Constrained RESTful Environments
WG (core)

Chairs:
Andrew McGregor <andrewmcgr@gmail.com>
Carsten Bormann <cabo@tzi.org>
Mailing List:
core@ietf.org
Jabber:
core@jabber.ietf.org

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 1

mailto:6lowpan@jabber.ietf.org
mailto:6lowpan@jabber.ietf.org

* We assume people have read the drafts

* Meetings serve to advance difficult issues by making
good use of face-to-face communications

* Note Well: Be aware of the IPR principles, according
to RFC 3979 and its updates

v'Blue sheets
v'Scribe(s):
http://tools.ietf.org/wg/core/minutes

http://6lowapp.net core@IETF87, 2013-07-29/-08-01

http://tools.ietf.org/wg/core/minutes
http://tools.ietf.org/wg/core/minutes

Note Well

This summary is only meant to point you in the right direction, and doesn't have all
the nuances. The IETF's IPR Policy is set forth in BCP 79; please read it carefully.

The brief summary:
By participating with the IETF, you agree to follow IETF processes.

+If you are aware that a contribution of yours (something you write, say, or
discuss in any IETF context) is covered by patents or patent applications, you
need to disclose that fact.

**You understand that meetings might be recorded, broadcast, and publicly
archived.

For further information, talk to a chair, ask an Area Director, or review the following:
BCP 9 (on the Internet Standards Process)

BCP 25 (on the Working Group processes)

BCP 78 (on the IETF Trust)

BCP 79 (on Intellectual Property Rights in the IETF)

Milestones (from WG charter page)
http://datatracker.ietf.org/wg/core/charter/

Document submissions to IESG:

* Done CoAP protocol specification uwinmappingto trrerestar t0 IESG
* Feb 2013 Blockwise transfers in CoAP to IESG

* Feb 2013 Observing Resources in CoAP to IESG
 Apr 2013 Group Communication for CoAP to IESG

* Dec 2099 HOLD (date TBD) Constrained security
bootstrapping specification to IESG

draft-ietf-core-coap
approved by |ESG

eight YES ballots

draft-ietf-core-coap-18

* Approved by the IESG 2013-07-11

* Now in RFC editor queue

will stay there for a while:

MISSREF*A*R(1G)
REF draft-ietf-tls-oob-pubkey NOT-RECEIVED
draft-mcgrew-tls-aes-ccm-ecc NOT-RECEIVED

 Recent Changes
Accept Option is now critical
Size1 is imported from -block for 4.13 errors
» well, first Size was split into Size1 and Size2
Lots of small clarifications and small editorial fixes
Clarify that we really focus on ECC with P-256 curve (MTI)

http://6lowapp.net core@IETF87, 2013-07-29/-08-01

We are now in a phase change

° From
Oh | have this cool idea, how about that

* To

| have a deployment with a problem to solve
Here is how we solved it

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 7

Today

All times are in time-warped CEST
* 13:00-13:10 Intro

* 13:10-13:20 DICE preview

* 13:20-14:10 Access Control/Authorization in CoAP
* 14:10-14:25 Groupcomm (AR)

* 14:25-14:40 HTTP mapping (SL)

* 14:40-14:50 Service Discovery (ZS)

 14:50-14:60 Core Interfaces (ZS) WG docs
* 14:60 Links-JSON (CB)

* 14:60 “If we have time”

14:60 Core-Entities (FV)

14:60 (Content-Format) Parameters (YD)
14:60 Group Authentication (QM)

http://6lowapp.net core@IETF87, 2013-07-29/-08-01]

Between the slots

CoAP/LWIG work (= Matthias Kovatsch)
Observe in Tue 9-11 slot (= Klaus Hartke)

Meet up after this meeting in the front

DICE BOF, Wed 1510-1610

DTLS In Constrained Environments

http://6lowapp.net core@IETF87, 2013-07-29/-08-01

Thursday

* 13:00-13:05 Intro

* 13:05-13:11 External updates (OMA, cc work)

* 13:11-14:01 open issues in -block and -observe
 —14:01 conditional observe (if we have time)

* 14:01-14:41 Alternative Transports

° 14:41-15:00 “If we have time”’, continued
14:41-14:51 Sleepy nodes update
14:51-14:60 Spillover from Monday

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 10

Group |: Security
DICE BOF preview
Authorization

DICE BOF preview

The Problem

CoAP is moving towards mass deployment
DTLS v1.2 is the chosen security mechanism
Suitable range of security modes & ciphers
This was exactly the right choice!

However, DTLS v1.2 has several drawbacks

Handshake overhead is unnecessarily high
DTLS handshake state-machine is complex (TCP + TLS)
Not clear what sub-protocols, options and modes are needed

No support for IP multicast, which CoAP is often used with

What if we just do nothing?

Alternative, likely broken, security mechanisms will be invented
Or worse, deployments without security, e.g. for multicast

The Scope

The DICE working group would initially:

Define a minimal DTLS profile

Provide requirements for the design of TLS v1.3
Define use of group keys with the DTLS record layer

Explicitly out of scope:

The WG would not change TLS standards
Any TLS related changes will go to the TLS WG

Group key management
Specification of new cipher suites

Related Work

Profiling Work ltem Strawman
http://tools.ietf.org/html/draft-keoh-dtls-profile-iot-00

Group Communication Security Work Item Strawman
http://www.ietf.org/id/draft-keoh-dtls-multicast-security-00.txt

Existing work
http://www.ietf.org/id/draft-keoh-lwig-dtls-iot-01.txt

http://www.ietf.org/id/draft-hartke-core-codtls-02.txt
http://www.ietf.org/id/draft-tschofenig-lwig-tls-minimal-03.txt

http://www.ietf.org/id/draft-keoh-tls-multicast-security-00. txt
http://www.ietf.orqg/id/draft-ietf-tls-oob-pubkey-07.txt
http://www.ietf.org/id/draft-jennings-core-transitive-trust-enrollment-01.txt

http://tools.ietf.org/html/draft-schmitt-two-way-authentication-for-iot-00

http://tools.ietf.org/html/draft-greevenbosch-dice-authent-author-revoc-00

http://tools.ietf.org/html/draft-greevenbosch-tls-ocsp-lite-00

http://tools.ietf.org/html/draft-keoh-dtls-profile-iot-00
http://tools.ietf.org/html/draft-keoh-dtls-profile-iot-00
http://www.ietf.org/id/draft-keoh-dtls-multicast-security-00.txt
http://www.ietf.org/id/draft-keoh-dtls-multicast-security-00.txt
http://tools.ietf.org/id/draft-keoh-lwig-dtls-iot-01.txt
http://tools.ietf.org/id/draft-keoh-lwig-dtls-iot-01.txt
http://tools.ietf.org/id/draft-hartke-core-codtls-02.txt
http://tools.ietf.org/id/draft-hartke-core-codtls-02.txt
http://tools.ietf.org/id/draft-tschofenig-lwig-tls-minimal-03.txt
http://tools.ietf.org/id/draft-tschofenig-lwig-tls-minimal-03.txt
http://www.ietf.org/id/draft-keoh-tls-multicast-security-00.txt
http://www.ietf.org/id/draft-keoh-tls-multicast-security-00.txt
http://www.ietf.org/id/draft-ietf-tls-oob-pubkey-07.txt
http://www.ietf.org/id/draft-ietf-tls-oob-pubkey-07.txt
http://www.ietf.org/id/draft-jennings-core-transitive-trust-enrollment-01.txt
http://www.ietf.org/id/draft-jennings-core-transitive-trust-enrollment-01.txt
http://tools.ietf.org/html/draft-schmitt-two-way-authentication-for-iot-00
http://tools.ietf.org/html/draft-schmitt-two-way-authentication-for-iot-00
http://tools.ietf.org/html/draft-greevenbosch-dice-authent-author-revoc-00
http://tools.ietf.org/html/draft-greevenbosch-dice-authent-author-revoc-00
http://tools.ietf.org/html/draft-greevenbosch-tls-ocsp-lite-00
http://tools.ietf.org/html/draft-greevenbosch-tls-ocsp-lite-00

Authorization

CoAP doesn’t do AAA

® We delegate authentication to DTLS

® Authenticate peer endpoint in DTLS
handshake

® Several crypto options are available
® Don’t just think HT TPS-style PKI here
® Authorization is done “on top of CoAP”

® |et’s not talk about the third A

Authorization

® Authentication tells us who the other
endpoint is (subject)

® Authorization tells us what the other
endpoint is allowed to do

® down to the level of resources (objects)
and methods (permissions) on them

® Also named Access Control

Why discuss this in
CoRE?

® CoAP protocol doesn’t do authorization
® DTLS supplies the identifiers for that

® Authorization may need some exchanges
before it can be established

® |nteroperability?

“No new protocols™

Use DTLS for authentication and most of
“the crypto stuff”

Use CoAP for information transfer

Use [JSON, | for the data structures

Define a couple of data structures and how
to use them (OK, that’s a protocol)

20

Access Control Framework
for Constrained Environments

draft-selander-core-access-control-00

Content of draft

A token-based Access Control Framework for CoRE
*Requirements for AC in constrained environments

*AC Framework
— Rationale, roles & message flow
— Assertion transfer options
— Key provisioning schemes (alternative “Security Modes”)
— Extended Access Control Lists

*Applications (profiles) of the ACF

— Assertion profiles (XACML-SAML profile)
— Message protection profiles (communication / object security)

Background: CoAP Security Modes

PreSharedKey

ACL: K, ...

RawPublicKey

ACL: h(PK_,), ...

Certificate

ACL: PK_,, ...

Server

Client 1

DTLS PSK

DTLS OOB PUBKEY

DTLS with client cert

PK,(

<
-

PK,(sighca

Prkc,

Certification
Authority

Prkc,

Why/what/how standardize ACF

Why (not just all-or-nothing AC)?
*Some applications require more granular or flexible access control
*Security standardization is a means to support good security practice.

