HTTP Digest Update

Rifaat Shekh-Yusef
IETF 87, HTTPAuth WG, Berlin
July 31, 2013

Overview

* Algorithms Agility
— draft-ietf-httpauth-digest-update
— Standards Track draft

 |18N
— draft-ietf-httpauth-digest-encoding
— Experimental draft

Algorithms Agility

Browsers Experiments

Experiment
— Multiple WWW-Authenticate headers in a response with the same scheme but
different algorithms.
Chrome version 23
— Able to handle multiple Authenticate headers with the same scheme.
— Gives preference to the header that appears first.
— lgnores algorithms it does not understand, and picks the first algorithm it does
understand.
IE version 9
— Able to handle multiple Authenticate headers with the same scheme.
— Gives preference to the header that appears first.
— Reverts back to use Basic scheme if it does not understand the algorithm in first
Digest scheme.
For more info:
— http://www.ietf.org/mail-archive/web/http-auth/current/msg01171.html

MD5

« MD5 is the only algorithm specified in
RFC2617 to be used with the Digest Access
Authentication scheme.

 |In 2008 the US-CERT issued a note that MD5
"should be considered cryptographically
broken and unsuitable for further use”.

Algorithm Parameter

e RFC2617 defines the following parameter to
be used with the Authenticate header:

— algorithm = "algorithm" "=
("MD5" | "MD5-sess" | token)

* The token defined above allows new
documents the ability to extend the Digest
scheme with new algorithms.

New Algorithms

* The Algorithm Agility document adds support
for two new algorithms:

— SHA2-256
— SHA2-512/256

 The SHA2-512/256 is expected to be replaced
by SHA3 when it is ready.

Algorithms Preference

* The draft defines the following preference list,
starting with the most preferred algorithm:

— SHA2-256 as the default algorithm.
— SHA2-512/256 as a backup algorithm.
— MD5 for backward compatibility.

Multiple Authenticate Headers

e RFC2617 is not clear on the number of WWW-
Authenticate or Proxy-Authenticate headers
using the same scheme that are allowed in a

response.

* This draft explicitly allows more that one
WWW-Authenticate or Proxy-Authenticate
headers using the same scheme but different
algorithms to be included in a response.

WWW:-Authenticate Example

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
realm = "testrealm@host.com",
qop="auth,
auth-int",
algorithm="SHA2-256",
nhonce="dcd98b7102dd2f0e8b11d0f600bfboOCcO93",
opaque="5ccc069c403ebaf9t0171e9517f40e41"
WWW-Authenticate: Digest
realm="testrealm@host.com",
gop="auth,
auth-int",
algorithm="MD5",
nonce="dcd98b7102dd2f0e8b11dof600bfboco93",
opaque="5ccc069c403ebafo9f0171e9517f40ef41"

Authorization Example

Authorization: Digest

username="Mufasa",

realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11dof600b+tboco93",

uri="/dir/index.html",

gop="auth",

algorithm="SHA2-256",

nCc=00000001,

cnonce="0a4f113b",

response="5abddo07184ba512a22c53f41470e5
eea7dcaa3a93a59b630cl3dfe@a5dc6e38b™,

opaque="5ccc069c403ebat9o9f0171e9517f40e41"

11

There

Open Issue

is some concern around the level of

support for the SHA2-512/256 algorithm in the
common implementation of SHA2.

Should we keep SHA2-512/256 and replace it

with S

HA3 later on?

Should we choose a different algorithm as
backup algorithm?

Should we not specify any backup algorithm?

118N

ASCIl Encoding

* RFC2617 defines a way to concatenate
username-value, realm-value, and password
as part of the Al calculations. (see section

3.2.2.2).

 That concatenation assumes that ASCII is used
and does not define how to indicate the desire
to use Unicode characters outside the ASCII
range.

The "auth-param”

 RFC2617 defines the following parameter to be
used with the WWW-Authenticate and
Authorization headers:
— auth-param

This directive allows for future extensions. Any
unrecognized directive MUST be ignored.

* The above auth-param allows new parameters to
be defined and added to the header.

The "charset" Parameter

 This document defines the "charset"

parameter to be used to indicate the encoding
used by the side that adds it to the header.

* The only allowed value is “UTF-8".

Server Behavior

* Send "charset" parameter in a challenge

* Look for "charset" parameter in a subsequent
request:

— "charset" present

* If it has the same value, continue normal operation;
otherwise immediately decline the request.

— "charset" absent

* This is an indication that the browser does not support

this specification; continue with the current normal
operation.

Client Behavior

 Browser adds the "charset" parameter to the
subsequent request:

— Using value it received from the server, if it supports
the encoding.

— Using the value it received from the server but
preceded by |, if it does not support the encoding.

* Browsers that do not support this specification
will ignore the "charset" parameter.

Open Issue

 We would like to get more feedback from the
community around this approach.

 We would like to understand what the various
browser vendors are doing, and if this
approach is aligned with their
implementation.

Questions?

