OAuth2 WG
User Authentication for Clients

Phil Hunt
Oracle Corp
July 31, 2013

THE OAUTH USER
AUTHENTICATION PROBLEM

What's The Need?

 There is a strong desire by many developers to
use social networks and others to facilitate
easy user registration and user authentication.

— Examples: storify.com, (, Storify
LiveJournal, NY Daily Times

Please log in, or create an account

Take the tour or join now!

LOGIN WITH FAVORITE SOCIAL NETWORK ACCOUNT
B3 facebook Ewitter W Go»glc YaHOO! Linkedff] »

Nole: This step allows you to Login faster by salecting your social network identity. What is this?

—

f Login with Facebook Log into Livelournal with your Facebook account and get

instant access to Livelournal, including commenting,
friend-finding, uploading userpics, and more!

-

Don't Facebook, Twitter, & Amazon Do
Auth?

* Yes

— Some social networks invite developers to use their
OAuth2 service to return information about currently
authenticated user

e Butis return of profile data proof of authentication?

— There remain cross-site scripting attacks since client can't
detect injected grants

— No guarantee returned resource profile == authenticated
user

* |t could be a valid approach with further specification

Is This Correct Usage of OAuth?

* Not at present

— OAuth2 does not directly perform user authentication
itself

— Authenticating users to clients is "backwards" to the
intended flow of providing clients tokens to authenticate
with resources.

* Intended audience is the resource service
* Missing Features Needed

— Specifications for passing clients AuthN information

— Processing rules for clients to validate AuthN information
from an OAuth AS

— Potential NIST SP-800-63 compliance

More Background

* OAuth2 is not actually an authentication system, it issues
access authorizations

— Issues tokens to clients that enable access to protected
resources at a service provider

— Client wields tokens, not intended to use them

— Client unable to validate tokens/assertions
e Can only use non-standard resource API

— Client cannot bind original request to issued token
» Possibility of cross site request forgery attack
* End-user authentication is 'implied’ or 'indirect’
— Client has no way to determine what happened
— Client cannot force authentication
— Client is not the intended audience — just the wielder

IS OPENID CONNECT A SOLUTION?

OpenlD Connect

A set of specifications from OIDF addressing
the authentication issue among others

Not related to OpenlD 2.0, but does take
some requirements forward

Provides a session token (called ID Token)
Addresses CSRF issue for clients
and...

Additional Features

|dentity Profile API

Discovery

Dynamic Registration

Implicit and Basic Client Flows
Session Management API

20 March 2013

OpenlD Connect Protocol Suite http://openid.net/connect
Basic Client Implicit Client . Dynamic Client
Profile or Profile Diacovery Registration
Minimal :
Dynamic
Session
Messages Standard Management
Complete

Underpinnings

OAuth 2.0 OAuth 2.0 OAuth 2.0 OAuth 2.0 OAuth 2.0
Core Bearer Assertions | | JWT Profile Responses

JWT JWS JWE JWK JWA WebFinger

ldentity Profile Seems Like A Good
Thing, but...

* Not all service providers want to be profile
providers

— Their primary business is not profile services

— The desire to reduce uid/passwords leads many to still
want to use any site that can authenticate
* SCIM is an alternate RESTful Identity service that
may emerge as a standard profile service

* Many sites still want to manage their own user
profile data, just want some other service to
perform user authentication.

USER AUTHN PROPOSAL

Proposed features

New "authenticate" endpoint
— Parallels 4.1 of RFC6749 but returns additional session information
— Return of access token is optional

Gives client apps ability to request re-authentication, re-
authorization, and to test login state.

— similar to OpenlD Connect

Normal access token return supplemented with session state
information

Refresh provides ongoing session information (e.g. logout
detection)

Could be structured as first step towards OpenlID Connect support

Could be added direct to normal authorize flow
— Specifies additional session info, no normative changes

Flow

GET /authenticate?

response type=code

&client id=s6BhdRkqgt3

&redirect uri=https$3A%2F$2Fclient.example.com%2Fcb
&state=af0ifjsldkj

&prompt=login

Standard OAuth CSRF
protection mechanism

Requests that AS force
re-authentication of
user

Request Parameters

 New "/authenticate" endpoint

e Standard OAuth2
— response_type — value MUST be "code"
— client_id — The client identifier (per 2.2)
— redirect_uri — Required — MUST be pre-registered

— state — Opaque client generated value to maintain
state between request and callback (XSRF
protection)

e and...

