TCP Mai nt enance and M nor Extensions F. CGont

(tcpm UTN- FRH / Sl 6 Networ ks
I nternet-Draft D. Borman
Updates: 793 (if approved) Quant um Cor por ati on
I ntended status: Standards Track February 16, 2013

Expi res: August 20, 2013

On the Validation of TCP Sequence Numbers
draft-gont-tcpmtcp-seq-validation-00.txt

Abst ract

When TCP receives packets that lie outside of the receive w ndow, the
correspondi ng packets are dropped and either an ACK, RST or no
response is generated due to the out-of-w ndow packet, with no
further processing of the packet. Most of the tinme, this works just
fine and TCP renmi ns stabl e, especially when a TCP connection has
unidirectional data flow However, there are three scenarios in

whi ch packets that are outside of the receive wi ndow should still
have their ACK field processed, or else a packet war will take place.
The aforementi oned i ssues have affected a nunber of popul ar TCP

i npl ementations, typically leading to connection failures, system
crashes, or other undesirable behaviors. This docunent describes the
three scenarios in which the aforementioned i ssues night arise, and
formal |y updates RFC 793 such that these potential problens are

m tigat ed.

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."
This Internet-Draft will expire on August 20, 2013.

Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the

Gont & Borman Expi res August 20, 2013 [Page 1]

Internet-Draft

docunent authors. All

Thi s docunent

TCP Sequence Nunber Validation

rights reserved

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

February 2013

is subject to BCP 78 and the I ETF Trust’s Lega

in effect on the date of

Pl ease revi ew these docunents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunment nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD Li cense.

Tabl e of Contents

Provi sions and are provided without warranty as

1. Introduction . . . 3
2. TCP Sequence Nunber Valldatlon . . 3
3. Scenarios in which Undesirable BehaV|ors M ght AW|se . 4
3.1. TCP sinultaneous open 4
3.2. TCP self connects 5
3.3. TCP sinultaneous cl ose . 6
3.4. Simultaneous W ndow Probes . 8
4. Updating RFC 793 . . . 9
4.1. TCP sequence nunber valldatlon . 9
4.2. TCP self connects 14
5. | ANA Consi derations 14
6. Security Considerations 14
7. Acknow edgenents . 14
8. References . . 14
8.1. Nornative References . 14
8.2. Informative References . 15
Aut hors’ Addresses . 15
Gont & Borman Expi res August 20, 2013 [Page 2]

Internet-Draft TCP Sequence Nunber Validation February 2013

1.

I nt roducti on

TCP processes incom ng packets in in-sequence order. Packets that
are not in-sequence but have data that lies in the receive window are
queued for later processing. Packets that |ie outside of the receive
wi ndow are dropped and either an ACK, RST or no response is generated
due to the out-of-w ndow packet, with no further processing of the
packet. Mbst of the tine, this works just fine and TCP remains
stabl e, especially when a TCP connection has unidirectional data
flow.

However, there are three situations in which packets that are outside

of the receive window should still have their ACK field processed.
These situations arise during a sinultaneous open, sinultaneous
wi ndow probes and a simnultaneous close. |In all three of these cases,

a packet will arrive with a sequence nunber that is one to the |eft
of the wi ndow, but the acknow edgenent field has updated information
that needs to be processed to avoid entering a packet war, in which
both sides of the connection generate a response to the received
packet, which just causes the other side to do the sanme thing. This
i ssue has affected a nunber of popular TCP inplenentations, typically
| eading to connection failures, systemcrashes, or other undesirable
behavi ors.

