

RESTauth
● “REST” roughly means “at the app layer”

– But it can be orthogonal to the app – one part of an app
can be written in FCGI, another in WSGI, and so on

● Deploy as a plugin to your HTTP server
– Sessions get URIs, so... the app can GET them!

● The app can observe things like session keys,
– ...authenticated ID and any authorization data
– ...channel binding status, and CB cookies' user certs

● Distributed apps automatically supported
● MAC-based session continuation requires only a key exchange
● Logout → DELETE session resource

● Support in HTTP/TLS stacks NOT NEEDED

RESTauth
● Got a web server with FCGI? WSGI? Servlets?

– Universal server-side deployment via FCGI
– You do need an authentication mechanism:

● Mozilla BrowserID fits (and federates, and scales), ZKPPs fit,
GSS, SASL, Kerberos, RADIUS – all fit (enterprises need this)

● The app doesn't need to know the details
– Server-side: Authen. deployed as servlet/fcgi/whatever

● The app just GETs the session URI referenced by client
– Client-side: All the client does is POST authentication

messages until authentication completes – the interface
to the mechanism can be trivial

RESTauth – when it doesn't work
● If you have an application that only does discrete

transactions, each requiring authen. from scratch
– e.g., payments

● When your app framework forces you to use HTTP
authentication (or in TLS)

● When your APIs assume half round trip auth
(bearer tokens)
– But you can fudge these: have the service issue bearer

tokens for itself

Universal deployment: FCGI and
friends

● FCGI is just a standard interface for writing
HTTP applications. A clunky interface, but
universally available

● WSGI, Servlets, … are similar, but less widely
available

● Author server-side RESTful authentication in
FCGI → works for nearly all servers.