Request Params Cont'd

prompt— Space delimited set of authn/authz functions
— none — Authorization server confirms authentication status

— login — Authorization server prompts use for re-authentication
(even if already authenticated)

— consent — Re-obtain consent for associated resource service (if
any)

— select_account — prompt user to select account
display

— page, popup, touch, wap

hint — A code or text that may be used by the AS to display
text to the user during authentication or authorization
operations

— This could be done by registration information of client

New AS Server Processing

Normal OAuth2 authorization processing
oCccurs

AS may not need to ask for consent if only
authn information is returned

AS MUST re-authenticate user if func includes
"authn".

AS MUST return an error if funcis "none" and
an existing user sign-on session does not exist

Authentication Response

* Upon authentication and consent, as per
normal OAuth flow, redirect is passed to
client.

e |f "state" present in authentication request,
the exact value received must be returned

e Normal OAuth2 errors

HTTP/1.1 302 Found

Location: https://client.example.com/cb?
code=Splx10BeZQQYbYS6WxSbIA&state=af0ifjsldkj

Token Request

 Client is authenticated

* Code is exchange for authn status +
optional access token

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic c¢zZCaGRSa3FOMzpnWDFmQmFOM2JW

Content-Type: application/x-www-form-urlencoded

grant type=authorization code&code=Splx10BeZQQYbYS6WxSbIA
&redirect uri=https%$3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

Access Token Response

e Standard response + session information

Token can be used to
look up profile info at
sub_url

HTTP/1.1 200 OK
Content-Type: application/Jjson;charset=U
Cache-Control: no-store
Pragma: no-cache

{

"access token":"2YotnFZFEJjrlzCsicMWpAA",
"token type":"example",

sub_url MUST point to
profile of authenticated

"expires in":3600,

"refresh token":"tGzv3JOkFOXG50x

"session": {
"sub":"5dedcc8b-735¢c- f-bd79-e029f9%9a76822",
"sub url":"https://example.com/me",

Is issuer/audience
" d" : " l 3 t 3 d nw 8 :
taud":ticlient 1 } needed since atomic
iss":"{issuer id}",
"loginat™:m. request/response?
. e ,
"alv":"2" (no tOken)

Yo
"example parameter":"example value"
} NIST Assurance Level

user

New Session Information

e Contains information about user authn state
* Params

sub — REQD - The identifier of the subject authenticated.

sub_url—The location of the authentication subject profile that may
be retrieved using the returned access token

iss — REQD - The identifier of the Authentication server (usually
authorization server)

aud — REQD - The identifier of the client or URI (per SAML definition?)

at, exp — SHOULD - Authentication time and authentication expiry time
in Internet Date Time Format per RFC3339

alv — OPTIONAL - Assurance level per NIST SP 800-63

e (Can be passes as JSON struct or JWT (for SP-800-63 compliance)

Access Token Params

The access token is not necessarily bound to
an ldentity Profile service (e.g. Twitter API)

Could be used with any REST API

Could also be used with SCIM or OpenlID
Connect

MAY be used to access a location (defined by
sub url) to retrieve subject profile information

Processing Rules

The aud parameter MUST be EITHER the client_id or a
previously negotiated URI that applies to the client.

The issuer MUST be associated with the AS
at MUST NOT be future dated

exp MUST NOT be in the past

Level 1 and 2, can use connection-oriented security
— Session token not required

— Session token validation not required

— aud and iss not required

Level 3, 4 requires validated session token

DISCUSSION

Questions

 Should the WG address the authentication
issue?

e Should we include in the next WG charter?

* |s alignment of UA4C with OpenlID Connect
appropriate?

— Or is it less confusing to address in very different
way?