Section 2 provides an overview of the TCP sequence nunber validation
checks specified in RFC 793. Section 3 describes the three scenarios
in which the current TCP sequence nunber validation checks can | ead
to undesirabl e behaviors. Section 4 formally updates RFC 793 such
that these issues are mtigated

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

TCP Sequence Nunber Validation

Section 3.3 of RFC 793 [RFC0793] specifies (in pp. 25-26) how the TCP
sequence nunber of incom ng segnents is to be validated. It

sunmari zes the validation of the TCP sequence nunber with the
fol |l owi ng tabl e:

Gont & Borman Expi res August 20, 2013 [Page 3]

Internet-Draft TCP Sequence Nunber Validation February 2013

Segnment Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WAD

or RCV.NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WAD

RFC 793 states that if an incom ng segment is not acceptable, an
acknow edgment should be sent in reply (unless the RST bit is set),
and that after sending the acknow edgnent, the unacceptabl e segnent
shoul d be dropped.

Section 3.9 of RFC 793 repeats (in pp. 69-76) the sane validation
checks when describing the processing of incom ng TCP segnments neant
for connections that are in the SYN RECEI VED, ESTABLI SHED,
FINWAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK, or TIME-VWAIT
states (i.e., any state other than CLOSED, LISTEN, or SYN SENT).

A key problemwi th the aforenmenti oned checks is that it assunes that
a segnment must be processed only if a portion of it overlaps with the
recei ve wi ndow. However, there are sone cases in which the

Acknowl edgenent information in an incom ng segnent needs to be
processed by TCP even if the contents of the segnent does not overlap
with the receive window. O herw se, the TCP state machi ne may becone
dead-1 ocked, and this situation may result in undesirable behaviors
such as system crashes.

3. Scenarios in which Undesirable Behaviors M ght Arise
The followi ng subsections describe the three scenarios in which the
TCP Sequence Nunber validation specified n RFC 793 (and described in
Section 2 of this docunent) could result in undesirable behaviors.

3.1. TCP sinultaneous open

The following figure illustrates a typical "sinmultaneous open"
attenpt .

Gont & Borman Expi res August 20, 2013 [Page 4]

Internet-Draft TCP Sequence Nunber Validation February 2013

TCP A TCP B
1. CLOSED CLGSED
2. SYN- SENT --> <SEQ@=100><CTL=SYN>
3. SYN- RECEI VED <-- <SEQ=300><CTL=SYN> <-- SYN- SENT
4. ... <SEQ=100><CTL=SYN> --> SYN- RECEI VED
5. --> <SEQ=100><ACK=301><CTL=SYN, ACK> . ..
6. <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <--
7. ... <SEQr100><ACK=301><CTL=SYN, ACK> -->
8. --> <SEQ=100><ACK=301><CTL=SYN, ACK> . ..
9. <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <--
10. ... <SEQ=100><ACK=301><CTL=ACK> -->

(Fail ed) Sinmultaneous Connection Synchronization

Inline 2, TCP A perforns an "active open" by sending a SYN segnent
to TCP B, and enters the SYN-SENT state. In line 3, TCP B perforns
an "active open" by sending a SYN segnent to TCP A, and enters the
"SYN- SENT" state; when TCP A receives this SYN segnent sent by TCP B,
it enters the SYN-RECElI VED state, and its RCV.NXT beconmes 301. In
line 4, sinilarly, when TCP B receives the SYN segnent sent by TCP A
it enters the SYN RECElI VED STATE and its RCV. NXT becones 101. In
line 5 TCP A sends a SYNACK in response to the recei ved SYN segnent
fromline 3. Inline 6, TCP B sends a SYN ACK in response to the
recei ved SYN segnent fromline 4. In line 7, TCP B receives the SYN
ACK fromline 5. In line 8 TCP A receives the SYNACK fromline 6
which fails the TCP Sequence Nunber validation check. As a result,
the received packet is dropped, and a SYN ACK is sent in response.
Inline 9, TCP B processes the SYNACK fromline 7, which fails the
TCP Sequence Nunber validation check. As a result, the received
packet is dropped, and a SYNACK is sent in response. In line 10,
the SYN ACK fromline 9 arrives at TCP B. The segnent exchange from
lines 8-10 will continue forever (with both TCP end-points will be
stuck in the SYN-RECEI VED state), thus |eading to a SYN ACK war.

