V., Kalyanaraman, S., and K.
 Ramakrishnan, "LT-TCP: End-to-End Framework to improve TCP
 Performance over Networks with Lossy Channels ", Proc. of
 IWQoS , 2005.

 [Maelstrom-2011]
 Balakrishnan, M., Marian, T., Birman, K., Weatherspoon,
 H., and L. Ganesh, "Maelstrom: transparent error
 correction for communication between data centers ", IEEE/
 ACM Transactions on Networking , 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [EXPOPT] Touch, J., "Shared Use of Experimental TCP Options",
 draft-ietf-tcpm-experimental-options-06 (work in
 progress), October 2012.

Authors’ Addresses

Flach, et al. Expires January 16, 2014 [Page 14]

Internet-Draft TCP-IR July 2013

 Tobias Flach
 University of Southern California
 941 Bloom Walk
 Los Angeles, California 90089
 USA

 Email: flach@usc.edu
 URI: http://nsl.cs.usc.edu/˜tobiasflach

 Nandita Dukkipati
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 Email: nanditad@google.com

 Yuchung Cheng
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Barath Raghavan
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 USA

 Email: barath@google.com

Flach, et al. Expires January 16, 2014 [Page 15]

