Secure DHCPv6 with Public Key

Replacement of draft-ietf-dhc-secure-dhcpv6

IETF 87 DHC WG

August 1st, 2013

Sheng JIANG (Speaker)
Sean SHEN

Background

- It is actually the replacement of draft-ietf-dhc-secure-dhcpv6
 - draft-ietf-dhc-secure-dhcpv6 "Secure DHCPv6 Using CGA" reached IESG and dead because of consideration regarding to CGA.
 - The use of CGAs in this situation (1) isn't really how they were intended to be used and (2) probably doesn't add any value over a regular public key signature.
- A suggestion from IESG is to make another public key based security solution, while DHCPv6 needs another security mechanism beyond symmetric key pair
- The new draft
 - dropped CGA relevant mechanism, making it general public key based
 - added PKI as an alternative of pre-config, while keeping "a leap of faith" model possible
 - completed timestamp check mechanism

Secure DHCPv6 Overview

- The authority of the sender may depend on either preconfiguration mechanism or PKI, or a leap of faith model
- By combining with the signatures, sender identity can be verified and messages protected
- A Sender MUST have a public/private key pair in order to create
 Secure DHCPv6 messages
- This document introduce a key/certificate option and a signature options with a corresponding verification mechanism
 - Timestamp is integrated into signature options

New DHCPv6 Options

Key/Certificate Option

carries the public key or certificate of the sender

Signature Option

- Support for algorithm agility
- Timestamp is integrated into signature options

Process Rules

- A Secure DHCPv6 message MUST contain both the Key/ Certificate option and the Signature option
 - except for Relay-forward and Relay-reply Messages
- Processing Rules of Receiver
 - SHOULD discard the DHCPv6 message if either the Key/Certificate option or the Signature option is absent
 - SHOULD first check the authority of this sender, by
 - finding a match public key from the local trust public key list, which is preconfigured or recorded from previous communications
 - or validating the sender's certificate following the rules defined in [RFC5280]
 - or the receiver MAY choose to further process the message from an unauthorized sender so that a leap of faith may be built up
 - MUST verify the Signature and check timestamp
 - for authentication, message integrity and anti-replay

Comments are welcomed!

Ready for WGLC!

Thank You!