What (should be standardized)?

eassertion formats for different use cases (separate profile of ACF)
*transfer of assertion from client to resource server (part of ACF)

client-server message protection, including secure transfer of assertions
(separate profile of ACF)

esecurity modes, i.e. key provisioning schemes (part of ACF)

How (to encompass requirements of different use cases)?
*By means of assertion profiles and message protection profiles.

Requirements for AC in CoRE

General AC/security requirements

Requirements for constrained environments, e.g.

— No additional messages
— Keep message sizes small

Granularity

— GET/PUT/POST/DELETE

— Allow access control policies to depend on local conditions
Flexibility

— Easy to set and change authorized clients and access rights

Compatibility with existing standards
— Avoid duplicating existing work, e.g. XACML, SAML

Roles and message flow

--(A)-- Assertion Request ------=--- >

<-(B)-~ Assertion, Base Credentials ---
Origin
Client

-%(C)- Protected Request, Asscrtioné-->

<%(D)- Protected Response PSPV fRp

Different ways to transfer the assertion in (C)-(D)

In CoAP (query part of URI, new CoAP option)

Resource
Owner

Authori- |l
zation |
Server |

Resource
Server

In DTLS handshake (e.g TLS Authorization Extensions [RFC5878])

Assertion profile: Compact SAML-XACML

02 ["ID°: "T0_ffdassfo...097bddz1e6"; ~ - PossibleNonce N

@3 "II": "2013-02-15T710:02:522",
@4 "IST: "AAA-Server”,

@5 "SK": "BvDgLAXSHe...ORLhfwS1fue",.... E:8- publickeyof

% '._..._ST_._;_._.{ __ Orlgln Cllent
e

28 "NB":"99:00:007", E o
0 “NA": 1700 002" L XACML obligation
10 } " carries local

11 . '_'.i_c._f'_'._'._._.'_..c_e._f.._' ... i Conditions

12 "RES": "node346/tempSensor”

13}

14 } [here shown without JWS signature]

Implementation

* Object secured payload, assertion in COAP option, PSK

Arduino Mega 2560

— 16 MHz, 256 kB Flash, 8 kB SRAM, 4 kB EEPROM.
— Custom CoAP, AES, HMAC-SHA256

* Processing the CoAP messages on the device, including
authorization handling, required 7.3 kB of static memory

 Details in http://soda.swedish-ict.se/5523/
* Conclusions from this setting:

— Object security based authentication and authorization is
feasible

— Communication security (DTLS) less feasible (RAM, latency, ...)

http://soda.swedish-ict.se/5523/
http://soda.swedish-ict.se/5523/

Client-Server Message Protection

* Different alternatives to secure CoAP
— Communication Security (e.g. DTLS as specified in CoAP)
— Object Security (currently unspecified)
* CoAP security mechanism impacts the protection of assertion

during transfer, and access control is dependent on
authentication

* Nevertheless, assertion format should ideally be independent on
CoAP security mechanism

* ACF offers new key provisioning schemes (“Security Modes”)
— ACF PK: RS and AS has exchanged public keys.
— ACF SSK: RS and AS share a secret key.

— In either case, AS may provide base credentials to the Origin Client

Example of DTLS with ACF SSK

Resource Origin Authorization
Server Client Server ooy
Trusted AS key:
SSK
Request assertion || Authz decision,
“|| generate N,
< derive AK and BK,
DTLS PSK—BK- A, BK generate A
Derive AK and BK | handskake with . (
from N and SSK N in TLS extension
Verify A with AK (CoAP request with A
CoAP response >
(

A — Assertion
BK — Bind Key
N — Nonce

Example of DTLS with ACF PK

Resource

Server

Trusted AS key:
PK.,

RS

DTLS handskake

Origin
Client

Request assertion

A
r

A4

A

N

Verify A with PK

with A analogous to
RFC 5878

A

Verify request

CoAP request
(

Y

CoAP response

(

Authorization
Server PrK

AS

Authz decision,
generate and
sign A

Transferring assertion in DTLS or in COAP

* In DTLS (e.g. RFC 5878)
+ Authentication and authorization in one go
-Brings in application logic into DTLS
-Still need to verify that each CoAP request is authorized

* |n CoAP (URI query or CoAP Option)

+ DTLS freed from application logic

+ Same CoAP solution for comm. sec. and object sec.
-In DTLS, need to carry some authentication information related to

assertion (e.g. Nonce)

+ However, a Nonce in ClientHello allows for new DoS mitigation
mechanisms

Extended ACLs

* Category A (shared key/identity/trust anchor)
— Allowed to set up DTLS
— “Root” access to resources

* Category B (shared key/identity/trust anchor)
— Allowed to set up DTLS
— Access to resource according to assertion (if any)

Features:
e Backward compatibility with CoAP RFC (= Category A)
e Distinctinguish requests which require assertions

* Enables reduced privileges for proxies

Example of Object security and ACF PK

Resource
Server

Trusted AS key:
PKs

RS verifies A and
OC intent

Forward
Proxy

Origin
Client

Request assertion

~
v

N

A, PKqo

OoC enérypts A for

&
T~

CoAP request
with A’
(

[~

CoAP response
with payload
protected for OC

(

CoAP request
with A’
(

e

CoAP response
with payload
protected for OC

(

and signs with PrK

Authorization
Server

Prk,

Authz decision,
generate and
sign A

RS

'OC

Object security based message protection

Object security for both authentication and authorization

+ Pure object based security solution instead of mixed (DTLS
with assertion) reduces

+ No handshake latencies

+ Solution may piggy-back assertion (e.g. add client
signature of assertion)

+ Application layer security end-to-end irrespective of
proxies

-Need similar security protocol considerations as DTLS
+ TheASisaTTP

Summary

e Qutline and some details of an Access Control Framework
for CoRE, based on a first set of requirements

* Compatible with AC standards

* Enables policies depending on local conditions
* Analysis of different assertion transfer options
* Alternative Security Modes for CoAP

 Both DTLS and Object Security message protection worth
pursuing

Delegated CoAP Authorization Framework
draft-gerdes-core-dcaf-authorize-00

Stefanie Gerdes, Olaf Bergmann, Carsten Bormann

IETF-87, CoRE WG, 29.07.2013

Goals

» Relieve constrained nodes from managing authentication
and authorization

» Secure exchange of authorization information
» Establish DTLS channel between constrained nodes
» Use only symmetric key cryptography on constrained nodes

» Support of class-1 devices

Architecture

AS(C)

AS(RS)

RS

Architecture

AS(C)

Authorization
Server for C
("big brother")

Client

AS(RS)

Authorization
Server for RS
("big brother")

RS

Resource
Server

Problem: Securely Access a Resource at RS

AS(C) AS(RS)
coaps://RS/example
C > RS

Try NoSec (or RD Lookup)

AS(C)

Request

AS(RS)

-

> RS

4.01 Unauthorized

you should ask AS(RS)

Contact RS’s Big Brother for Authorization

Auth Request

AS(C)
|

A

-

.

Access Ticket

AS(RS)

RS

Access Ticket

AS(C)
|

|
1
i
!
|
1.
|
|
1.
!
|
.I.

—

.

N

AS(RS)

I\ EnAccess'ﬁcEéij;,

.1‘.

Face:

client identifier
timestamp
[lifetime]
[session kEy]

Verifier:

session key

authorization info

Use Access Ticket to Establish DTLS Channel

AS(C)

/

DTLS channel

AS(RS)

RS

PSK Derivation

AS(C)

AS(RS)

C

DTLS channel
/ psk_identity = Ticket Face

RS

PSK = Verifier derive PSK from

Ticket Face and
KRs,ASRS)

RS Permits Authorized Requests Over DTLS

AS(C)

AS(RS)
DTLS channel
< > RS
\ _ use Ticket Face
CoAP traffic for authorization

Initial Trust Relationships

AS(C)

| DTLS

(PSK)

]

DTLS/TLS

AS(RS)

|{we have these[—]

DTLS

(PSK)

RS

Trust: The Complete Picture

AS(C)

DTLS/TLS

|{we have these[—]

/

we want this

DTLS
(

PSK)

AS(RS)

DTLS

(PSK)

RS

Roles

T —
/’V ™
asc) | DTLS/TLS | as(rs) AS(RS)
N /
DTLS DTLS DTLS DTLS
constrained nodes
need a big brother
C RS RS/
AS(RS) AS(C)
not-so-constrained
nodes can act on DTLS/TLS LS D DTLS/TLS
their own
= RS =
AS(C) AS(RS)
k e /|

The DCAF Protocol

» Requires not-so-contrained nodes to do the hard work
(possibly including public-key crypto)

» Utilize DTLS to transmit authorization information and access
tickets
» Authenticate origin client by its access ticket:

» RS and AS(RS) share at least one session key

» AS(RS) creates Ticket Face + Verifier, tells AS(C), C
» C initiates DTLS handshake with RS

» Ticket Face is PSK identity, Verifier is PSK

» RS calculates PSK from Ticket Face

» Knowledge of Verifier authenticates C to RS!
» Knowledge of PSK authenticates RS to C!

» Face contains authorization information valid for the entire
session

» Verifier ensures Face's integrity

Conclusions

>

Off-load authentication and authorization from constrained
nodes

» Big brothers can use PKI etc. to authenticate
» constrained nodes only need symmetric key cryptography

secure transmission of authorization information
secure transmission of PSK for DTLS channel C <& RS
requires transitive trust relationship RS—AS(RS)—AS(C)—C

Questions:

» Is this approach reasonable?
» |Is this something that the WG should work on?

