Current issues with existing RBNF notation
for PCEP messages and extensions

draft-cmfg-pce-pcep-grammar-01

PCE WG, IETF 87 Berlin

Very early version of a work in progress.
This is just starting the discussion and we expect a lot
of refinement

Ramon Casellas, CTTC
Cyril Margaria, Coriant
Adrian Farrel, Old Dog
Oscar Gonzalez de Dios, Telefdénica I+D
Dhruv Dhody, Huawei

Contributors:)]
Xian Zhang, Huawei

Robert Varga

v4 1

Overview

Introduction and current issues

— PCEP has been defined in [RFC5440] and later extended.
— PCEP RFCs describe specific extensions and focus on their constructs.

When implementing a set of extensions

— Lack of global view of related extensions — ordering issues?
— Inconsistent naming

— Lack of semantics and formal structure

Goal

— ldentify document inconsistencies, provide a reference, complete and
formal RBNF for PCEP messages, include object ordering and precedence
rules.

— Ease the development of automated parses & error handling. Avoid
interpreting just “text”

Note
— Do not modify the content of defined PCEP objects and TLVs.

— Not normative, the normative definition is included in the existing specs (not precluding
integration with a future revision of such documents).

Object ordering

PCEP uses RBNF, and “an implementation MUST form the PCEP messages
using the object ordering specified.” -- [RFC5440], section 6

RBNF : “ordering (...) in an assignment is explicit, (...) specifications MAY
(...) state (...) RECOMMENDED..” -- [RFC5511], section 2.3.3

<request>::= <RP> <request>::= <RP>
<END-POINTS> <end-point-rro-pair-list>
[<LSPA>] [<OF>]
[<BANDWIDTH>] [<LSPA>]
[<metric-list>] [<BANDWIDTH>]
[<RRO>[<BANDWIDTH>]] [<metric-1list>]
[<IRO>] [<IRO>]
[<LOAD-BALANCING>] [<LOAD-BALANCING>]

[REFC6006]Note that we preserve
compatibility with the [RFC5440]
definition of <request> [not really..?]

— Unspecified, e.g., [RFC5521] only states "the XRO is OPTIONAL and MAY be
carried within PCReq and PCRep”. (before or after which object? and SVEC?)

— Confusing... e.g. “if a metric is to be applied to a set of synchronized requests,
the METRIC object MUST follow the SVEC object “

<svec-list> ::= <SVEC>[<OF>] [<metric-list>]

Lack of “expressiveness”, “semantics”,
“structure”

° If <response>: :=<RP>[<NO-PATH>] [<attribute-list>] [<path-1list>] then is <rp><no-paTH><ERO> OK?
e Re-arrange to avoid such cases:

<response> ::= <RP> (< path-list > | <NO-PATH> [<attributes>])

<path-list> ::= <path>[<path-list>]

OR even this? — Intermediate constructs? (reuse them in other contexts, etc.) or excessive?
<response> ::= <RP>(<success> | <failure>)
<success> <path-1list>
<failure> <NO-PATH> [<attributes>]
<path-list> <path>[<path-list>]

e Similarly
<PCErr Message> ::= <Common Header>
(<error-obj-list> [<Open>]) | <error>
[<error-list>] Not straightforward... Difference
<error-obj-list>::=<PCEP-ERROR>[<error-obj-list>]
<error>::=[<request-id-list>]

between error and error-obj?
<error-obj-list> Why not OPEN btw?

<PCErr Message> ::= <Common Header>
(<solicited-error> | <unsolicited-error>)

<solicited-error> ::= <request-id-list> <pcep-error-list>
<unsolicited-error> ::= <handshake-error> | <pcep-error-list>
<handshake-error> ::= <pcep-error-list> <OPEN>
<request-id-list> ::= <RP> [<request-id-list>]
<pcep-error-list> ::= <PCEP-ERROR> [<pcep-error-list>]

Minor aspects

— Naming conventions: If, given <A>, <a-list> ::= <A> [<a-list>]
then <svec-list> ::=7?
<svec-1list> ::= <SVEC>

[<OF>]...

[<svec—-1list>]

— Confusing (i.e., Correct from ordering, but the order depends on the
message / construct, it makes things a bit more complicated for
implementations)

<svec-list> ::= <SVEC>
[<OF>]
[<metric-1list>]
<request> = <RP>

<BANDWIDTH>]

(

[

[
<attribute-list> ::= [<OF>]

[

[

[<metric-1list>]

RBNF could be extended for convenience

* Lack of convenient notation,
— e.g. [RFC5886]

<metric-pce> ::= <PCE-ID> [<PROC-TIME>] [<OVERLOAD>]
-> is the intent that at least one is required? Does it in fact mean:
<metric-pce> ::= <PCE-ID> (<PROC-TIME>|<OVERLOAD>| <PROC-TIME><OVERLOAD>)

* Extending RBNF could be useful :

— New convention : “A or B or both, but at least one...”
<a> || 1s <a> | | <a> -- Y“Exclusive OR”

— Non-empty sets

<set> ::= { <a> | | <c> } - repetition not allowed
<set> ::= { <a> <c> } - repetition allowed,
can also be expressed <set> ::= { <a>... | ... | <c>... }

— Capture compound conditional cases, where value of a dictates what follows
o Q> i=<a>

 | <c>
If object a field x has value v then object b, else object c.
(<a with x=v>) | (<a with x!=v> <c>) [Ex. RP flags]

Notes:
- Some of the new proposals are overlapping (e.g. Exclusive OR & non empty set w. rep)

- Some rules can be written as per [RFC5511] although way more verbosely (<a> || || <c> || <d>).
- Authors may consider a new |.-D. for RFC5511bis if appropriate.

Conclusions

 Request WG feedback on

— Are the current specs (specially when combined) + common sense +
reading interpretation + “conservative in tx, liberal in rx” + some “errata
to be reported + some luck, good enough?

— Is it worth the effort? Wasting our time? Obsolete when finished?

n”

* Ifitis worth the effort, then
— Should we adhere strictly to RBNF, extend it?
— Do we need expressive grammars (e.g. intermediate constructs) or not?
— Do we also address “minor” things (e.g. naming conventions, etc.)?

* Note
— Effort just barely started, triggered in ML after |.-D. review,
— We need lots of “eyes”...
— All comments are welcome, specially from implementers.

