
NFQL: A Tool for Querying Network Flow Records [6]

Computer Networks and Distributed Systems
Jacobs University Bremen

Bremen, Germany

July 2013

IETF 87, Berlin

Vaibhav Bajpai, Johannes Schauer,
Corneliu Claudiu Prodescu, Jürgen Schönwälder

{v.bajpai, j.schauer, c.prodescu, j.schoenwaelder}@jacobs-university.de

nfql.vaibhavbajpai.com

Supported by:
Flamingo Project: http://fp7-flamingo.eu

http://nfql.vaibhavbajpai.com
http://nfql.vaibhavbajpai.com
http://www.samknows.com
http://www.samknows.com

Motivation

• Flow export protocols

• IP traffic flow

Flow analysis use cases:

• Cisco NetFlow [RFC 3954]
• IETF IPFIX [RFC 5101]

• Survey on detection of intrusion attacks [1].
• Survey on behavior analysis of backbone traffic [2].

• Understanding intricate traffic patterns require sophisticated flow analysis tools.
• Current tools span a smaller use-case owing to their simplistic language designs. [2/21]

Version Features

v1, {2, 3, 4} original format with several internal releases

v5 CIDR, AS support and flow sequence numbers

v{6, 7, 8} router-based aggregation support

v9 template-based with IPv6 and MPLS support

IPFIX universal standard, transport-protocol agnostic

Related Work

• Popular open-source NetFlow analysis tools

• flow-tools: supports NetFlow v5
• nfdump: supports NetFlow v9

• Simple traffic analysis tools

• ntop, FlowScan, NfSen, Stager

• Popular open-source IPFIX analysis tools

• SiLK

[3/21]

nfql Tool

Execution Engine

Front-End Parser

JSON

Output Trace

nfql

NFQL Query

Input Trace

nfql architecture

 C

[4/21]

 Python

- NetFlow v5
- IPFIX

- NetFlow v5
- IPFIX

NFQL (Network Flow Query Language)

[5/21]

NFQL processing pipeline [3]

• Each branch runs in a separate thread.

• Affinity masks help delegate each branch to a separate processor core.

http://oss.metaparadigm.com/json-c/
http://oss.metaparadigm.com/json-c/

NFQL Domain Specific Language (DSL)

• JSON intermediate format

• Each pipeline stage of the JSON query is a DNF expression.

• JSON query can disable the pipeline stages at RUNTIME.

• Execution engine uses json-c to parse the JSON query:

filter http {
 tcpDestinationPort = 80 delta 1
}

DSL

"filter": {
 "dnf-expr": [{
 "clause": [{
 "term": {
 "delta": 1,
 "offset": {
 "name": "destinationTransportPort",
 "value": 80
 },
 "op": "RULE_EQ"
 }
 }]
 }]
}

The query uses IPFIX entity names and datatypes:
http://www.iana.org/assignments/ipfix/ipfix.xhtml

JSON intermediate format

NFQL Parser

http://oss.metaparadigm.com/json-c [6/21]

http://oss.metaparadigm.com/json-c/
http://oss.metaparadigm.com/json-c/
http://iana.org/assignments/ipfix/ipfix.xhtml
http://iana.org/assignments/ipfix/ipfix.xhtml
http://iana.org/assignments/ipfix/ipfix.xhtml
http://iana.org/assignments/ipfix/ipfix.xhtml
http://oss.metaparadigm.com/json-c
http://oss.metaparadigm.com/json-c

NFQL DSL: Supported Features

• Possible Operations:
- EQ, NE, GT, LT, LE, GE

• Possible Aggregations:

- COUNT, UNION, MIN, MAX, SUM, MEDIAN,
- MEAN, STDDEV, XOR, PROD, AND, OR, IN

• Possible Interval Operations:
- X takes place before Y
- X meets Y
- X overlaps with Y
- X starts Y

- X during Y
- X finishes Y
- X is equal to Y

supported in SiLK

[7/21]

NFQL DSL: IPFIX to NetFlow v5 map

[8/21]

NetFlow v5 IPFIX Comments

srcaddr sourceIPv4Address
dstaddr destionationIPv4Address
nexthop ipNextHopIPv4Address
input - missing in IPFIX?
output - missing in IPFIX?
dPkts packetDeltaCount 32bit unsigned vs 64bit unsigned

dOctets octetDeltaCount 32bit unsigned vs 64bit unsigned
dFlows deltaFlowCount 32bit unsigned vs 64bit unsigned
First flowStartSysUpTime relative vs absolute time
Last flowEndSysUpTime relative vs absolute time

srcport sourceTransportPort
dstport destinationTransportPort

tcp_flags tcpControlBits
prot protocolIdentifier
tos ipClassOfService

src_as bgpSourceAsNumber
dst_as bgpDestinationAsNumber

src_mask sourceIPv4PrefixLength
dst_mask destinationIPv4PrefixLength

NFQL I/O processing

[9/21]

• NetFlow v5: using flow-tools:

• IPFIX: using libfixbuf:

• Flow records are read in memory and indexed to allow retrieval in O(1) time.

http://tools.netsa.cert.org/fixbuf

http://www.splintered.net/sw/flow-tools

NFQL processing pipeline [3]

http://tools.netsa.cert.org/fixbuf
http://tools.netsa.cert.org/fixbuf
http://www.splintered.net/sw/flow-tools
http://www.splintered.net/sw/flow-tools

NFQL Example:

[10/21]

- Find all flow pairs representing HTTP traffic (TCP using port 80)
 that have exchanged more than 200 packets in both directions.