3.2. TCP self connects

Sone systens have been found to be unable to process TCP connection
requests in which the source endpoint {Source Address, Source Port}

Gont & Borman Expi res August 20, 2013 [Page 5]

Internet-Draft TCP Sequence Nunber Validation February 2013

is the same as the destination end-point {Destination Address,
Destination Port}. Such a scenario mght arise e.g. if a process
creates a socket, bind()s a | ocal end-point (IP address and TCP
port), and then issues a connect() to the sane end-point as that
specified to bind().

Wil e not widely enployed in existing applications, such a socket
could be enployed as a "full-dupl ex pipe" for Inter-Process
Conmuni cation (1PC).

This scenario is described in detail in pp. 960-962 of
[Wight 1994].

The af orementi oned scenari o has been reported to cause nal function of
a nunber of inplenentations [CERT1996], and has been exploited in the
past to perform Denial of Service (DoS) attacks [Meltnmanl997]
[CPNI - TCP] .

Wiile this scenario is not conmon in the real world, TCP should
nevert hel ess be able to process themw thout the need of any "extra"
code: a SYN segnment in which the source end-point {Source Address
Source Port} is the sane as the destination end-point {Destination
Address, Destination Port} should result in a "sinmultaneous open"
scenari o, such as the one described in page 32 of RFC 793 [RFC0793].
Therefore, those TCP inplenentations that correctly handl e

si mul t aneous opens shoul d al ready be prepared to handl e these unusua
TCP segnents.

3.3. TCP sinmultaneous close
The following figure illustrates a typical "sinultaneous close"

attenpt, in which the FIN segments sent by each TCP end- poi nt cross
each other in the network.

Gont & Borman Expi res August 20, 2013 [Page 6]

Internet-Draft TCP Sequence Nunber Validation February 2013

TCP A TCP B
1. ESTABLI SHED ESTABLI SHED
2. FINNVWAIT-1 --> <SEQ=100><ACK=300><CTL=FI N, ACK> ..
3. CLOSI NG <-- <SEQ@300><ACK=100><CTL=FI N, ACK> <-- FIN-WAI T-1
4, ... <SEQ=100><ACK=300><CTL=FI N, ACK> --> CLCSI NG
5. --> <SEQ@100><ACK=301><CTL=FI N, ACK> ..
6. <-- <SEQ300><ACK=101><CTL=FI N, ACK> <- -
7. ... <SEQ=100><ACK=301><CTL=FI N, ACK> -->
8. --> <SEQ@100><ACK=301><CTL=FI N, ACK> ..
9. <-- <SEQ300><ACK=101><CTL=FI N, ACK> <- -
10. ... <SEQ=100><ACK=301><CTL=FI N, ACK> -->

(Fail ed) Sinultaneous Connection Term nation

In line 1, we assune that both end-points of the connection are in
the ESTABLI SHED state. In line 2, TCP A perforns an "active cl ose"
by sending a FIN segnent to TCP B, thus entering the FINNWAIT-1
state. Inline 3, TCP B perforns an active close sending a FIN
segnment to TCP A, thus entering the FINWAIT-1 state; when this
segnment is processed by TCP A it enters the CLOSING state (and its
RCV. NXT becones 301).

Both FIN segnments cross each other on the network, thus resulting
in a "sinmultaneous connection term nation" (or "sinultaneous
cl ose") scenario.

Inline 4, the FIN segnment sent by TCP A arrives to TCP B, causing it
to transition to the CLOSING state (at this point, TCP B s RCV. NXT
becones 101). 1In line 5 TCP A acknow edges the receipt of the TCP
B's FIN segnent, and also sets the FIN bit in the outgoing segnent
(since it has not yet been acknow edged). In line 6, TCP B

acknow edges the receipt of TCP A's FIN segnment, and al so sets the
FIN bit in the outgoing segment (since it has not yet been

acknow edged). In line 7, the FINACK fromline 5 arrives at TCP B
Inline 8 the FINACK fromline 6 fails the TCP sequence nunber

val idation check, and thus elicits a ACK segnent (the segnment al so
contains the FIN bit set, since it had not yet been acknow edged).
Inline 9, the FINACK fromline 7 fails the TCP sequence nunber

