Child ---> Parent
DNS Data Synchronization

A Panel of Options
By a Panel of People

Wes Hardaker
Olafur Gudmundsson
Warren Kumari

What Is The Problem?

e Parent has “linking” records: (possibly more in the future??)
— DS (authoritative)
— NS (hint)

— Glue: A/ AAAA (hint)

* Kinds: In-child, In-sibling, outside parent

* State of the world today:
— Very few children can use EPP directly

— Manual action to push changes to the parent

* Everyone gets it wrong sometime
— Too lazy/painful
— Just forget/make mistakes
— Parent policies force “lies”

What are The Consequences?

 When the DS is incorrect
— The zone can go bogus

e NS and Glue errors

— Correct servers:

* If not listed: They don’t get any traffic
* If NSset mismatch: Traffic skewed

— Incorrect addresses: Get traffic they shouldn’t
— DNS resolution is slower and/or brittle

What Can We Do?

e Define standard mechanisms to:
— “Martial the data” -- Ed Lewis
— Perform operations (i.e. act on the martialed data)

* Proposed Solutions to date:
— CDS: Specifies DS content in the child
— CSYNC: Bit-pointers that specify what to copy

e Other considerations:

— Out of band options
HTTP/REST EPP
Netconf etc...

Design Requirements

e Child
— Needs to publish data upward
— Should be able to say “act now”

* Parental Agent
— Needs to securely obtain the data

— Needs to be able to control their policies
* MAY only accept data of certain types (DNSKEY vs DS)

 MAY require a manual operator “push this button”
— (likely an out of band button)

* MAY or MAY NOT keep state

Design Choices: What Protocol To Use

 Both CDS and CSYNC use DNS:
— A pull model (by default)
— Don’t need to build another security model
— No changes needed to DNS servers and resolvers

* Except for the new types
* Changes are limited to provisioning systems

— Parental agent schedules pulls and applies policies.

 There are other choices, of course

— Some are push models

Design Choices: How To Publish

* Publish data in separate records
— CDS: Child publishes a “copy me” set

* Publish a pointer to the data
— CSYNC: indicates what records to copy

Design Choices: Where To Publish

* Using new records:
— At the zone cut?
— At special places

* dnssec.example.com
— Does not work with DNAME @ apex

* Using existing records:
— copy from existing child NS/A/AAAA

Approach: CDS

* CDS publishes the DS records to copy
* CDS is simply a new record type

* CDS requires a signature by:
— Key(s) in current DS & DNSKEY set

Tricky Issues: DS Records

* DS records point to only some keys
— They’re signed by the parent
— The child could sign a new set, but with what?

— Should the other keys be allowed to update it?

* DS records are derived from keys

— Some parents only want keys
— Some children need to pre-publish

10

Approach: CSYNC

* CSYNC publishes:

— A list of things to copy
o NS/A/AAAA/DS/DNSKEY

— A minimum SOA serial number to copy from

— A policy bit indicating whether the child means:
* Act now
e Copy in and wait for a button push

* |sthe above KISS?
— If not, what should go?

e CSYNC discusses:

— Synchronization issues if SOA changes during pull

11

WG Directional Questions

 What to do with:
— The CDS draft
— The CSYNC draft
 Keep the method always the same?

— Or is DS different and important to be separate
 Use both?

— Should CSYNC be used to signal CDS existence?
— Or is the CDS existence itself be the bit?

