draft-ietf-netconf-reverse-ssh

Call Home using SSH

Motivation

- Proactive device-initiated discovery
- Manage devices deployed behind firewalls

SSH is NETCONF's mandatory transport protocol

Normal SSH

• SSH client initiates the TCP connection...

NMS initiates TCP connection

Normal SSH

• SSH client initiates the TCP connection...

SSH on top of TCP connection

Reverse SSH

• Device initiates the TCP connection...

Device initiates TCP connection

Reverse SSH

• Device initiates the TCP connection...

SSH on top of TCP connection

SSH Roles are Always the Same!

Regardless which side initiates the TCP connection:

- NMS is the SSH client
- Device is the SSH Server

Security wise:

- NMS authenticates device's SSH host key
- Device authenticates NMS's "user" credentials

RFC 6242 Compliant

- NETCONF server extracts username from ssh-userauth service
- NETCONF client opens session channel and invokes "netconf" subsystem

Very Easy to Implement

Normal SSH

- 'inetd' listens on a port 830
- Accepts TCP connection
- Forks/execs "sshd -i"

Reverse SSH

- Agent on device initiates TCP connection to NMS on port TBD
- Forks/execs "sshd –i"

Reference implementation will be posted - using OpenSSH and J2SSH Maverick

Bootstrap Parameters

- Devices must be configured
 - the IP/port of the NMS to initiate connection to
 - A user account and credentials for the NMS to use
- NMS should be configured
 - Identities for expected device connections
 - Device SSH Host Keys
 - or an ability to authenticate devices (e.g. PKI)

Zero-Touch Bootstrap

Automated configuration of Bootstrap Parameters from previous slide

- A highly-requested feature
- Device bootstrap procedure
 - Device placed on isolated network
 - Device configures its network stack via DHCP
 - Device fetches Bootstrap Parameters from network
- Security Recommendations
 - NMS's "user" credentials SHOULD be an asymmetric key
 - Device's Host-Key SHOULD be a X.509 certificate

Regarding X.509 Based Keys

- RFC 6187 defines
 - X.509v3 Certificates for Secure Shell Authentication
 - March 2011
- Currently no known implementations
 - some implementations of draft-saarenmaa-ssh-x509-00
- Following are planning to support
 - The OpenSSH patch by Roumen Petrov
 - J2SSH Maverick by SSHTOOLS Limited

Questions / Concerns ?

Alternative Strategy

• Device is SSH Client

Device initiates TCP connection

Alternative Strategy

• Device is SSH Client

SSH on top of TCP connection

Alternative Strategy

• Device is SSH Client

NMS opens channel on device

Bootstrap Parameters

- Devices must be configured
 - the IP/port of the NMS to initiate connection to
 - NMS's SSH Host Key
 - or an ability to authenticate it (e.g. PKI)
 - A user account and credentials to log into the NMS
 - A local user account to bind session to