Gont & Borman Expi res August 20, 2013 [Page 7]

Internet-Draft TCP Sequence Nunber Validation February 2013

val i dati on check, and hence elicits an ACK segnment (the segment al so
contains the FIN bit set, since it had not yet been acknow edged).
Inline 10, the FINACK fromline 8 finally arrives at TCP B

The packet exchange fromlines 8-10 will repeat indefinitely, with
both TCP end-points stuck in the CLOSING state, thus leading to a
"FIN war": each FIN ACK segnent sent by a TCP will elicit a FIN ACK
fromthe other TCP, and each of these FINNACKs will in turn elicit
nmore FlI N/ ACKs.

3.4. Sinultaneous W ndow Probes
The following figure illustrates a scenario in which the "persist

timer" at both TCP end-points expires, and both TCP end-points send a
"wi ndow probes"” that cross each other in the network.

TCP A TCP B
1. ESTABLI SHED ESTABLI SHED
2. (both TCP wi ndows open)
3. --> <SEQ=100><DATA=1><ACK=300><CTL=ACK> ..
4. <-- <SEQ=300><DATA=1><ACK=100><CTL=ACK> <- -
5. ... <SEQ=100><DATA=1><ACK=300><CTL=ACK> -->
6. --> <SEQ=100><ACK=301><CTL=ACK>
7. <-- <SEQ=300><ACK=101><CTL=ACK> <--
8. ... <SEQ=100><ACK=301><CTL=ACK> -->
9. --> <SEQ=100><ACK=301><CTL=ACK>
10. <-- <SEQ=300><ACK=101><CTL=ACK> <--
11. ... <SEQ=100><ACK=301><CTL=ACK> -->

(Fail ed) Sinultaneous Connection Term nation

In line 1, we assune that both end-points of the connection are in
the ESTABLI SHED state; additionally, TCP A's RCV.NXT is 300, while
TCP B's RCV.NXT is 100, and the receive wi ndow (RCV. WND) at both TCP

end-points is 0. Inline 2, both TCP wi ndows open. In line 3, the
"persist tinmer" at TCP A expires, and hence TCP A sends a "W ndow
Probe". In line 4, the "persist timer" at TCP B expires, and hence

Gont & Borman Expi res August 20, 2013 [Page 8]

Internet-Draft TCP Sequence Nunber Validation February 2013

4.

4.

1.

TCP B sends a "W ndow Probe"
Bot h W ndow Probes cross each other in the network.

When this probe arrives at TCP A, TCP a’'s RCV. NXT becones 301, and an
ACK segment is sent to advertise the new wi ndow (this ACK is shown in
line 6). Inline 5 TCP A's Wndow Probe fromline 3 arrives at TCP
B. TCP B s RCV-WN\D becones 101. 1In line 6, TCP A sends the ACK to
advertise the newwndow. In line 7, TCP B sends an ACK to advertise
the new Wndow. Wen this ACK arrives at TCP A, the TCP Sequence
Nunber validation fails, since SEG SEQ=300 and RCV. NXT=301

Therefore, this segnent elicits a new ACK (neant to re-synchronize

t he sequence nunbers). In line 8 the ACK fromline 6 arrives at TCP
B. The TCP sequence nunber validation for this segnment fails, since
SEG SEQ=100 AND RCV. NXT=101. Therefore, this segnent elicits a new
ACK (nmeant to re-synchroni ze the sequence nunbers).

Line 9 and Iine 11 shows the ACK elicited by the segnent fromline 7
while Iine 10 shows the ACK elicited by the segment fromline 8. The
sequence nunmbers of these ACK segnents will be considered invalid,
and hence will elicit further ACKs. Therefore, the segnent exchange
fromlines 9-11 will repeat indefinitely, thus |leading to an "ACK
war " .

