BGP attribute for North-Bound Distribution of Traffic Engineering (TE) performance Metric

draft-wu-idr-te-pm-bgp-01

Qin Wu

Danhua Wang

BGP attributes for NB Distribution of TE performance metrics

Objective

- Using BGP to share additional TE performance related information to external components beyond linkstate and TE information contained in [I-D.ietf-idr-ls-distribution]
- External components can be ALTO server or PCE server.

Motivation

- As described in [I-D.ietf-idr-ls-distribution] links state and traffic engineering information (collected from IGP domain) can be distributed using BGP and share with external party (e.g., ALTO server, PCE server)
- As described in [I-D.ietf-pce-pcep-service-aware], network performance info can be distributed via OSPF or ISIS
 - PCE uses network performance info for end to end path computation
 - However in some cases, PCE participant in the different IGP(e.g.,Inter-AS, Hierarchy PCE)

Why use BGP to distribute network performance info

- Inter-AS PCE computation
 - Cooperating PCEs to compute inter-domain path using BRPC
 - Fall short when PCE in each AS participant in different IGP
- Hierarchy of PCE
 - A child PCE must be configured with the address of its parent PCE[RFC6805]
 - Configuration system is challenged by handling changes in parent PCE identities and coping with failure events
 - parent PCEs to advertise their presence to child PCEs when they are not a part of the same routing domain is unspecified.
- Topology and Cost Info gathering for ALTO server
 - The ALTO Server can aggregate information from multiple systems to provide an abstract and unified view that can be more useful to applications.
 - · Examples of other systems include routing protocol
 - ALTO server may be external component for BGP distribution
 - Gather network performance info using BGP and form Map service(i.e.,Cost Map service)

Why use BGP to distribute network performance info

- In the section 3 of [I-D.ietf-pce-pcep-service-aware], PCEP should satisfy 5 requirements regarding network performance constraints
 - PCE supporting this draft MUST have the capability to compute end-to-end path with latency, latency-variation and packet loss constraints. It MUST also support the combination of network performance constraint (latency, latency-variation, loss...) with existing constraints (cost, hop-limit...)
 - 2. PCC MUST be able to request for network performance constraint(s) in PCReq message as the key constraint to be optimized or to suggest boundary condition that should not be crossed.
 - 3. PCEs are not required to support service aware path computation. Therefore, it MUST be possible for a PCE to reject a PCReq message with a reason code that indicates no support for service-aware path computation.
 - 4. PCEP SHOULD provide a means to return end to end network performance information of the computed path in a PCRep message.
 - 5. PCEP SHOULD provide mechanism to compute multi-domain (e.g., Inter-As, Inter-Area or Multi-Layer) service aware paths.

Brief Introduction of New BGP attribute

- [I-D.ietf-idr-ls-distribution] defines new BGP path attribute (BGP-LS attribute) to carry link, node, prefix properties.
- This draft reuses existing BGP-LS attribute and defines 7 new TLVs that can be announced as BGP-LS attribute used with link NLRI.
- These BGP TLVs populate network performance information:
 - Link delay
 - Delay variation
 - Packet loss
 - Residual bandwidth
 - Available bandwidth
 - Link utilization
 - Channel throughput
- These BGP TLVs Applied to PCE server TED and ALTO Server, etc.

BGP Link Attribute TLVs

TLV Code Point	Description	IS-IS TLV/Sub-TLV	Defined in:
xxxx	Unidirectional Link Delay	22/xx	[ISIS-TE]/4.1
xxxx 		22/xx	
 xxxx 	 Unidirectional Delay Variation	22/xx	 [ISIS-TE]/4.3
 xxxx 	 Unidirectional Link Loss	22/xx	
 xxxx 	Unidirectional Residual Bandwidth	22/xx	
 xxxx 	 Unidirectional Available Bandwidth	22/xx	 [ISIS-TE]/4.6
xxxx	Link Utilization		section 5.1
xxxx	 Channel Throughput		section 5.2

1. [ISIS-TE] is referred to draftietf-isis-te-metricextensions-00. 2.They are all Link attributes used with link NLRI defined in [I.D-ietfidr-ls-distribution]. 3. The first 5 TLVs are from IS-IS Extended IS Reachability sub-**TLVs** 4. The last 2 link asstribute TLVs are defined in this draft.

Link Utilization TLV

- Advertise the average link utilization between two directly connected IS-IS neighbors or BGP peers.
- Be the utilization percentage per interval (e.g., 5 minutes) from the local neighbor to the remote one.
- The measurement method is defined in section 6.4 of [RFC6703].
- This TLV carries aggregated link property and is more applicable to best effort network service.

Channel Throughput TLV

- Advertise the average Channel Throughput between two directly connected IS-IS neighbors or BGP peers.
- Be the throughput between the local neighbor and the remote ones over a configurable interval.
- The measurement method is defined in section 2.3 of [RFC6374].
- This TLV carries aggregated link property and ismore applicable to best effort network service.

Questions?