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Why error-correction coding at the transport layer ?
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Why error-correction coding at the transport layer ?

Why not enhance error-correction at the
link layer 7 Link layer offers many
advantages:
e Link layer has access to low-level
information e.g. whether a packet loss

is due to queue overflow or channel . ). )‘

error. lossy loss-free
e Usually quick feedback, so ARQ link link
efficient

e Hop by hop encoding is generally more
efficient than end-to-end encoding
If link layer improvements are possible,
make them !



Why error-correction coding at the transport layer ?

Transport layer has some compelling

practical advantages:
client server

e No need for changes to installed
network equipment ‘( > ‘
e No need for root-privilege changes < - - »*

to user equipment, just a . |

ctcp ossy ctep

user-space app proxy  link oroxy
e No need for changes to installed

servers



Why error-correction coding at the transport layer ?

Plus potential exists for considerable performance gains.
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Error-correction coding using delayed feedback
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Data > Reassembly

< queue
ACKs

Packets may be erased in transit
In-order delivery at receiver via reassembly queue
Feedback to sender via ACKs

May be large path delay/RTT e.g. 20-50ms
— 100s of data packets in flight, feedback to sender is delayed.



ARQ
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Hybrid coding approach with delayed feedback

FEC based on currently estimated loss rate (from ACKs) i.e. send
extra packets in an attempt to preempt loss

Use feedback to deal with cases when this fails, send additional
coded packets

A throughput-delay trade-off here
Use RLC in GF(256) as FEC code, but could use something else
Block size of 32 packets



Hybrid coding approach with delayed feedback
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Hybrid coding approach with delayed feedback
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Congestion control on lossy paths

Modify AIMD backoff on loss to

RT T in
cwnd «— cwnd X SR

Never ignores packet loss

Reverts to standard TCP on links
without noise losses

On lossy links yields dramatic
improvement in throughput by
avoiding cwnd collapse.

An important source of the x10-x20
thoughput gains observed.
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Implementation Options

User-space vs kernel — user-space offers greater portability and no
need for root priviledge

Proxy vs tunnel — user-space and lack of root access restricts use to
standard sockets, so proxy-like approach

UDP to carry CTCP packets — TCP changes require kernel
modifications.

Link layer coding, within driver/kernel, may indicate different design
decisions ...



Link layer-agnostic measurements

Testbed setup:
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Link layer-agnostic measurements
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Link layer-agnostic measurements
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Link layer-agnostic measurements

Application performance - HTTP
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Link layer-agnostic measurements

Application performance - Video streaming

4

10
0 3
g 10°
=
S
k5
g10°
3
—e—Std TCP
. —=-CTCP
10

0 0.05 0.1 0.15 0.2
Loss Probability

25Mbps link, RTT 10ms, 60s video playout
Standard TCP (red) and CTCP (black)



802.11 wireless measurements

Testbed setup: Receiver O
e Proprietary 802.11 4
features disabled /

/
e 802.11 rate control ; Inteferer
manual
Sender

e Cubic as standard TCP.



802.

11 wireless measurements
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802.11 wireless measurements

Microwave oven interference

IN

WTcP
IlcTCcP

w

Mean Throughput (Mbps)
= n

o

5 9 11 18 36
WiFi Tx Rate (Mbps)



802.11 wireless measurements

Hidden terminal setup: Receiver O
e Modified 802.11 driver /4
to disable carrier sense /
e Poisson interference / O - )O
traffic sender () Hidden Terminal



802.11 wireless measurements

CTCP and TCP Throughput
Hidden Terminal — Poisson Distributed Traffic
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TCP (Cubic TCP) and CTCP over an 802.11b/g wireless link.



802.11 hot spot measurements

e Various public WiFi networks in the
greater Boston area

e Downloaded a 50 MB file from a server
located on MIT camput to a laptop
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e Default operating system (Ubuntu)
settings are used for all network
parameters on client and server.
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802.11 hot spot measurements
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Workshops

Organised by Code On:
1. Oct 15-16, Berlin
2. Nov 5-6, Palo Alto
See http://www.codeontechnologies.com /training/ for more details.
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