• Problem Statement:

NFQL Example: Filter

NFQL processing pipeline [3]
branch A {
 filter f1 {
 destinationTransportPort=80
 protocolIdentifier=TCP
 }
}

branch B {
 filter f1 {
 sourceTransportPort=80
 protocolIdentifier=TCP
 }
}

• No splitter: Using indexes to reference flows in each branch.

• Inline filter: Flows are filtered as soon as they are read in memory.

HTTP responses:

HTTP requests:

[11/21]

NFQL processing pipeline [3]

HTTP responses:

grouper ... {
 sourceIPv4Address =
 sourceIPv4Address
 destinationIPv4Address =
 destinationIPv4Address
 aggregation {
 sum(packetDeltaCount)
 sum(octetDeltaCount)
 }
}

Group A and Group B

• Flow records matching the source and destination endpoint addresses are combined.

• The number of packets and octets are aggregated together within each grouped flow.

• Faster grouper lookups: Sort on group keys and perform a nested binary search.

NFQL Example: Grouper

[12/21]

NFQL processing pipeline [3]

Group A and Group B

groupfilter ... {
 packetDeltaCount > 200
}

NFQL Example: Group Filter

[13/21]

NFQL processing pipeline [3]

branch A { ... }

branch B { ... }

merger M {
 A.sourceIPv4Address =
 B.destinationIPv4Address

 A.destinationIPv4Address =
 B.sourceIPv4Address
}

• Merger merges the grouped flows from each branch to create streams.

• The HTTP request flow is matched with the HTTP response flow to create a HTTP session.

• Faster merger matches: Sort on merger keys to skip iterator permutations.

NFQL Example: Merger

[14/21]

NFQL processing pipeline [3]

ungrouper U {

}

• The ungrouper unfolds the streams back into individual flows.

• The individual flows are written as trace files or printed on stdout.

NFQL Example: Ungrouper

[15/21]

• Demo

nfql Tool

[16/21]

- Find all flow pairs representing HTTP traffic (TCP using port 80)
 that have exchanged more than 200 packets in both directions.

NFQL in Theory

Filter (worst case) O(n) where n=num(flows)

Grouper (average case) O(n × lg(k)) + O(p × n × lg(n)) where k=num(unique(flows)), p=num(terms)

Grouper aggregations (worst case) O(n)

Group Filter (worst case) O(g) where g=num(groups)

Merger (worst case) O(g^m) where m=num(branches)

Ungrouper (worst case) O(g)

• Features

• Filter flows.

• Combine flows into groups.

• Aggregate flows on flow-keys as one grouped flow aggregate.

• Merge grouped flows, supporting temporal relations between groups.

• Apply absolute or relative filters when grouping or merging.

• Unfold grouped flows back into individual flows.

NFQL and Friends

The expressiveness of the language can be
seen from [4], where NFQL queries are used
to identify application signatures.

NFQL processing pipeline [3]

not supported by SiLK

not supported by {flow-tools, nfdump}

[18/21]

• Each compression level adds its own
performance overhead when writing
output traces to files.

• Additional Features
• Each pipeline stage results can be written out as flow-tools files.
• Capability to read multiple input traces from stdin:

• Output traces are compressed
using zlib library. nfdump uses
lzo compression.

• Compression level is configurable at
RUNTIME. nfql uses ZLIB_LEVEL 5
by default.

$ flow-cat $TRACES | nfql $QUERY

Compression Tradeoffs

Performance Evaluations

• Ran on a machine with 24
cores, 2.5 GHz clock speed and
18 MiB of physical memory.

• Stressing the rest of the pipeline stages, please refer to [6].

• Used first 20M flows from
Trace 7 in the SimpleWeb
repository [5].

• Input trace was compressed at
ZLIB_LEVEL 5.

• nfdump uses lzo compression
to trade output trace size with
RUNTIME speed.

[20/21]

Conclusion

• NFQL’ richer language capabilities allow sophisticated flow queries.

• nfql can process such complex queries in minutes.

• nfql has comparable execution times when processing real-world traces.

• Evaluation queries developed as part of this research can become input towards a
generic benchmarking suite for flow-processing tools.

nfql.vaibhavbajpai.com
[21/21]

http://nfql.vaibhavbajpai.com
http://nfql.vaibhavbajpai.com

References

[1] A. Sperotto, et al., An overview of IP flow-based intrusion detection, IEEE

[2] A. Callado, et al., A survey on Internet traffic identification, IEEE

[3] V. Marinov, et al., Design of a stream-based IP Flow Record Query Language,

[4] V. Perelman, et al., Flow Signatures of Popular Applications,

[5] R. Barbosa, et al., Simpleweb/University of Twente Traffic Traces Data Repository,

Communication Surveys and Tutorials, 2010.

Communication Surveys and Tutorials, 2009.

Distributed Systems: Operations & Management, 2009

Symposium on Integrated Network Management, 2011

http://www.simpleweb.org/wiki/Traces [Last Accessed: May 25, 2013]

http://www.simpleweb.org/wiki/Traces
http://www.simpleweb.org/wiki/Traces

References

[6] V. Bajpai, et al., NFQL: A Tool for Querying Network Flow Records, IEEE/IFIP
International Symposium on Integrated Network Management, 2013.

