
A Unified Plan for SDP
Handling!

Adam Roach!
Berlin, Germany!

Wednesday, July 31, 2013!
!
!
!

Motherhood and Apple Pie!
•  Large number of arbitrary sources"
•  Fine-grained receiver control of sources"
•  Glareless addition and removal of sources"
•  Interworking with non-WebRTC devices"
•  Avoidance of excessive port allocation"
•  Simple binding of MediaStreamTrack to

SDP"
•  RTX, FEC, simulcast, layered coding"

2"

Planks in the Plan!
1.  One m-line == one MediaStreamTrack"
2.  Each m-line has (at least one) a=ssrc for correlation*"

3.  Each m-line has an MSID to correlate it with a MediaStream
and MediaStreamTrack"

4.  Mid-call port allocation is minimized using BUNDLE"
5.  Call startup port allocation is minimized through “BUNDLE-

only” lines"
6.  Glare is addressed via a “Partial Offer/Answer” extension"
7.  Transport-wide attributes are identical for every m-line in the

same bundle"
8.  Additional mechanisms for early identification of incoming

media streams are defined (new RTP extension header;
and, exceptionally, the use of unique PTs)"

*When possible. Some architectures may preclude doing so. Those implementations will possibly miss out on important features.

3"

MediaStreamTrack? I can’t read
your crazy moon language!!
•  Defined in W3C docs"
•  Kind of the same

thing as a CLUE
“Media capture”"

•  Except that Web
applications can, e.g.,
take the output of a
camera, split it, and
make more than one
MediaStreamTrack
out of it."

Media
Stream
Track

Media
Capture

User
Media

Media
Stream
Track

4"

Let’s Point Out The Elephant!
•  There’s a lot of SDP out there in the real world."
•  Lots of people have done varying things with SDP -- some

supported by RFCs, others not -- that comprise a wide and
conflicting corpus of “existing SDP usage.”"

•  In many cases, when trying to nail down historically ambiguous
usage, we’ve had to choose a behavior that fits with some existing
uses, and which conflicts with others."

•  Largely, we’ve tried to go for the solutions that make the most sense
with the rest of our proposal, are most supported by existing RFCs,
or are most widely deployed."

•  No matter which direction these decisions take, someone will want
to stand up and say “but that’s not how mine works.” We know.
We’re sorry."
–  We’re happy to talk about different answers to these questions, but we

can’t expect to start with systems that interpret the same SDP as
meaning radically different things and walk away with a fully backwards-
compatible, consistent system. Someone will be unhappy."

5"

M-line == MediaStreamTrack!
•  We’ve taken the smallest thing that we

typically need to control and made it the
unit that we deal with in SDP."

•  This is congruent with many (although
admittedly not all) deployed SDP offer/
answer uses."

6"

Use of a=ssrc!
•  Every m-line has (at least one) a=ssrc in it, to specifically tie it

to its corresponding RTP packets."
–  Although it is possible to get SDP from non-unified-plan clients

that omits it, and we should react in a sane fashion."
•  An implication of “one MediaStreamTrack per m-line” is that

any SSRC associated with an m-line beyond the first one
needs to be explained some way."
–  That is: since this is only one “thing,” why are you sending more

than one stream for it?"
•  To assist with a commonly deployed (although not universal)

usage of multiple SSRCs, the default interpretation when you
get two SSRCs on an m-line is to treat them as “tag-teaming”
each other."

•  Yeah, there’s a bug in the examples: we need to add
a=ssrc:cname. We’ll fix that.!

7"

Media Correlation!
•  Uses a=msid to tie

application-level thing
to m-line"
Yes, this is a change to the msid
draft. It makes sense once you
do one-m-line-per-MST!

•  For WebRTC, this will
be in the format
<MediaStreamId>
<space>
<MediaStreamTrackId>"

Example: Two media streams
(ma and mb). Stream ma has
two tracks (ta and tb), while
stream mb has one track (tc):"
!
m=audio 54400 RTP/SAVPF 0 96!
a=msid:ma ta!
!
m=video 0 RTP/SAVPF 96 97!
a=msid:ma tb!
!
m=video 0 RTP/SAVPF 96 97!
a=msid:mb tc!
!

8"

Correlation of what? I got lost.!
MediaStream

MediaStreamTrack

MediaStreamTrack

SDP

m-line

m-line

RTP Session

SSRC

SSRC

SSRC

MediaStream

MediaStreamTrack

m-line SSRC

SSRC

a=
ms

id

a=
ss

rc

9"

Port Use Reduction!
•  We normatively depend on BUNDLE

draft-ietf-mmusic-sdp-bundle-negotiation for
reduced port use mid-call."

