
Kodo: Implementation and
News on the Network

Coding library

Morten V. Pedersen - Aalborg University /
Steinwurf ApS

mvp@steinwurf.com

Background

Academia
● Network coding key

enabler for efficient user
cooperation (p2p).

● Kodo developed during
a 3 year research
project CONE
(COoperation and
NEtwork Coding).
Concluded 2012.

Industry
● On campus start-up

Steinwurf ApS founded
in 2011.

● Taking over the rights
for Kodo and
development.

● Library source code fully
available. Licenses:
a. Free for Research /

Educational
b. Paid Commercial

Where does Kodo fit?
● Many different requirements

○ Deterministic vs. random, inter- vs. intra-flow, physical to
application / transport layer.

Data
partitioningData Input

● Current versions of Kodo implement
○ Software & Digital Random Linear Network

Coding (RLNC)
○ Suitable for transport / application layer

protocol implementations
○ Focus on the coding

Encoder Recoder Decoder Data
output

TCP / UDP

Application

Kodo (the library)

● C++11 (staying
compatible with major
compilers).

● Designed to allow for
easy experimentation
and a high degree of
code reuse.

● Very flexible design
technique used called
"mixin-layers" or
"parameterized
inheritance" using C++
templates.

● Low-level = ample ways
of shooting yourself in
the foot. With API specs.
we try to mitigate this.

● High Performance -
code generated by
compiler comparable to
single monolithic
implementation.

● Helper libraries.
○ Resource

management
○ Finite Fields

Since Orlando (IETF 86) - external

● High-level C Binding
○ https://github.com/steinwurf/kodo-c-bindings
○ Pre-built binaries available

● NS-3 examples
 https://github.com/steinwurf/kodo-ns3-examples

● Basic discrete time simulator
 https://github.com/steinwurf/kodo-basic-simulations

Since Orlando (IETF 86) - internal

v8.0.0 to v11.2.0:
● Bug-fixes + minor improvements
● On-the-fly, sliding window, online encoding/decoding

○ Unique to network coding
○ Progressively include packets into the encoding
○ Progressively extract packets from the decoding
○ Important to efficiently support streaming and

interactive applications.
● Sparse coding (development ongoing)

○ Efficient way of increasing performance of encoding
decoding

● Additional benchmarks + examples

Kodo and the IRTF NWCRG

● Provides a solid building block for
○ Protocol development.
○ Experimentation with different

code variants.
● It is well tested.

○ Visit our buildbot: http://buildbot.
steinwurf.dk:12344

● It has traction:
○ New features.
○ Supported platforms.
○ Several companies and university

research groups already using it.

Getting started

● Code
○ http://github.com/steinwurf/kodo
○ See example of encode/decode in the examples

folder
● Documentation (we are working on it)

○ http://readthedocs.org/docs/kodo/en/latest/
● Status buildbot: http://buildbot.steinwurf.dk:12344/

The End

● Questions?

● Contributions + bug fixes please
○ Simple procedure with sign-off

● Feedback / comments /questions are all very
welcome!

 Morten V. Pedersen
morten@steinwurf.com