Group 2: WG docs

Group Communication for
CoAP

1 ETF

Akbar Rahman
Esko Dijk

IETF 87, July 2013

http://www.ietf.org/id/draft-ietf-core-groupcomm-011.txt

http://www.ietf.org/id/draft-ietf-core-groupcomm-011.txt
http://www.ietf.org/id/draft-ietf-core-groupcomm-011.txt

S~

Summary of Changes (1/7) Q3

v
-
1 ETF

= |-D had several updates (Rev. 06 to Rev.11) after IETF-86 (Orlando)

= (Changes from ietf-05 to ietf-06:

= Added a new section on commissioning flow when using discovery services
when end devices discover in which multicast group they are allocated
(#295).

= Added a new section on CoAP Proxy Operation () that outlines

the potential issues and limitations of doing CoAP multicast requests via a
CoAP Proxy (#274).

= Added use case of multicasting controller on the backbone (#279).

= Use cases were updated to show only a single CoAP RD (to replace the
previous multiple RDs with one in each subnet). This is a more efficient
deployment and also avoids RD specific issues such as synchronization of
RD information between serves (#280).

http://
http://

Summary of Changes (2/7) A
1 E T F

= Changes from ietf-05 to ietf-06 (continued):
= Added text to (Configuring Group Membership in Endpoints) that

clarified that any (unicast) operation to change an endpoint's group
membership must use DTLS-secured CoAP.

Clarified relationship of this document to []in
(Scope).
Removed IPSec related requirement, as IPSec is not part of |
] anymore.
Editorial reordering of subsections in to have a better flow of

topics. Also renamed some of the (sub)sections to better reflect their

content. Finally, moved the URI Configuration text to the same section as

the Port Configuration section as it was a more natural grouping (now in
).

Editorial rewording of (Multicast Request Acceptance and

Response Suppression) to make the logic easier to comprehend (parse).

Various editorial updates for improved readability.

http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://

Summary of Changes (3/7) A
1 ET F
= Changes from ietf-06 to ietf-07:
= Added an IANA request (in) for a dedicated content- format
(Internet Media type) for the group management JSON format called
‘application/coap-group+json' (#299).
= Clarified semantics (in) of group management JSON format
(#300).
= Added details of IANA request (in) for a new CORE Resource
Type called 'core.gp'.
= Clarified that DELETE method (in) is also a valid group

management operation.
Various editorial updates for improved readability.

http://
http://
http://
http://
http://
http://
http://
http://

Summary of Changes (4/7) A
1 E T F

= (Changes from ietf-07 to ietf-08:

Updated text in (Configuring Group Membership in Endpoints) to
make it more explicit that the Internet Media Type is used in the processing

rules (#299).
Addressed various comments from Peter van der Stok (#296).

Various editorial updates for improved readability including defining all
acronyms.

http://
http://

S~

Summary of Changes (5/7) Q3

v
-
1 ETF

= (Changes from ietf-08 to ietf-09:

Cleaned up requirements language in general. Also, requirements language
are now only used in (Protocol Considerations) and

(Security Considerations). Requirements language has been removed from
other sections to keep them to a minimum (#271).

Addressed final comment from Peter van der Stok to define what "IP stack"
meant (#296). Following the lead of CoAP-17, we know refer instead to
"APls such as IPV6_ RECVPKTINFO [1".

Changed text in (Group Methods) to allow multicast POST under
specific conditions and highlighting the risks with using it (#328).

Various editorial updates for improved readability.

http://
http://
http://
http://
http://tools.ietf.org/html/rfc3542
http://tools.ietf.org/html/rfc3542
http://
http://

Summary of Changes (6/7) A
1 ET F
= (Changes from ietf-09 to ietf-10:
= Added a fourth option in on ways to obtain the URI path for a

group request.
Clarified use of content format in GET/PUT requests for Configuring Group

Membership in Endpoints (in).

Changed reference " "to"

Clarified (in) that ACKs are never used for a multicast request
(from #296).

Clarified (in /5.2.3) that MPL does not support group membership
advertisement.

Adding introductory paragraph to Scope ().

Wrote out fully the URIs in table :

Reworded security text in (New Internet Media Type) to make it
consistent with (Configuring Group Membership).

Fixed formatting of hyperlinks in sections and

http://
http://
http://
http://
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-shelby-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://tools.ietf.org/html/draft-ietf-core-resource-directory
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://
http://

SV~

Summary of Changes (7/7) KA

e
-
1 ETF

= (Changes from ietf-10 to ietf-11:

= Added text to (Congestion Control) to clarify that a "CoAP client

sending a multicast CoAP request to /.well-known/core SHOULD support
core-block" (#332).

= Various editorial updates for improved readability.

http://
http://

L NN
A\ N\ o e
- A 4

T F

\v &4

Configuring Group Membership in Endpoints
(1/2) !

= Would like to reconfirm with WG the approach for configuring Group
Membership In Endpoints (Section 3.6 and the IANA Section)

= Optional (unicast) RESTful interface (GET/PUT/POST/DELETE) to
set Group configuration resource in Endpoints by commissioning
tool:

= New “core.gp” resource type (rt) CORE Parameters Registry for
designating the Group Configuration resource

= New “application/coap-group+json” Internet Media Type for the
Group configuration resource content

= JSON-based content format
= |P multicast address or Hostname (FQDN)

Configuring Group Membership in Endpoints
(2/2) !

S~
A 4

T F

\“ &4
|

lll\‘-\

= Example:

= Req: POST /gp (Content-Format: application/coap-group+json)
[{"n": "floor1.west.bldg6.example.com",

"ip": "ff15::4200:f7fe:ed37:14cb" }]
= Res: 2.04 Changed

= SHOULD use DTLS-secured CoAP communication between
Endpoint and commissioning tool

Next Steps FKA
1 E

T F

= Any other updates that the WG would like to
see?

= |s the I-D ready for WGLC?

Best Practices for
HTTP-CoAP Mapping
Implementation

Angelo Castellani, Salvatore Loreto, Akbar
Rahman, Thomas Fossati, Esko Dijk

IETF 87, July 2013

http://www.ietf.org/id/draft-ietf-core-http-mapping-01.txt

http://www.ietf.org/id/draft-ietf-core-http-mapping-01.txt
http://www.ietf.org/id/draft-ietf-core-http-mapping-01.txt

S~

Main Changes (from IETF Orlando) <<

7
-
1 ETF

= Added (for Reverse Proxy) HTTP to CoAP URI Mapping:
= Requirements

= Proposals
= Solution #1: Carsten's Mapping Proposal
= Solution #2: Adding IPv6 Literals to Carsten's Mapping Proposal
= Solution #3: Split CoAP URI in Query Arguments
= Solution #4: CoAP URI as Single Query Parameter
= Solution #5: Split CoAP URI in Path Components

= Solution Comparison Matrix

Reverse Cross-Protocol Proxy
Deployment Scenario

m \‘A.I;-\

L =
A 4

T F

S~

Requirements (1/2) S EAK
1 ET F

REQ1: Syntactic correctness of the HTTP URI (i.e. handle percent-
encoding when needed)

REQ2: HTTP URI must be able include all elements of a CoAP URI (e.g.
coap(s) scheme, hostname, host literals IPv4/IPv6, port, path, query
components, characters allowed in CoAP URI)

REQ3: The mapping operation must produce a string that can be directly
used by a proxy as input to the process of Section 6.4. of [I-D.ietf-core-
coap]

REQ4: HTTP URI should be easily readable/writable by humans, if
possible (i.e. easy to read the CoAP URI embedded in it, e.g.: avoid
multiple levels of percent encoding, etc.)

‘-/"‘/"/7
o A 4
E

T F

Requirements (2/2) <

REQS: HTTP cache friendliness of the mapping solution, i.e. maximize
the caching of CoAP resources by HTTP intermediaries (a solution
where entire CoAP URI is provided as a single query parameter is bad
in this respect)

REQG: Normalised form: preferably there should be only one normal/
default way to encode the URI, so that we do not end up with multiple
different cache entries for the same CoAP resource in intermediaries

REQ7: HTTP URI should be as short as possible

Solution #1: Carsten's Mapping Proposal <
1

"/"‘/"/‘7
a4 4
E

T F

This is the mapping proposal originally defined in [I-D.bormann-core-
cross-reverse-convention]

URI template: TBD

Example:

= http://proxy.example.com/.well-known/core-translate/1.2.3.4 4567/
foo/bar?a=3

= Maps to coap://1.2.3.4:4567/foo/bar?a=3

Notes:

= How to include IPvG6 literals was not defined in [I-D.bormann-core-
cross-reverse-convention]

= The CoAP scheme is derived from HTTP scheme (http or https). The
" {Port}" part is optional

< SN
SAXA>>
4 4

Solution #2: Adding IPv6 Literals to Carsten’s«.¢
Mapping Proposal (1/2) I BT B

Adding IPvG literals support to [I-D.bormann-core-cross-reverse-
convention]

URI template: “/.well-known/core-translate/{authority-encoded}/ {path}?
{query}”

Example 1:

= http://proxy.example.com/.well-known/core-translate/
%5B2001:db8::1%5D:4567/foo/bar?a=3

= Maps to coap://[2001:db8::1]:4567/foo/bar?a=3

Example 2:

= http://proxy.example.com/.well-known/core-translate/
server.coap.example.com:4567/foo/bar?a=3

= Maps to coap://server.coap.example.com:4567/foo/bar?a=3

Solution #2: Adding IPv6 Literals to Carsten's«. e 254,

Mapping Proposal (2/2) 1 ETEF

= Example 3:

= http://proxy.example.com/.well-known/core-translate/
server.coap.example.com/foo/bar?a=3

= Maps to coap://server.coap.example.com/foo/bar?a=3

= Example 4.