•  We use the Plan A “Bundle-Only” lines for m-
lines that are allowed to fail when talking to
non-bundling clients."
– Yes, we know that this requires changes to

normative statements the BUNDLE draft (e.g.,
allowing port=0 in an offer). BUNDLE is still a
draft; MMUSIC has the power to change it.!

10"

Bundle-Only Example!
So, if you wanted to set
up a call that had one
audio stream and two
video streams, but only
wanted video if you’re
talking to a bundle
client…"

a=group:BUNDLE S1 S2 S3

…

m=audio 54400 RTP/SAVPF 0 96

a=mid:S1
…

m=video 0 RTP/SAVPF 96 97

a=mid:S2

a=bundle-only

…

m=video 0 RTP/SAVPF 96 97

a=mid:S3

a=bundle-only

11"

Open Issue: Default Behavior for
“Bundle Only”!
•  The indication of which streams are “Bundle Only” is

intended to be supported through the use of
constraints (at least, in WebRTC)."

•  We do not define which behavior is used if no
constraint is present; I think there are three
supportable positions:"
1.  The first audio stream is independent, all others are

bundle-only (except for video-only calls, in which the first
video stream is independent)"

2.  The first stream of each media type is independent, all
others are bundle-only"

3.  All streams are independent unless explicitly constrained"
•  This may well be a W3C issue anyway."

12"

Glare Reduction!
•  We need to be able to add and remove streams

without glare conditions arising."
–  It would be nice if we could make it unlikely for stream

modification, too."
•  The draft contains a thumbnail sketch of an

approach that allows glareless addition and
removal of streams."

•  The approach isn’t key to the plan, but having an
approach is."

•  If we don’t like this approach, we can design a
different one (or use one of the two others that
have been discussed on-list)."

13"

Glare Reduction: Partial Offer/
Partial Answer!
•  For an ongoing call, applications can request a “partial offer” that

contains just the portions of SDP that have changed."
•  This partial offer can be correlated to a stream (or determined to be

a new stream) using its MID."
•  New streams are appended to the SDP"

–  If two streams are added, we have a tiebreaker"
•  Removed streams are set inactive"

–  If the stream is removed and changed at the same time, the removal
“wins”"

•  Changed streams are changed"
–  If both sides try to change the same stream simultaneously, then glare

resolution is necessary."
–  This is an improvement over normal 3264, where both sides trying to

change the session simultaneously causes glare."
•  The response to a “partial offer” is a “partial answer”: it contains

exactly the same m-line(s) as the partial offer (no more, no less)."

14"

SDP Attribute Handling!
•  All m-lines in a bundle contain the same

attributes except for those which apply
directly to streams. "

•  The unified plan proposes
draft-nandakumar-mmusic-sdp-mux-
attributes as the basis for characterizing
which attributes fall under this umbrella."

15"

RTX, FEC, Simulcast, and
Layered Coding!
•  These techniques produce multiple RTP streams for a single

MediaStreamTrack."
•  Remember, we’re planning on one m-line per media stream

track."
•  RTX, FEC, and layered coding are already described in RFC

4588, RFC 5956, and RFC 5583 respectively."
–  We use exactly the syntax from RFC 4588 §8.8 and RFC 5956

§4.3."
–  For RTX, we add a=ssrc-group:FID to make pairings explicit

(needed for RTX & simulcast at the same time)."
–  We use the syntax from RFC 5583 (albeit with all streams in the

same m-line)"
•  SDP for simulcast is not defined in an RFC or an adopted

draft yet. We propose the use of a=ssrc-group:SIMULCAST to
tie these together."

16"

Simulcast Example!
m=video 62537 RTP/SAVPF 96
a=msid:ma ta
a=extmap:1 urn:ietf:params:rtp-hdrext:stream-correlator 15955
a=mid:1
a=rtpmap:96 VP8/90000
a=sendrecv
a=rtcp-mux
a=ssrc:29154375 imageattr:96 [x=1280,y=720]
a=ssrc:47182014 imageattr:96 [x=640,y=360]
a=ssrc-group:SIMULCAST 29154375 47182014

17"

Simulcast Handling!
•  Note that the PTs are the same for both streams."

–  Unless they need different fmtp parameters for some
reason."

•  If you are sending inband parameter sets (or using
VP8), you can tell the streams apart by looking at
the resolution in the initial IDR."

•  To reject one simulcast stream, one approach
could be using imageattr to indicate only a single
recv resolution is desired."

•  Regardless of how it’s signaled, the offerer can
really only reject simulcast in a second O/A
exchange."

