Checking Certs in XMPP

Matt Miller

IETF 87 - Berlin

XMPP in a Nutshell

- Application-level asynchronous XML router
- Client-server architecture
- Distributed servers
- Discovery via DNS SRV
 - IN SRV _xmpp-client._tcp.shire.example 0 0 5222 hosting.example.net
- Addressing similar to email
 - bilbo.baggins@shire.example

XMPP Deployment

- Lots and lots of client implementations
- Lots of server implementations
- Lots of individually hosted services
- Several multi-tenant services

What is Multi-Tenant?

- One service

 hosting.example.net
- Multiple domains
 - shire.example
 - rivendell.example
 - mordor.example
- Domains owned by different organizations

TLS in XMPP

STARTTLS

- Start connection unencrypted, upgrade to TLS
- Addressing in plain hints at requested domain
- Verification process
 - PKIX end entity certificate
 - Signed by CA
 - Chains to established trust anchors
 - Contains proper identifier

TLS Identifier

- Clients/Servers talk to domains, not services
 - ✓ shire.example
 - X hosting.example.net
- RFC 6125
 - Service names (_xmpp-client._tcp.shire.example) [srvName]
 - Domain names (shire.example) [dnsName]
 - Wildcards (*.shire.example) [dnsName]
 - XMPP addresses (shire.example) [id-on-xmppAdr]

How Multi-Tenant Falls Down

Trusted Issuance

- ✓ PKIX end entity certificate
- ✓ Signed by CA
- ✓ Chains to established trust anchors
- X Contains service identifier

Proper Name

- ✓ PKIX end entity certificate
- X Not signed by CA
- X No chain to established trust anchors
- ✓ Contains domain identifier

Why Multi-tenant Falls Down

Liability

 CAs won't issue cross-organization certs (e.g., "shire.example" to "hosting.example.net")

Liability

 Customers reluctant to provide private key to Hosts

Liability

Hosts reluctant to retain customer private keys

Multi-Tenant Realities

- Service to Client Just Trust Us
 - Most users manually accept cert (forever)
 - Some clients auto-accept cert!
- Service to Service TLS optional
 - And often not negotiated
- No longer acceptable
 - Users starting to care
 - Operators starting to care

More Generalized

- Looking at other technologies ...
 - SIP
 - IMAP
 - IdP (e.g., Persona, OpenID Connect)
- ... a pattern seems to arise

Alternative #1 DNSSEC + DANE

- Secure delegation (SRV + DNSSEC)
 - Service name can be automatically accepted
- Trustworthy verification (DANE)
 - Certificate can be automatically accepted
- Requires infrastructure changes
 - Nameservers, resolvers, providers, libraries, operating systems, clients, servers, etc

Alternative #2 POSH?

- Secure delegation (HTTPS redirects)
 - Service name can be automatically accepted
- Trustworthy verification (HTTPS content)
 - Certificate can be automatically accepted
- Re-use existing infrastructure
 - HTTPS servers, static files
 - Clients and servers still need upgrading

DANKE!

References

- RFC 6120: XMPP Core
 - < http://tools.ietf.org/html/rfc6120 >
- RFC 6121: XMPP IM
 - < http://tools.ietf.org/html/rfc6121 >
- RFC 6122: XMPP Address Format
 - < http://tools.ietf.org/html/rfc6121 >
- RFC 6125: Service Identity
 - < http://tools.ietf.org/html/rfc6125 >

References

DNSSEC

- < http://tools.ietf.org/html/rfc4033 >
- < http://tools.ietf.org/html/rfc4034 >
- < http://tools.ietf.org/html/rfc4035 >
- DANE
 - < http://tools.ietf.org/html/rfc6698 >
- POSH (WIP)
 - < http://tools.ietf.org/html/draft-miller-posh-00 >