= http://proxy.example.com/.well-known/core-translate/
1.2.3.4:4567/ foo/bar?a=3

= Maps to coap://1.2.3.4:4567/foo/bar?a=3

S~
A 4

Solution #3: Split COAP URI in Query X
1 ETF

Arguments (1/2)

= This proposal splits the CoAP URI in parts and puts parts in
to separate query arguments of the HTTP URI

= URI template: “/.well-known/core-translate/ host={host}
&port={port}&path={path}?{query}”

= Note: The query parts "host", "port", "path" and "query"
are all optional in the URI

= TBD: discuss order of query arguments; and what to do
with duplicates

Solution #3: Split COAP URI in Query X
Arguments (2/2) 4
= Example:

= http://proxy.example.com/.well-known/core- translate?host=
%5B2001:db8::1%5D&port=4567 &path=/foo/bar?a=3&b=5

= Maps to coap://[2001:db8::1]:4567/foo/bar?a=3&b=5

S~
A 4

T F

S~

Solution #4: CoAP URI as Single Query Parameter| «.¢«
1 ETF

= Inspired by certain web services that put HTTP callback
URIs in URI- query parameters

= URI template: TBD

= Example:

= http://proxy.example.com/.well-known/core-translate?uri=coap%3A%?2 F
%2F%5B2001%3Adb8%3A%3A1%5D%3A4567%2Ffoo%2Fbar%3Fb
%3Dbefore colon% 253Aafter_colon

= Maps to coap://[2001:db8::1]:4567 [foo/bar?b=before colon
%3Aafter _colon

Solution #5: Split CoOAP URI in Path Components |« @454
(1/2) 1 ETF

= URI template: /.well-known/core-translate/{scheme}/{+host}/{port}/
{+path_abempty}/{+query}

= Where:
= scheme is "coap” or "coaps" or the empty string;

= host matches the production defined in [RFC3986] Sec. 3.2.2. (need
to percent-encode ' and ' in IP-literal);
= port matches the production defined in [RFC3986] Sec. 3.2.3;

= path_abempty matches the production defined in [RFC3986] Sec.
3.3. (need to percent-encode any /' occurrence);

= query matches the production defined in [RFC3986] Sec. 3.4. (need
to percent-encode any '/* and '?' occurrence);

S~

Solution #5: Split CoOAP URI in Path Components | «.¢«
(2/2) 1 ETF

= CoAP URI is reconstructed as per [RFC3986] Sec. 5.3. carrying out the
following substitutions before going through the algorithm:

= if scheme is the empty string, make it "coap";
= if portis the empty string, make it "5683";

= TBD (possibly not needed): if path-abempty is the empty string,
make it "/";

= Example:

= http://proxy.example.com/.well-known/core-translate/coap/
server.coap.example.com/4567/foo%2Fbar/a=3

= coap://server.coap.example.com:4567/foo/bar?a=3

Solution Comparison Matrix <A
I

The following table compares the HTTP to CoAP URI solutions to the

given requirements
- ——— e S e s s e
| | #1 | #2 | #3 | #4 | #5 | Notes |
o AE Rl PRI A LEREEE EEE LR - +
| ‘RBQL §. %l fu) i | |
[iREQ2 § == Jiwe Juz) @ fee | |
L'REGs J == Jiee B3) s Ligdy |
| REQ4 | + | + | o | - | o | |
|“RROS &+ b.#2 b= &' e. EE ? |
| REQ6 | 2 | ? |2 |2 |2 | |
| BEQZ? [& | . [%] & |=fo] |
E e e s e - e -

Legend:

+ Meets the requirement

- Does not meet the requirement

o Partly meets the requirement

? TBD

(a) Details need to be defined for each solution.

"/"‘/"/‘7
o A 4
E

T F

Next Steps <

= \What approach for HTTP to CoAP URI translation does the
WG recommend?
= Solution #1: Carsten's Mapping Proposal
= Solution #2: Adding IPv6 Literals to Carsten's Mapping Proposal
= Solution #3: Split CoOAP URI in Query Arguments
= Solution #4: CoAP URI as Single Query Parameter
= Solution #5: Split CoAP URI in Path Components

CoRE Resource Directory
draft-ietf-core-resource-directory-05

Z. Shelby, C. Bormann, S. Krco

CoRE WG, IETF-87 Berlin
e

Background

Not a new concept

think web search engine or any link directory
Defines the interfaces to a Resource Directory
Based on Web Linking framework and the CoRE Link Format
Generic REST design for use over HTTP and CoAP
Part of the OMA Lightweight M2M standard

Has already been deployed
In traffic monitoring systems
In street lighting systems
For vehicular asset tracking

By a major Cellular M2M operator

Chemt

Lookup
RO Entries
Idiep-a </sensorstemp>;ri=TempC#=sensor
Irdiep-d </actuatorfed>;n=LEDf=actuator
Roso70 ectory
Register Register

J

fsensortemp factuatoried

Changes since shelby-05

Submitted as WG document

When are we done?

We are defining an interface.... let's keep it simple

Close the WG adoption comments

Get (even) more implementation experience

Access control and security considerations completed

Integrate a DNS-SD mapping section

Maintain compatibility with OMA Lightweight M2M
Registration, Update and De-registration interfaces

Comments and Known Issues

Remove the ETag “Validation” feature

Add a DNS-SD mapping section based on draft-lynn-
core-discovery-mapping-02

More clarification in the Simple Discovery and Discovery
sections

Disallow a GET on the EP entry location e.g. /rd/1234

Cross-reference the Groupcomm draft WRT the RD
group functionality

Further security considerations on access control

Improve the lookup function set
Some link responses are awkward
Separate types of lookups into separate function sets?

http://tools.ietf.org/html/draft-lynn-core-discovery-mapping-02
http://tools.ietf.org/html/draft-lynn-core-discovery-mapping-02
http://tools.ietf.org/html/draft-lynn-core-discovery-mapping-02
http://tools.ietf.org/html/draft-lynn-core-discovery-mapping-02

draft-ietf-core-interfaces-00
CoRE Interfaces

Zach Shelby, Matthieu Vial

CoRE WG, IETF-87 Berlin
e

CoRE Interfaces

Interface patterns for use in typical loT applications
Applicable to both CoAP or HTTP
Set of basic REST interfaces

Link list

Batch

Linked batch

Sensor

Parameter, Read-only Parameter

Actuator

Bindings

Resource observation query interface
Example resource organization structure

Function sets, made up of sub-resources
Sub-resources and their attributes

- Pambvresourcebpemlerface lpes) dalabpeete.

Simple Interfaces

L R Sy +
| Interface | if= | Methods

L R Sy +
| Link List | core.ll | GET

Batch	core.b	GET, PUT, POST (where applicable)
Linked Batch	core.lb	GET, PUT, POST, DELETE (where
		applicable)
Sensor	core.s	GET
Parameter	core.p	GET, PUT

| Read-only | core.rp | GET

| Parameter | | |
| Actuator | core.a | GET, PUT, POST |

Function Set Example

o S N S Fommmm e +

| Function Set | Root Path | RT | IF |

R S Fommm e S +

| Device Description | /d | simple-dev | core.ll |

| Sensors | /s | simple-sen | core.b |

| Actuators | /a | simple-act | core.b |

R S Fommm e S +
R S S S Fom e +
| Type | Path | RT | IF | Data Type |
R S S S Fom e +
| Name | /d/name | simple:dev:n | core.p | xsd:string |

| Model | /d/model | simple:dev:mdl | core.rp | xsd:string |

R Fommmm o S R S S S +
Fomm o Fomm o S oo S +
| Type | Path | RT | IF | Data Type |
Fomm Fomm S oo S S +
| Light | /s/light | simple-sen-1t | core.s | xsd:decimal |
| | | | | (lux) |

| Humidity | /s/humidity | simple-sen-hum | core.s | xsd:decimal |
| | | | | (%RH) |

| Temperature | /s/temp | simple-sen-tmp | core.s | xsd:decimal |

|deiC|

Simple Examples

Sensor Interface

Req: GET /s/humidity (Accept: text/plain)
Res: 2.05 Content (text/plain)
80

Req: GET /s/humidity (Accept: application/senml+json)
Res: 2.05 Content (application/senml+json)
{lle":[

{ llnll: llhumidity", llv": 80, llu": ll%RHll }],
Parameter Interface
Req: GET /d/name
Res: 2.05 Content (text/plain)
node5

Actuator Interface

Req: GET /a/l/led

Res: 2.05 Content (text/plain)

.
List & Batch Examples

Batch Interface

Req: GET /s
Res: 2.05 Content (application/senml+json)
{"e":]
{ "n": "light", "v": 123, "u": "1x" },
{ "n": "temp", "v": 27.2, "u": "degC" },

{ llnll: llhumidityu, lIVII: 80, llul|: II%RHII }],

Link List Interface

Req: GET /d (Accept:application/link-format)
Res: 2.05 Content (application/link-format)
</d/name>;rt="simple-dev-n";if="core.p",

</d/model>;rt="simple-dev-mdl";if="core.rp”
Linked Batch Interface

Req: POST /1 (Content-type: application/link-format)
</s/light>,</s/temp>
Res: 2.04 Changed

Changes since shelby-04

Submitted as WG document

e
When are we done?

Remember, this is Informational

Set of useful REST interface paradigms for loT
The current scope is already broad enough?

Close comments from WG adoption

Complete security considerations

e
Comments and Known Issues

Improve the scope and purpose of the document

Clarify that the Observe query parameters are one way
of achieving such functionality

Align with OMA Lightweight Object design as an
example

Security considerations need work
Should we add a Collection interface type?

POST/DELETE to add/remove sub-resources

* We assume people have read the drafts

* Meetings serve to advance difficult issues by making
good use of face-to-face communications

* Note Well: Be aware of the IPR principles, according
to RFC 3979 and its updates

v'Blue sheets
v'Scribe(s)

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 94

Note Well

This summary is only meant to point you in the right direction, and doesn't have all
the nuances. The IETF's IPR Policy is set forth in BCP 79; please read it carefully.

