Why protocol stacks should be in user-space?

Michio Honda (NEC Europe),
Joao Taveira Araujo (UCL),
Luigi Rizzo (Universitea de Pisa),
Costin Raiciu (Universitea Buchalest)
Felipe Huici (NEC Europe)

IETF87 MPTCP WG July 30, 2013 Berlin

Motivation

- Extending layer 4 functionality addresses a lot of problems
 - Increased performance
 - MPTCP, WindowScale, FastOpen, TLP, PRR
 - Ubiquitous encryption
 - TcpCrypt

Is it really possible to deploy layer 4 extensions?

- Networks still accommodate TCP extensions
 - 86 % of the paths are usable for well-designed TCP extensions

Protocol stacks in end systems

- OSes implement stacks
 - high performance
 - Isolation between applications
 - Socket APIs
- New OS versions adopt new protocols/extensions

Extending protocol stacks: reality

- OSes' release cycle is slow
- Support in the newest OS version does not imply deployment
 - Stakeholders are reluctant to upgrade their OS
 - Disabling a new feature by default also hinders timely deployment

How long does deployment take?

- SACK is default since Windows 2000
- WS and TS are implemented in Windows 2000, but enabled as default since Windows Vista

- To ease upgrade, we need to move protocol stacks up into user-space
- · Problem: We don't have a practical way
 - Isolation between applications
 - Support for legacy applications and OS's stack
 - High performance

- Support for multiple stacks (including OS's stack)
- Namespace isolation based on traditional 3-tuple
- Very high performance
- Run in FreeBSD and Linux

- Support for multiple stacks (including OS's stack)
- Namespace isolation based on traditional 3-tuple
- Very high performance
- Run in FreeBSD and Linux

- Support for multiple stacks (including OS's stack)
- Namespace isolation based on traditional 3-tuple
- Very high performance
- Run in FreeBSD and Linux

- Support for multiple stacks (including OS's stack)
- Namespace isolation based on traditional 3-tuple
- Very high performance
- Run in FreeBSD and Linux

Multistack performance

- App creates every packet from scratch, and send it to the kernel
- Multistack validates the source 3-tuple of every packet, and copies the packet to the NIC's TX buffer

- Multistack receives a packet
- It identifies destination 3-tuple of the packet
- It delivers the packet to the corresponding app/stack

Performance with stacks

- A simple HTTP server on top of our work-in-progress user-space TCP (UTCP)
- The same app running on top of OS's TCP

Client establishes a TCP connection, and sends HTTP GET Server replies with HTTP OK (I- 32KB) Single TCP connection is used for a single HTTP transaction

Conclusion

- Rekindle user-space stacks for widespread, timely deployment of new protocols/extensions
- Ongoing work:
 - Improving implementation of MultiStack
 - Making complete user-space TCP implementation
 - Integrating user-space stacks into networking library like libevent and libuv

Multistack performance (many apps/ stacks)

 A bit lower performance on many ports is due to the reduced number of packets taken in a single systemcall