OAuth2 SCIM Client Registration
& Software Statement Exchange

Phil Hunt
July 31, 2013
IETF87 OAuth and SCIM WG

OAuth-SCIM-Client-Reg Intro

Draft enables OAuth 2 clients to register with a
SCIM endpoint to obtain client id and optional

credentials.
Based on draft-ietf-oauth-dyn-reg-12

— Essentially the same attribute model

Uses SCIM APl and SCIM Schema Extensions
Additional items

— Uses software_id, software_version

— Software Assertion

— Scope, and target API

Agenda

Profile Flow and Representation
Software Assertion (Statement)
Alternate Software Statement Exchange Flow

Discussion

Basic Flow

o + o

| Client App +—-(A)——————"———————————————————————————— >| Software API

| Developer | [Register] | Publisher

| | Cmm e e +

+————— +———— + o ————

v

o +

+ Builds App |

|[Distribution| [Package & Distribute]

+———— - + o ————
(B) +--—-Cc)--------—-——————"""—————————————- + Pre-reg Auth
| | e
v \

o + o ———

| += (D) ————mm >

| | [POST/Register-Add] |

| | e e e +

| | - + | OAuth?2

| +=(E) ————————————- >| OAuth2 AS | | SCIM JIT

| Client App | [Token Request] | Token | | Registration

| Deployment [<-—-——==——————————= + Endpoint | | Endpoint

| Instance | - + |

| o (F) mmmm e >|

| | [PATCH/Update] [PUT/Replace] [GET/Read] |

| | K e e +

| | |

I | |

| = (G) === e e e e >

| | [DELETE/Unregister] |

| | K e e +

fomm - + e it

Example Client Representation

"schemas":["urn:scim:schemas:core:1.0",
"urn:scim:schemas:oauth:2.0:Client"],

"id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",

"software id":"5ed2ddl4-3ef7-4655-a4ld-b5bd4c5266cc",

"software version":"5.1.2.3.4",

"client name":"Example Social Client",

"logo uri":"https://client.example.org/logo.png",

"jwks uri":"https://client.example.org/my public keys.jwks",

"token endpoint auth method":"client secret post",

"scope":"read write dolphin",

"client 1d":"2060107e82-fbe3-42bd-b199-15df7081a8ae",

"client secret":"Z7tk2XgLKolCfE14374teR4V554e8JUS",

"redirect urls":[""https://client.example.org/callback",

"https://client.example.org/callback2"],
"targetEndpoint":"https://social.example.com/base"

Software Statement

A signed JWT bearer assertion issued by resource API software
publisher to developer that may be used during registration

Enables extended developer registration when publisher is not the
deployer of resource APls

Enables OAuth Registration endpoint to recognize publisher
registered software

Enables OAuth registration endpoint to approve clients, or
publishers for automatic registration

— registration endpoints do not need continuous updates
Statement is not an authentication or proof that the client is in fact
the software asserted

— Purpose is to serve as a "letter of introduction”

— Client attributes are signed by publisher

Security Consideration

* Concern that some sites may mistake this as
"proof" that a client is what it claims

— Are we confusing registration with authentication?

— The "statement" is intended to indicate to the
registration server as to what the client claims to be

— A client that says it is one thing and behaves
differently stands out (caught in a lie)

* Making no statement means clients are totally anonymous
except by looking at other registration data.

— Use techniques like secure app store for distribution

— Administrators can test, and create local distributions
with locally issued "initial access tokens".

Software Statement Attrs

iss —a unique identifier (URI) for the entity that issued
the JWT. The value corresponds to the Software API

Publisher

sub —a unique value corresponding to "software_id".
Typically assigned by the Software API Publisher

aud — contains a value that identifies one or more
Software API deployments where the client MAY be
registered OR "urn:oauth:scim:reg:generic" indicating
the assertion is intended for any OAuth registration
endpoint.

exp — an expiry date for the assertion.
May contain any other client attribute from schema.

Software Statement Flow

Developer registers and | Software API
obtains Software Publisher
Statement

Developer includes
statement in client
software distribution

Client Client exchanges
Application statement for Client
Assertion

Deployment AS

Software Statement Exchange Flow

* Eliminate registration API

— Registration occurs primarily between developer
and Software API Publisher (not standardized)

e Uses signed Software Statements

* Leverages JWT/SAML Bearer flow

— Client exchanges Software Statement for a Client
Bearer Assertion

e Concern: How could this work for other client
credential types?

Discussion

What are the primary objectives?
— Assign a client_id
— Issue a client authentication credential

— Provide service provider with information about client
— other?

* 3 possible flows
— Dynamic Reg
— SCIM Client Reg

— Software Statement Exchange
 Which 1or2isthe wayto go?

Should the software statement (assertion) be generalized in its own draft