Updati ng RFC 793
TCP sequence nunber validation

The following text from Section 3.3 (pp. 25-26) of [RFC0793]:

Gont & Borman Expi res August 20, 2013 [Page 9]

Internet-Draft TCP Sequence Nunber Validation February 2013

A segrment is judged to occupy a portion of valid receive sequence
space if

RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
or

RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

The first part of this test checks to see if the beginning of the
segnent falls in the window, the second part of the test checks to see
if the end of the segment falls in the window, if the segnent passes
either part of the test it contains data in the w ndow.

Actually, it is alittle nore conplicated than this. Due to zero
wi ndows and zero | ength segnents, we have four cases for the
acceptability of an inconing segnent:

Segnment Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WAD

or RCV.NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

is replaced with:

Gont & Borman Expi res August 20, 2013 [Page 10]

Internet-Draft TCP Sequence Nunber Validation February 2013

A segrment is judged to occupy a portion of valid receive sequence
space if

RCV. NXT-1 =< SEG SEQ < RCV. NXT+RCV. WND
or

RCV. NXT-1 =< SEG SEQ+SEG. LEN-1 < RCV. NXT+RCV. VAD

The first part of this test checks to see if the beginning of the
segrment falls in the window (or one byte to the left to the w ndow),
the second part of the test checks to see if the end of the segnent
falls in the window (or one byte to the left of the window); if the
segnment passes either part of the test it contains data in the

wi ndow or control information that needs to be processed by TCP

Actually, it is alittle nore conplicated than this. Due to zero
wi ndows and zero | ength segnents, we have four cases for the
acceptability of an incom ng segnent:

Segnent Receive Test
Length W ndow

0 0 RCV. NXT-1 =< SEG SEQ <= RCV. NXT

0 >0 RCV. NXT-1 =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT-1 =< SEG SEQ < RCV. NXT+RCV. WND

or RCV.NXT-1 =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

Additionally, the followi ng text from Section 3.9 (pp.69-70) of
[RFC0793] :

Gont & Borman Expi res August 20, 2013 [Page 11]

Internet-Draft TCP Sequence Nunber Validation February 2013

Segnments are processed in sequence. Initial tests on arriva
are used to discard old duplicates, but further processing is
done in SEG SEQ order. If a segnent’s contents straddle the
boundary between old and new, only the new parts should be
processed.

There are four cases for the acceptability test for an inconing
segnent :

Segnent Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND

or RCV.NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WVAD

If the RCV.VWND i s zero, no segnents will be acceptable, but
speci al all owance should be nmade to accept valid ACKs, URGs and
RSTs.

If an incom ng segnent is not acceptable, an acknow edgnent
shoul d be sent in reply (unless the RST bit is set, if so drop
the segnent and return):

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

After sending the acknow edgnent, drop the unacceptabl e segnent
and return.

In the following it is assumed that the segnment is the idealized
segrment that begins at RCV. NXT and does not exceed the w ndow.
One could tailor actual segnents to fit this assunption by
trimming off any portions that lie outside the w ndow (including
SYN and FIN), and only processing further if the segnent then
begi ns at RCV. NXT. Segnents w th higher beginning sequence
numbers may be held for | ater processing.

is replaced with:

Gont & Borman Expi res August 20, 2013 [Page 12]

Internet-Draft TCP Sequence Nunber Validation February 2013

Segnments are processed in sequence. Initial tests on arriva
are used to discard old duplicates, but further processing is
done in SEG SEQ order. If a segnent’s contents straddle the
boundary between old and new, only the new parts should be
processed. Acknow edgenent infornmation nust still be processed
when the contents of the incom ng segnent are one byte to the
left of the receive w ndow.