The brief summary:
By participating with the IETF, you agree to follow IETF processes.

+If you are aware that a contribution of yours (something you write, say, or
discuss in any IETF context) is covered by patents or patent applications, you
need to disclose that fact.

**You understand that meetings might be recorded, broadcast, and publicly
archived.

For further information, talk to a chair, ask an Area Director, or review the following:
BCP 9 (on the Internet Standards Process)

BCP 25 (on the Working Group processes)

BCP 78 (on the IETF Trust)

BCP 79 (on Intellectual Property Rights in the IETF)

Group 4:
Related Work Reports

CoRE AA Status Summary

Stefanie Gerdes

IETF-87, CoRE WG, 01.08.2013

Basic Goals

» Authentication and Authorization
» Support class-1 and class-2 devices

» Support multiple crypto schemes (PK, PSK)

Documents (Proposed)

fm“\
T

o

£ o
Hx‘x -f{jl.. ~
H\ﬂ“\-\
"‘\-\HJ

» Overview draft
» Communication / channel security draft
» Object security draft

» Authorization Representation draft

Topics

» Use cases

» Common Terminology

» Requirements

» Trust Model

> Roles

» Object / channel security
» Revocation

» Key management

» Crypto schemes (PK, PSK)
» Authorization information / assertions representation
» Threat Model

Further steps

» Start working on that in CoRE
» Talk to other working groups with useful input / related topics

» OAuth
» JOSE

» Input is appreciated, especially on use cases and requirements

OMA Lightweight M2M Overview

(A new standard using lots of IETF specs including DTLS,
CoAP, Block, Observe, Resource Directory, SenML...)

Zach Shelby

CoRE WG @ IETF-87 Berlin

OMA Lightweight M2M

Open Mobile Alliance is well known for Device Management (DM)
OMA Lightweight M2M is a new standard from the alliance
Focused on constrained Cellular and sensor network M2M devices
Driven by leading operators and vendors
Scope
Interfaces, protocol & security between Device and Server
Object and Resource model
Bootstrap, Device, Access Control, Connectivity and Firmware Objects
Draft Specifications are available:

http://member.openmobilealliance.org/ftp/Public_documents/DM/
LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-
V1_0-20130717-D.zip

Timeline

a3
Consistency review completed June 2013 f » OI I lQ

Candidate Approval expected 3Q/2013 Open Moebile Allionce

CoRE WG, IETF-87 Berlin

http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LightweightM2M-V1_0-20130717-D.zip

e
Architecture

=
)
=
>
©
©
=
)
=
g
©
©
=
)
=
>
©
°

LWM2M Server

|

|

I Interfaces Stack LWM2M @] Objects
I Bootstrapping - - Efficient Payload

istrati CoAP
Scope of LWM2M Registration - - CoAP Protocol -
| Object/Resource Access - - DTLS Security OTLS SMO
: Reporting- | - UDP or SMS Bearer UoP

LWM2M Client

) L

Objects

M2M Device

CoRE WG, IETF-87 Berlin

Object Model

A Client has one or more Object Instances

An Object is a collection of Resources

A Resource is an atomic piece of information
Read, Written or Executed

Resources can have multiple instances

Objects, Resources and Instances are TP
identified by a 16-bit Integer Object 0

Resource 1

Objects/Resources are accessed with ———
Simple URIS: Resource 3

Hesource 4 "n

/{Object ID}/{Object Instance}/{Resource ID}

e.g. /12/1/3 Object 1 s
Yes, we made the root configurable

Resource 1

Resource 2

Resource 3

e.g. /lwm2m/12/1/3

Resource 4

4 CoRE WG, IETF-87 Berlin

-
Announcing: Internet of Things Plugtest

When?

November 20-22nd 2013
Where?

Las Vegas
Who?

Implementers world-wide

How Much? ip
@ Alliance

Free!
Tests: ETSI(((C)\
CoAP (Mandatory) World (>

Block, Observe (Optional)
OMA Lightweight M2M (Optional) A oma

CoRE WG, IETF-87 Berlin

Advanced CoAP Congestion Control:
Preliminary Results & Work in Progress

CoAP Congestion Control Principles

Default CoAP chooses RTO for a transaction
from a fixed interval:

— RTO = [ACK_TIMEOUT,
ACK_TIMEOUT*ACK_RANDOM_FACTOR]

— Binary exponential backoff upon RTO expiration

 However, advanced congestion control
algorithms may use RTT information to
calculate the RTO adaptively.

— E.g. CoCoA [draft-bormann-core-cocoa-00].

Simulation Results: Grid Topology

~~— CoAP (Default)
4.5H - CoCoA
< CoCO0A-S
4t |

-
(&)

Carried load (kbps)
N N
o N 3, w
A
1

B

1 10 | 100
Offered load (kbps)

Betzler et al., “Congestion Control in Reliable CoAP
Communication“, MSWIM 2013

ltems of Work in Progress

Weighting of weak/strong estimator

Variable Backoff Factor after RTO expires:
— Depending on current RTO estimate

Dithering of RTO when using estimated RTO
Should a minimum RTO below 1 s be allowed?
NSTART=1 too conservative?

Influence of MAC layer on performance
— MAC Acknowledgements

Benefits beyond congestion control :
— Response Time

Group 2: WG docs

-block

112

-block-12

Solves #331 for core document (Size1/Size2 split)
Still open:

#211 (provisional responses)
#253 (more flexible control of initiative)
» Do we really need to address these?

Still to do: editorial improvements

WGLC2?

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 113

Observing Resources in CoAP

draft-ietf-core-observe

IETF 87
Klaus Hartke

All tickets closed

... except for two tiny details:
* Cancellation
* Liveliness

Cancellation

An entry is removed from the list of observers when
e the server sends a non-2.xx notification
e the server reboots and loses the state

 the client actively rejects a notification, or
the last attempt to transmit a confirmable notification
times out

* “garbage collection”

sthe-chentmakesa-GETrequestto-theresource

Do we need a way for a client to remove its entry
eagerly?

Liveliness

Clientisin the

list of observers
Client is interested
Client believes it’s

in the list of observers
Client believes it

has a representation
of the current state

Server
Client

gaps
caused by
Max-Age < RTT

Clientisin the

list of observers
Client is interested
Client believes it’s

in the list of observers
Client believes it

has a representation
of the current state

Server
Client

Clientisin the

list of observers

Server

c
Q
o+

©

O
b=
o+

]
Z

Client

caused by lost
notification

Max-Age reached

state observed by
client becomes

inconsistent
with actual state

Client is interested

Client believes it’s

in the list of observers

Client believes it

has a representation
of the current state

caused by
server reboot

Max-Age reached

server reboots
and loses state

list of observers
Client believes it’s

in the list of observers
Client believes it

has a representation
of the current state

Clientisin the
Client is interested

Server
Client

Liveliness (ii)

 The client assumes that it is in the list of observers
* Incoming notifications confirm this assumption

* The absence of notifications requires the client
to validate its assumption eventually

* There is no need to validate the assumption
while the client still has a fresh representation

* The client cannot validate its assumption
without communicating with the server

* The server could provide a hint when the client should
validate, but it’s really up to the client to decide how
long it is comfortable with potentially not being in the
list of observers

Liveliness (iii)

Token reuse

Client can re-register any time
using the same token

Server updates/replaces entry
in the list when token is still
there; Server sends
representation to the client

Server adds a new entry if the
token is not in the list
anymore; Server sends
representation to the client

Ping/Pong

Client can send a “ping” with
the token of its original request

Server sends a “positive pong”
if the token is still in the list;
Client needs to issue a GET if it
needs a fresh representation

Server sends a “negative pong”
if the token is not in the list;
Client needs to re-register if
it’s still interested

draft-ietf-core-links-json-00.txt

 RFC 6690 (link-format) documents are somewhat
foreign to many web app-developers
would prefer to have them in"JSON format

* There is no'standard way to represent link-format
documents in applications
but everyone knows.how to handle JSON

- Define a standard-JSON translation for link-format

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 124

</sensors>;ct=40;title="Sensor Index",

</sensors/temp>;rt="temperature-c";if="sensor",

</sensors/light>;rt="light-lux";if="sensor",

<http://www.example.com/sensors/t|23>
;anchor="/sensors/temp";rel="describedby",

</t>;anchor="/sensors/temp";rel="alternate"

e 2

[{"href":"/sensors",
{"href":"/sensors/temp","rt":"temperature-c","if":"sensor"
{"href":"/sensors/light","rt":"light-lux","if":"sensor"
{"href":"http://www.example.com/sensors/t123",
"anchor":"/sensors/temp”,"rel":"describedby"},
{"href":"/t","anchor":"/sensors/temp","rel":"alternate"}]

ct":"40","title":"Sensor Index"},

125

http://www.example.com/sensors/t123
http://www.example.com/sensors/t123

Group 5:
Alternate Transports

The need for alternate transports

* Non-IP transports: e.g., SMS

e Alternate IP transport protocols: e.g., TCP,
Websockets

e Combine non-IP and IP: e.g. SMS request, UDP
response

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 127

Issues

* Encapsulation
Delimiting in stream transports (e.g., TCP)

Do we need CON/NON/ACKI/RST for acknowledged
transports?

Data transparency (Base64url...)

URIs
Identifying the desired transport(s)
Enabling transport selection
Having multiple transports for the same resource

Return Path

How to indicate the desired recipient for the response

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 128

Endpoint identification

 UDP: IP-Address + Port
Generalize to Address + Port + Transport (for TCP...)

« SMS: MSISDN
 Websockets: WS (WSS) URI

* Use indirection? DNS/SRV? DHTs?

* Do this in a way that can be used both in URIs and for
Return-Path?