18"

Simulcast Example w/FEC!
m=video 62537 RTP/SAVPF 96 101
a=msid:ma ta
a=extmap:1 urn:ietf:params:rtp-hdrext:stream-correlator 15955
a=mid:1
a=rtpmap:96 VP8/90000
a=rtpmap:101 1d-interleaved-parityfec/90000
a=sendrecv
a=rtcp-mux
a=ssrc:29154375 ...
a=ssrc:47182014 ...
a=ssrc:38259631...
a=ssrc:18697302 ...
a=ssrc-group:SIMULCAST 29154375 47182014
a=ssrc-group:FEC-FR 29154375 38259631
a=ssrc-group:FEC-FR 47182014 18697302

19"

Simulcast Example w/RTX!
m=video 62537 RTP/SAVPF 96 101
a=msid:ma ta
a=extmap:1 urn:ietf:params:rtp-hdrext:stream-correlator 15955
a=mid:1
a=rtpmap:96 VP8/90000
a=rtpmap:101 rtx/90000
a=fmtp:101 apt=96;rtx-time=3000
a=sendrecv
a=rtcp-mux
a=ssrc:29154375 ...
a=ssrc:47182014 ...
a=ssrc:38259631...
a=ssrc:18697302 ...
a=ssrc-group:SIMULCAST 29154375 47182014
a=ssrc-group:FID 29154375 38259631
a=ssrc-group:FID 47182014 18697302

20"

“Handshaking”!
1.  Calling party sends an offer with at least one m-line

for each media type it wants in the call (more, if it
thinks it might help)."

2.  Called party uses as many streams as are present. If
there are enough for its needs, then no further action
is needed."

–  The call is set up at this point"
3.  If the called party needs more streams, it sends an

offer (probably partial) in the other direction
immediately, increasing the stream count as needed."

4.  The calling party processes this (partial) offer
normally, and sends an appropriate (partial) answer."

21"

“Handshaking”!

Offer (1 video, 1 audio)

Answer (1 video, 1 audio)

Offer (8 video, 1 audio)

Answer (8 video, 1 audio)

Calling party
creates offer with

audio & video.
Since it does not

know how many are
needed, it

"guesses" one of
each.

Call is now running

Called party desires
eight video

streams. So it
creates an answer
for the "one audio,
on video" offer, and

then creates an
offer with eight

video streams and
one audio stream.

22"

Matching RTP Streams to m-lines!
•  Primarily, done through a=ssrc in each m-

line"
•  Secondarily, to handle certain races,

performed via an RFC 5285 RTP header
extension field. The value is chosen by the
party who will be receiving the
corresponding media."

•  Exceptionally, performed by using unique
payload types."

23"

Matching RTP Streams to m-
lines: RTP Header Extension!

Offer

 m=video 62537 RTP/SAVPF 96 // main video
 a=msid:ma ta
 a=extmap:1 urn:ietf:params:rtp-hdrext:stream-correlator 15955
 a=mid:1
 a=rtpmap:96 VP8/90000
 a=sendrecv
 a=rtcp-mux
 a=ssrc:29154

RTP Header
SSRC = 345987

PT=96

Extension
ID = 1, Length = 2,

Value = 15955

Payload

Answer
 a=ssrc:345987

24"

Matching RTP Streams to m-
lines: Unique Payload Types!
•  Less-preferred, included for systems that

cannot (easily) use RTP extension"
•  In WebRTC, applications would need to add

a constraint explicitly requesting this behavior"
•  When constraint is present, browser tries to

make PTs completely unique so they can be
used to correlate m-lines"
–  If it can’t, it reports an error to the application"

•  When the constraint is absent, PTs are re-
used between m-lines."

25"

Matching RTP Streams to m-
lines: Unique Payload Types!

Offer

 m=video 62537 RTP/SAVPF 96
 a=msid:ma ta
 a=mid:1
 a=rtpmap:96 VP8/90000
 a=sendrecv
 a=rtcp-mux
 a=ssrc:29154

RTP Header
SSRC = 345987

PT=96

Payload

Answer
 a=ssrc:345987

26"

Open Issue: What PTs are Okay?!
PT Encoding*Name A/V

0 PCMU A
1 Reserved
2 Reserved
3 GSM A
4 G723 A
5 DVI4 A
6 DVI4 A
7 LPC A
8 PCMA A
9 G722 A
10 L16 A
11 L16 A
12 QCELP A
13 CN A
14 MPA A
15 G728 A
16 DVI4 A
17 DVI4 A
18 G729 A
19 Reserved A
20 Unassigned A

PT Encoding*Name A/V
21 Unassigned A
22 Unassigned A
23 Unassigned A
24 Unassigned V
25 CelB V
26 JPEG V
27 Unassigned V
28 nv V
29 Unassigned V
30 Unassigned V
31 H261 V
32 MPV V
33 MP2T AV
34 H263 V

35@63 Unassigned ?
64@95 ReservedDforDRTCPDconflictDavoidance

96@127 dynamic ?

27"