This is to handl e simultaneous opens, sinultaneous closes,
and si nul t aneous wi ndow probes

There are four cases for the acceptability test for an inconing
segnent :

Segment Receive Test
Length W ndow

0 0 RCV. NXT-1 =< SEG SEQ <= RCV. NXT

0 >0 RCV. NXT-1 =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT-1 =< SEG SEQ < RCV. NXT+RCV. WND

or RCV.NXT-1 =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

If the RCV.VWND i s zero, no segnents will be acceptable, but
speci al all owance should be nmade to accept valid ACKs, URGs and
RSTs.

If an incom ng segnent is not acceptable, an acknow edgnent
shoul d be sent in reply (unless the RST bit is set, if so drop
the segnent and return):

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

After sending the acknow edgnment, drop the unacceptabl e segnent
and return.

In the following it is assuned that the segnent is the idealized
segnment that begins at RCV. NXT and does not exceed the w ndow.
One could tailor actual segnments to fit this assunption by
trimming off any portions that lie outside the w ndow (including
SYN and FIN). Segnents with higher begi nning sequence nunbers nmay
be held for |ater processing. Acknow edgenent information nust
still be processed when the contents of the incom ng segnent are
one byte to the left of the receive w ndow.

Gont & Borman Expi res August 20, 2013 [Page 13]

Internet-Draft TCP Sequence Nunber Validation February 2013

4.

8.

8.

2. TCP self connects

1.

TCP MJST be able to gracefully handl e connection requests (i.e., SYN
segnents) in which the source end-point (IP Source Address, TCP
Source Port) is the sane as the destination end-point (IP Destination
Address, TCP Destination Port). Such segnents MJUST result in a TCP
"simul taneous open", such as the one described in page 32 of RFC 793
[RFC0793] .

Those TCP inplenentations that correctly handl e sinultaneous opens
are expected to gracefully handle this scenario.
| ANA Consi derations
This docunent has no | ANA actions. The RFC Editor is requested to
renove this section before publishing this docunment as an RFC
Security Considerations
Thi s docunment describes a problemfound in the current validation
rul es for TCP sequence nunbers. The aforenentioned probl em has
af fected sonme popular TCP inplenmentations, typically leads to
connection failures, systemcrashes, or other undesirable behaviors.
This docunment formally updates RFC 793, such that the aforenentioned
i ssues are elimnated.
Acknow edgenent s
Thi s docunent originated froma di scussion about this topic (at |ETF
73, M nneapolis) between both co-authors of this docunent.
Ref erences

Nor mat i ve Ref erences

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Gont & Borman Expi res August 20, 2013 [Page 14]

Internet-Draft TCP Sequence Nunber Validation February 2013

8.

2.

I nformati ve References

[CERT1996]
CERT, "CERT Advisory CA-1996-21: TCP SYN Fl ocoding and I P
Spoofing Attacks", 1996,
<http://ww. cert.org/advisories/CA-1996-21. ht il >.

[CPNI - TCP]
Gont, F., "CPNl Technical Note 3/2009: Security Assessnent
of the Transnission Control Protocol (TCP)", 2009, <http:/
/ www. gont . com ar/ paper s/
tn-03- 09-security-assessnent - TCP. pdf >.

[Mel t mfan1997]
Mel t man, "new TCP/IP bug in wi n95. Post to the bugtraq
mai ling-list", 1996,
<http://insecure.org/sploits/land.ip.DOCS. htm >.

[Wi ght 1994]
Wight, G and W Stevens, "TCP/IP Illustrated, Volune 2:
The I nplementation”, Addison-Wsley, 1994.

Aut hors’ Addr esses

Fer nando CGont

UTN-FRH / SI 6 Net wor ks

Evaristo Carriego 2644

Haedo, Provincia de Buenos Aires 1706
Argentina

Phone: +54 11 4650 8472
Emai | : fgont @i 6net wor ks. com
URI : http://ww. si 6net wor ks. com

Davi d Bor rman

Quant um Cor por ati on

1155 Centre Pointe Drive, Suite 1
Mendot a Hei ghts, MN 55120

U S A

Phone: 651-688-4394
Emai | : davi d. bor mran@uant um com

Gont & Borman Expi res August 20, 2013 [Page 15]