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 129

Encapsulation questions 1/3

Whether a (stream) transport needs delimiters to
indicate start/end of a CoAP message

Whether reliability and congestion control
mechanisms of CoAP are required

Whether explicit COAP message length needs to
be communicated

Whether masking of COAP message is required

— WebSocket requires masking of the data from Client to
Server data

Encapsulation questions 2/3

Are all fields of the CoAP header always required
— Protocol: if communicated already by used transport
— Type: if reliability is provided by used transport
— Message ID: if retransmissions and duplication handling are covered by used transport

E.g. in case of WebSocket proposal, the CoAP message format proposal looks like
below: version and type changed to reserved, message ID is elided.

2 3
0 1 2 3

1.2 3 4 56'718:901:2 3 4567890123456 7T8%90I1
R e e e St S S
R TKL | Code | Token (TKL bytes)
R e e S e e e Sl S ¥
Options (if any)

R s R A s E S S A S e st s s s S S e e
R i K S s & Payload (if any)

s s e S S S e L e e S S

CoAP messages can be arbitrarily large on some transports (for UDP 1152 byte
maximum message size is recommended) -> multiplexing of CoAP message to avoid
head of line blocking may thus be required

— CoAP blockwise transfer, or e.g. WebSocket multiplexing extensions (draft-ietf-hybi-
websocket-multiplexing-11)

Encapsulation questions 3/3 — WebSocket example,
using WebSocket framing on top of TCP

1) WebSocket handshake request 2) WebSocket handshake reply
- Mypertext Transfer Protocol - Hypertext Transfer Protocol

¢ GET / HTTP/1.1\r\n + HTTP/1.1 101 Switching pProtocols\r\n
upgrade: websocket\r\n Upgrade: websocket\r\n
Connection: uiiradekrkn . Connection: uUpgrade\r\n
Host: " - search. com: 25\ oA sec-webSocket-Accept: PhlU7Kt21PYbrgjzukaodgmeGes=\r\n
2;;?;:65232{'_;m93;$: :‘0'" b Sec-webSocket-Protocol: coap.vi\r\n
Pragma: no-cache\r\n . e origin: http://|NNENEGEGE;<arch. com\r\n
cache-control: no-cache\r\n \r'\n ,
sec-websocket-Key: /A1dPGA/KV2QI4SuUTuAFiwes\r\n [HTTP response 1/1] &
sec-websocketr-version: 13\r\n [Time since request: 0.058878000 seconds]
sec-websocket-Extensions: x-webkit-deflate-frame\r\n [Request in frame: 61
\r\n

[s

[HTTP request 1/1]
[Response in frame: 81

3) CoAP GET 4) CoAP Response 2.05

- websocket - webSocket
= Fin: True 1 P = Fin: True
.000 = Reserved: 0x00 .000 = Reserved: 0x00

. 0010 = opcode: Binary (2) 0010 = Opcode: Binary (2)
Y itn%e . afulets = Mask: True Dees..a0be = Mask: False
.000 0111 = payload length: 7 .000 0111 = Payload length: 7
Masking-Key: fd4a93fd - Payload
= Payload Binary: 02451232ff0205

Binary: ff4b81cf4f27a3
= Unmask Payload
[Binary: 02011232b26d30]

Early prototype code by
Nadir Javed & Teemu Savolainen ™

ASCIl Encoding for CoAP :
CoAP/A

softgear@etri.re.kr

mailto:softgear@etri.re.kr
mailto:softgear@etri.re.kr

Background

We want to use CoAP over serial communication (RS232,
RS485, IEEE 802.15.3, UART over WiFi, bluetooth, ethernet) at
Sensor node

— Using commercial communication modules for fast
development and cheap

v RT— s

: (program jnterfaee

sensor LELI, l Comm.
MCU module

--

which emulate serial communication and allow ASCII character
only

— They do not allow control characters
— They may use “+++” pattern to enter configuration mode

Processing Sequence

Sending node Receiving node
pure [Bsepurt| e | puro
CoAP g A-Za-z0-9-_=: Base64url|| CoAP
+ Add “#” || Comm. |: | Comm. .
o 5 | Decoding
s module communication module :

For ASCIlI only communication module,
CoAP protocol stack passes binary encoded messages to Base64 Encoder.

Base64 Encoder translates binary message to ASCIl message using Base64url
character set. And, add “#” delimiter to mark the end of a message.

Now, ASCIl encoded messages are transferred to Receiver node

Base64 Decoder module in Receiver node collect characters from sender
until “#” mark. And Decoder translates them to binary coded CoAP message.

And pass it to pure CoAP protocol stack.

Example

Original binary encoded CoAP GET Request:
40017d34 bb74656d7065726174757265

o
ASCII encoded CoAP Request: 33% oveshead

QAFINLIOZW1IwZXJIhdHVYyZQ==

Original binary encoded CoAP Response:
60 45 7d 34 ff 32 32 2e 33 43

ASCIl encoded CoAP Response:
YEVONP8yMi4zIEM=#

draft-bormann-core-coap-tcp-00.txt

Discusses TCP alternatives
Length-based header (16-bit or SDNV)

- Trivial, obvious, efficient, ...

Delimiter-based (MINION!)

Allows processing TCP packets out of order

Allowing CoAP messages to be self-delimiting
encoding payload length into 0xFX payload marker
keep OxFF payload marker as “up to total length”

- General (not just TCP, but also e.g. SMS aggregation)

http://6lowapp.net core@IETF87, 2013-07-29/-08-01 137

CoAP URI: Transport Representations

URI = scheme ":" "//" authority path-abempty ["?"query]

coap :// server.example.com /sensors/temperature

Protocol Endpoint Parameterised
identifier identifier resource
identifier

At the Orlando meeting, 3 ways proposed:
* Within the scheme name

* Inthe URI path

* Asaquery component

Some expressed preference for using the scheme name but we need
to revisit this discussion now to go forward

URI Representations for CoOAP

Means of expressing transport types

 Within the scheme name
— coap+tel://+15105550101/sensors/temperature

— coap+tcp://example.com/sensors/temperature

* |n the URI path

— coap://host.example.com;transport=tcp/.well-known/
core?rt=core-rd

— Diameter Protocol (RFC 6733) does this already

* aaa://host.example.com:6666;transport=tcp;protocol=diameter
e aaa://host.example.com:1813;transport=udp;protocol=radius

URI Representations for CoOAP

Means of expressing transport types

Use a new CoAP URI

Examples:
coap-alt:tcp:example.org:coap/sensors/temperature
coap-alt:tel:+123456789:coap/sensors/temperature

This is similar to the SLP’s service: scheme (RFC 2609)

Example:
service:printer:ipp://print-server.example.org/printqueue

Return-Path

Transport of CoAP over SMS, USSD and GPRS
draft-becker-core-coap-sms-gprs-03

Markus Becker, Kepeng Li,
Koojana Kuladinithi, Thomas Potsch

CoRE WG, IETF-87, Berlin

1/3

Motivation

» In M2M communication, IP connectivity is not always
supported by the constrained end-points

» Power saving
» Coverage (GPRS, 3G, LTE)

» SMS based communication is almost always supported

» OMA uses SMS as an alternative transport in
OMA-TS-LightweightM2M

2/3

Return Path Question

» Endpoint may have different transports
» Forward and return paths use different transports

CIMD CoAP-REQ
to=---- + SMPP t--m——-- + (SMS) t-=----- +
1 > | SMS-C | —--omm- s B |
| (IP) | | | | (cell) |
=== + === + === +
- |
| T ; |
| | GGSN | |
Fommmmmmmmmmeeo | [P +
CoAP-RES == m———- + CoRP-RES
(IP) (GPRS)

» Use Response-To-Uri-Host and Response-To-Uri-Port

options?

e - F———— +———— +
| No | C | U | N | R | Name | Format | Length | Default |
-ttt +———— F————— +———— +
| 34 | | | | | Response-To-Uri-Host | string | 1-270 B | (none) |
| 38 | | | | | Response-To-Uri-Port | uint | 0-2 B | 5683 |
ottt - o - +

3/3

Group 3:"new work”
(continued)

| 44

Conditional observe in CoAP

draft-li-core-conditional-observe-04.txt
Shitao li
Jeroen Hoebeke
Antonio J. Jara
Floris Van den Abeele

http://tools.ietf.org/html/draft-li-core-conditional-observe-04

draft-li-core-conditional-observe-04

Why?

Client 1

Server

Client 2

GET /resource OBS

GET /resource OBS

2.05 Content

2.05 Content

< >
2.05 Content ! 2.05 Content

< >
2.05 Content ! 2.05 Content S

Some observers aren’t interested in receiving ALL representations of a resource.

How to limit the set of representations that are transferred to the client?

How?

* Transfer all representations and perform client-
side filtering (plain observe)

* Deploy separate resource per set of
representations on server

* Clients signal set of representations in request.
Two proposals thusfar:
— Signaling through URI query parameters
— Signaling through new CoAP option
— Use method foo?

Our proposal

Add Condition option to Observe request:

©1234567012345¢67
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TYPE |R| V | VAL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Condition types identified by integer

Discovering supported condition types via
web linking attribute

ContikiOS implementation available

Discussion

Do you feel this is actually a problem?

If so, does this need <a standard solution>?
Do you see problems with our proposal?
Any other remarks?

Enhanced Sleepy Node
Support for CoAP

Akbar Rahman

IETF 87, July 2013

http://www.ietf.org/id/draft-rahman-core-sleepy-03.txt

1 ET F

Introduction QD>

1 ETF

= |tis expected that in CoOAP networks there will be a certain
portion of devices that are "sleepy" and which may
occasionally go into a sleep mode (i.e. go into a low power
state to conserve power) and subsequently have reduced
CoAP protocol communication ability

= This |-D proposes a minimal and efficient mechanism

building on the Resource Directory concept (which can be
integrated into a CoAP Proxy) to enhance sleepy node
support in CoAP networks

Main Question from IETF-86 a4
(Orlando) PETF

= (In Orlando, the WG first reviewed the performance
analysis showing that the proposed Sleepy Node support
solution gave consistent performance improvements, in
many scenarios, over a network that just has standard
CoAP caching enabled)

s How does the performance of the proposed Sleepy Node
support compare with standard CoAP OBSERVE [I-D.ietf-
core-observe]?

