

Chair for Network Architectures and Services – Prof. Carle Institute for Informatics Technische Universität München

IPFIX QoS Measurement Extension

Network Properties that Can Cause Problems

Delay

- Latencies on the network
- Changes in latency (jitter)

Packet Loss

Drops along the path

Bandwidth Limitations

- Slow links on the path
- Buffers between slow and fast links
 → can result in delay
- Connectivity Limitations

Get information on these properties

 \rightarrow if we can't see one of these issues, it's not a network problem

Network Properties and Possible Problems

Example: Buffer bloat and resulting large delays

Discussions about if those properties affect the application

□ What we what to have:

- Tell application about the properties of their connections
- \rightarrow Passive measurements

Include QoS Measurement Results into IPFIX flows

Approach

- Calculate network performance metrics
- Attach results to IPFIX flows

Measuring of QoS metrics

- application-level statistics
 → example: RTP streams
- What about other applications?

Work has been done

- Delay measurements
 - RTT estimation
 - Network delay
 - Application delay
- Inclusion of various other fields

Example: Determine Network Delays

□ Works fine in these scenarios:

Does not work with asymmetric paths:

Delay Estimation for Asymmetric Paths

Do not export delay values but timestamp of certain packets

Approach for Network Performance Metrics

Do not calculate metrics on the probe

- extract information from packets
- do calculation on the collector
- \rightarrow provide a number of sampling algorithms that help to extract the data

Advantage

- Asymmetric paths
- No complex algorithms on the probe
- Instead
 - Sample packets and export timestamps

Drawback

Requires more information attached to the flow data

Employ Timestamps in Probes and Network Devices

What we want: Get this information from the network devices

Requirement

- Time synchronization between devices (at least to certain level)
- Router/Switches: Good timestamps from devices

Asymmetric paths

- Is performance metrics for asymmetric paths an issue?
- Should performance metrics be aware of asymmetric paths?

- Asymmetric path-aware algorithms would require to include more information into a single flow
 - Does someone have operational experience with generating flow data with a lot of non-flow keys attached to the individual flows?