Sleepy Node Performance Analysis

o\ 2>< %/ >\</ %

\ \ N
. < <

1 ETF

Experimental Network

Constrained Network

/ \
b + /-----\ \
/ N\ | CoRP | CoAP \
| | | Reverse | server \
CoAP | | | Proxy | \----- / | |
F————— + Request | | | | ||
CoAP	-------------		-===->] +----- +	Req /----- \					
Client					Cache		------- >	CoAP	
	<------------		-----	+----- +	<-------	server			
+------ + CoAP				Resp \----- /					
Response	Corp		------						
LaN		[RD							
		Sleep							
\ / | Param | | /
Multiple --- | | | /
clients +---------- + /----- \ /
\ CoAP /
\ server / Both Sleepy
\ \----- / / and Non-

Sleepy servers

Sleepy Node Performance A
Analysis Network Setup (1/2) 1 ETF

Sleepy Node support:

Server supports publishing sleep parameters to (RD based) proxy
E.g. I'm going to sleep, I'm waking up, I’'m going to be asleep for X seconds, etc

Proxy supports sleep-awareness capabilities

Protocol flow follows approach of Fig. 1 (Synchronous RD Based Sleep
Tracking) of I-D

Proxy supports standard CoAP caching capability (based on
maxAge)

Proxy supports standard CoAP OBSERVING resources (on
the Server) on behalf of the Clients

Sleepy Node Performance < Q%%+
Analysis Network Setup (2/2) 1 ETF

Proxy — Server
Measurement Client — Proxy
Interface / Measurement
1 Interface

Request CoAP Reverse Proxy

Sleep Aware Request |
CoAP Sleepy CoAP 5.03 Response
Server < Sleep-Aware CoAP Store Capability
and Forward Capability < CoAP
CoAP OBSERVE || Response . Client
(Subject)) esponse
> Sleep-Aware CoRE CoAP Caching CoAP OBSERVE

Resource Directory »|| (Observer) B
Capability i

CoAP OBSERVE
- Observer to Server
- Subject to Clients

Published Sleep Parameters

5 clients

* Proxy capabilities can be selectively enabled/disabled

Reverse Proxy Features for |<&4%<
Sleepy Node Support PETT

e CORE Sleep-aware Resource Directory

Support storing published sleep parameters from CoAP servers
sleepState (AWAKE, ASLEEP)
sleepDuration

e Sleep-aware CoAP 5.03 Response Capability
If COAP request to a sleeping server is received (and there is no valid
cache for that request), proxy returns a ‘5.03 Retry-After’ response to client

5.03 contains a timestamp indicating when the sever will wake back up
(timestamp delivered in COAP maxAge option)

e Sleep-aware CoAP Store-and-Forward Capability

If COAP request to a sleeping server is received (and there is no valid
cache for that request), proxy stores request until server wakes up and
then forwards it

Other Reverse Proxy %
Features PR

e Caching capability
Cache GET responses from server (if maxAge option is
present)

e OBSERVE capability

Proxy will act as Observer in relation to Server

Proxy will act as Subject in relation to Client

The Proxy will establish only one OBSERVE to Server for a
given resource (even if it is requested to do so by multiple
clients)

As per section 5 (Intermediaries) of [I-D.ietf-core-observe]

Goals of Performance S
Analysis PR

e For networks having sleepy servers, provide
measurements to quantify the impact that
CoAP sleep-awareness capabilities can have

e See if sleep-awareness capabillities can
provide additional benefits with respect to:
CoAP caching (based on maxAge)
CoAP OBSERVE

. % &/ v

1 E T

Test Settings

Settings Applicable to All Test Scenarios

of Servers 1
of Proxies 1
of Clients 5
Requests issued per Client 100
Time period between Client Requests 60 seconds
Goto sleep for 5 minutes /
Sleep Pattern of Sleepy Server Wake up for 30 seconds
Max-Age of Server Responses 120 seconds

Time period between OBSERVE
Notifications due to state change in
Server 5 minutes

Test Scenarios

Proxy Sleep
Test Type of Requests Server Aware Features
Scenario Issued by Client Sleeps? Enabled?
1 GET No No
2 GET Yes No
3 GET Yes Yes
4 OBSERVE No No
5 OBSERVE Yes No
6 OBSERVE Yes Yes
7 PUT No No
8 PUT Yes No
9 PUT Yes Yes

Format of Results L

1 ETF

The following results were collected for each
test scenario

e Breakdown of the # and types of transactions
on each of the proxy’s interfaces:
Interface between clients and proxy
Interface between proxy and sleepy server

e Results are shown in tabular and bar chart
formats

Summary of Results — i s

Client/Proxy Interface PET
Client-Proxy Interface Transaction Counts
Test Scenarios
Abbrev. GET OBSERVE (GET) PUT

1 2 3 4 5 6 7 8 9

GET 500 | 1020 | 750 5 125 10 0 0 0

Piggy-backed 2.05 | 250 | 380 | 290 0 0 0 0 0 0

Separate 2.05 250 | 120 | 210 | 500 | 500 | 500 0 0 0
PUT 0 0 0 0 0 0 500 | 2330 | 1000
Separate 2.04 0 0 0 0 0 0 500 | 500 | 500

Separate 5.04 0 510 0 0 100 0 0 1770 0
Piggy-backed 5.03 0 0 250 0 0 25 0 0 500
Separate ACK 500 | 1270 | 650 | 505 | 725 | 535 | 1000 | 4600 | 1000
Totals: 1500 | 3300 | 2150 | 1010 | 1450 | 1070 | 2000 | 9200 | 3000

Summary of Results — i s

Proxy/Server Interface PET
Proxy-Server Interface Transaction Counts
Test Scenarios
Abbrev. GET OBSERVE (GET) PUT
1 2 3 4 5 6 7 8 9
GET 60 | 3540 | 220 1 25 1 0 0 0
Piggy-backed 2.05 | 60 120 | 210 1 1 1 0 0 0
Separate 2.05 0 0 0 95 95 95 0 0 0
PUT 0 0 0 0 0 0 500 [12395| 500
Piggy-backed 2.04 0 0 0 0 0 0 500 | 500 | 500
POST 0 0 1 0 0 1 0 0 1
Piggybacked 2.01 0 0 1 0 0 1 0 0 1
Separate ACK 0 0 0 19 19 19 0 0 0

Totals: 120 | 3660 | 432 | 116 | 140 | 118 | 1000 |12895| 1002

GET — Test Scenario Results

GET - Client/Proxy Interface Transaction Mix

3500
3000
2500
2000
1500
1000

500

Test Scenarios:

GET - Client/Proxy Interface

Transactions

Test Scenarios

H Separate ACK
Piggy-backed 5.03

B Separate 5.04
Separate 2.05

H Piggy-backed 2.05
GET

1 - Non-sleepy server, non-sleep aware proxy, 5 clients performing GETs
2- Sleepy server, non sleep aware proxy, 5 clients performing GETs
3 - Sleepy server, sleep aware proxy, 5 clients performing GETs

- Sleep Aware Proxy can help reduce number of GETs, 5.04s, ACKs
between client and proxy by leveraging 5.03 (Retry After time X)

GET - Proxy/Server Interface Transaction Mix . . e
1 ETF

GET Proxy/Server Interface
Transactions

4000
3500
3000
2500

B Piggybacked 2.01
2000

POST
Piggy-backed 2.05
GET

1500
1000
500

1 2 3
Scenarios

Test Scenarios:

1 - Non-sleepy server, non-sleep aware proxy, 5 clients performing GETs
2- Sleepy server, non sleep aware proxy, 5 clients performing GETs

3 - Sleepy server, sleep aware proxy, 5 clients performing GETs

- Sleep Aware Proxy can greatly reduce number of GET transactions
issued from proxy to sleepy server

OBSERVE - Test Scenario Results

OBSERVE- Client/Proxy Interface Transaction M
1 ETF

OBSERVE - Client/Proxy Interface
Transactions

1600

1400

1200

1000 — —] | —— Separate ACK
800 — — —— —— EPjggy-backed 5.03
600 — Separate 5.04

H Separate 2.05
GET

400

200

4 | 5 | 6
Test Scenarios
Test Scenarios:
4 - Non-sleepy server, non-sleep aware proxy, 5 clients performing Observes
5- Sleepy server, non sleep aware proxy, 5 clients performing Observes
6 - Sleepy server, sleep aware proxy, 5 clients performing Observes

- OBSERVE (alone) will obviously have better performance then Sleep Aware
Proxy (alone) (i.e. Scenario 3 vs. Scenario 5)

- But OBSERVE in combination with Sleep Aware Proxy can help minimize
number of transactions

OBSERVE- Proxy/Server Interface Transaction MiX%-

160
140
120
100
80
60
40
20

Test Scenarios:

OBSERVE - Proxy/Server Interface

Transactions

4 5 6
Scenarios

B Separate ACK
Piggybacked 2.01

B POST
Separate 2.05

¥ Piggy-backed 2.05
GET

4 - Non-sleepy server, non-sleep aware proxy, 5 clients performing Observes
5- Sleepy server, non sleep aware proxy, 5 clients performing Observes
6 - Sleepy server, sleep aware proxy, 5 clients performing Observes

- OBSERVE (alone) will obviously have better performance then Sleep Aware
Proxy (alone) (i.e. Scenario 3 vs. Scenario 5)
- But OBSERVE in combination with Sleep Aware Proxy can help minimize
number of transactions

“PUT” — Test Scenario Results

PUT - Client/Proxy Interface Transaction Mix " . &
1 ET

PUT - Client/Proxy Interface
Transactions

10000
9000
8000
7000

6000 Separate ACK
5000 B Pjggy-backed 5.03
4000 Separate 5.04
3000 Separate 2.04
2000 I PUT
1000

0

7 8 9

Test Scenarios

Test Scenarios:

4 - Non-sleepy server, non-sleep aware proxy, 5 clients performing PUTs
5- Sleepy server, non sleep aware proxy, 5 clients performing PUTs

6 - Sleepy server, sleep aware proxy, 5 clients performing PUTs

- Sleep Aware Proxy reduces number of PUTs, 5.04s, and ACKs between
client and proxy

PUT - Proxy/Server Interface Transaction Mix | ?;T; ’

PUT - Proxy/Server Interface
Transactions

14000
12000

10000

8000 B Piggybacked 2.01

6000 POST
Piggy-backed 2.04
PUT

4000

2000

7 8 9
Scenarios

Test Scenarios:

4 - Non-sleepy server, non-sleep aware proxy, 5 clients performing PUTs
5- Sleepy server, non sleep aware proxy, 5 clients performing PUTs

6 - Sleepy server, sleep aware proxy, 5 clients performing PUTs

- Sleep Aware Proxy reduces number of PUTs between proxy and sleepy
server

1 ETF

Conclusions

\
§//

1 ETF

Conclusions

e These results show that sleep-aware CoAP
proxy features can significantly optimize
communication with sleepy servers in most
scenarios

e These results also show that sleep-
awareness capabillities can provide additional
benefits when used in conjunction with proxy
based CoAP caching & OBSERVE

1 ETF

Backup

Current CoAP Support of Sleepy Node<&a:o<
(1/2) 1 ET F

= COAP proxies can use a previously cached response to
service a new GET request for a sleepy origin server (as in
HTTP)

= But if no valid cache then proxy has to attempt to
retrieve and may fail if origin server is sleeping

= [I-D.ietf-core-coap]

= Clients can discover list of resources from RD (GET /rd-
lookup/...) for sleepy servers

= But attempt to GET resource from sleepy origin server
may fail if origin server is sleeping

= [I.D.ietf-core-link-format & I.D.ietf-core-resource-
directory]

Current CoAP Support of Sleepy Node<&a:o<
(2/2) 1 ET F

= Lower layer support for sleepy nodes in most wireless
technologies (e.g. WiFi, ZigBee).
= But limited to MAC packet scheduling for sleepy nodes

and not aware of specific needs of IP applications (like
CoAP)

Proposal — RD Based Sleep Tracking |5+
(1/4) 1 ET F

= The current CoAP approach to support sleepy nodes can
be significantly improved by introducing RD based
mechanisms for a CoAP client to determine whether:

= Atargeted resource is located on a sleepy server
= Asleepy server is currently in sleep mode or not

= There is any associated caching Proxy (possibly the RD
itself) for a sleepy server

Proposal — RD Based Sleep Tracking |5+
(2/4) 1 ET F

= We define the following new RD attributes to characterize
the properties of a sleepy node:

= SleepState - Indicates whether the node is currently in
sleep mode or not (i.e. Sleeping or Awake)

s SleepDuration - Indicates the maximum duration of time
that the node stays in sleep mode

= TimeSleeping - Indicates the length of time the node
has been sleeping (i.e. if Sleep State = Sleeping)

= NextSleep - Indicates the next time the node will go to
sleep (i.e. if Sleep State = Awake)

= CachingProxy — Indicates the caching proxy of the
sleepy node (i.e. the RD itself or another node)

Proposal — RD Based Sleep Tracking |5+
(3/4) 1 ET F

= These attributes are all server (node) level and are new
parameters added to the RD URI Template Variables

= Finally, we also define a new lookup-type ("ss") for the RD
lookup interface specified in |

]

= This new lookup-type supports looking up the
‘SleepState” (ss) of a specified end-point

Proposal — RD Based Sleep Tracking |5+
(4/4) 1 ET F

= The three time based parameters (SleepDuration,
TimeSleeping, NextSleep) can be based on either an
absolute network time (for a time synchronized network) or
a raw number of seconds (measured at the local node)

= Following the approach of |]and [
], sleep parameters for
sleepy servers can be stored by the server in the RD and
accessed by all interested clients

= Examples of using these parameters in a synchronous or
asynchronous manner are shown in the |-D

Group 3:"new work”
(continued)

183

CoAP Entities

draft-ishag-core-entities-00
Isam Ishaq
Jeroen Hoebeke
Floris Van den Abeele

http://tools.ietf.org/id/draft-ishag-core-entities-00.txt

http://tools.ietf.org/id/draft-ishaq-core-entities-00.txt
http://tools.ietf.org/id/draft-ishaq-core-entities-00.txt

Why?

« Supporting multicast can be expensive/hard in
constrained node networks.

e Usually some form of group communication is
still wanted.

e This ID tries to solve this by providing an uni-
cast based group communication solution.

How?

* Clients can create ‘entities’ with a central
broker through a RESTful interface (“core.em”

Req: POST coap://em.example.com/e (application/link-format)
Body: <coap://sen5.example.com/tmp>,

<coap://sen8.example.com/tmp>

Res: 2.05 Content (text/plain)
Body: /1 created

* Broker acts as a message (de)multiplexer, but
it can also provide extra functionality

How?

 After creation, clients can use the new

resource to interact with the entity.
Req: GET coap://em.example.com/1

2.05 Content (application/senml+json)
Payload: {"e":[
{"n": "Sen5/tmp", "v": "26.6", u="degC"},
{"n":"Sen8/tmp", "v": "23.5", u="degC"}]}

Entity manager

 Performs validation during entity creation
— Check whether the resources exist

— Check supported methods and CoAP options

* Describes every entity in a profile using draft-
greevenbosch-core-profile-description

{ "profile":| "entity":[

{"path":"1", {"r":["coap://sen5.example.com/tmp",
"op":[3,4,7,11,12], "coap://sen8.example.com/tmp"]
"cf":[55], 1]

"m":[1]}], }

* (Can also define operations (avg, min)

Conclusion

Lightweight group communication alternative
to multicast-based solutions

Current version of the draft is very basic, will
be extended further in the future. Contact me
if you're interested in working together.

Note: IPR declaration by KPN N.V.:

Reasonable and Non-Discriminatory License to All

Implementers with Possible Royalty/Fee.
https://datatracker.ietf.org/ipr/2134/

https://datatracker.ietf.org/ipr/2134/
https://datatracker.ietf.org/ipr/2134/

draft-doi-core-parameter-
option-02

Problem Statement
One URI = One Resource

URI

Resource

L

How to select
the right representation?

Variant Variant

/ !

Variant Variant

Server-Side Content Negotiation

* Accept header from client tells which variant is
requested on the resource

* Various extensions are possible
— for example: draft-wilde-atom-profile-01

 CoAP does not have room for parameterized
server-side content negotiation

— Basic spec does not have use case for it, but |

believe extended spec should have (at least, for EXI
schema negotiation)

Accept Content-Type Parameter Option

e R T e R e tom - o -
| No | C | U | N | R | Name | Format | Length | Default |
I | I I I I I I | I
e i e S Fmm e pom -
| TB | | | | X | Accept-CT-Parame | (see | 3-270B | (none) |
| D | l | I I ter | below) | I |
e R T e e mtammtrt e o e -

| <--— option length —--—-—->|

o o -+

| aid | wvalue |

o —+

| <2 Bytes>|<- optlen-2 ->|

:Figure 2: Structure of Accept-CT-Parameter Option

Attribute ID

Table 2: List of Attribute IDs

O 1 N &= W = O

OxXf000-0xffff

(reserved)
charset
version
boundary
type
padding
msgtype
filename
level

(reserved)

I
RFC2045 |
RFC2045,RFC2046 |
RFC2045 |
RFC2046 |

I
I
I
I
I

RFC2046
RFC2616
RFC2616
RFC2616

Questions?

A BN LS

Group Authentication

With the development of Internet of Things, the scale of IOT system become larger and larger. A large amount
of smart power meter terminals are deployed in a block, thus brings more cost for communication

Use case -

80,000 taxis in one city, 90% with IOT
devices for monitoring. Authentication is
needed when these 10T devices connects with
network
Issues: -

A plenty of taxis stay in the same area, the
communication will be frequent and cause
overload for network.

Frequency for the issue happening :

* Every day in airplane
*Once per week when the taxi company call
together of all taxi drivers.

Xxample
Use case -

4760 users in one block. Each owns
one IOT devices for smart metering.
They will report data at the same time.
Authentication happens when these
devices report data.

Issues -

The communication will be large and
cause overload for the network when
all smart metering devices report data

197

Now some authentication can be
used to solve the problems. An
agent is introduced aggregate the
message
— All network entities can connect with
an agent and make mutual

authentication with agent
independently

— Agent makes mutual authentication
with network server independently.

* But some problems still exists:

Agent becomes key point for
the communication. A MITM
attack will be happened if
agent is compromised.

Agent can get all information
transferred between entities
and server. The
communication could be
broken if agent belongs to 3rd-
party.

198

2.To bind the communicatién among network entities, agent an %
network server

3. To establish end-to-end communication for privacy protection

199

\
Network
entities~ Network
server

__

- 0.A group is build up with an agent and several network entities.

1. Group authentication is triggered by the behavior to upload dataé
or the behavior to re-configure all nodes by network server '

2. Inner group authentication is made between all network entities

 and agent.

3. Agent makes mutual authentication with network server on

| behalf of whole group. The network server could authenticate
network entities also through some pre-shared credentials.

A BN LS

