

IETF 87 – RADIUS Extensions WG Meeting
Berlin, 30 July 2013

draft-ietf-radext-dynamic-discovery
-07

Document status

● -07 submitted some time ahead of cutoff
● Integrated comments from Jim Schaad
● Remaining issues : few

– TRAC #168 (remaining comments from Jim)
– NAPTR → SRV → A/AAAA traversal thoroughness

and loop detection
– Alan DeKok's recent ML comments

● text about risk of open TLS ports in Sec Con
● text about keeping record of negative connection

attempts to save computational power of excessive
retries

● Alan is happy:-)

MTI mech for server authz

● Cert property needed to express « authoritative server for
a NAI realm »
– SubjectAltName:dNSName does not do the job

(properly)
– A new property for NAI realms is needed

● subjectAltName:nAIRealm
● UTF8Name (assuming realms are always UTF-8) ?
● Wildcard match in intermediate portions of realm ?
● requested at pkix, led to discussion, but no results

yet

Privacy implications ?

● See Kim Schaad's comments on ML and TRAC #168
● I'm inclined to think that no interesting knowledge can be

won by observing execution of the dynamic discovery
algorithm

● I.e. : no text update needed.
● Comments ?

NAPTR → SRV → A/AAAA

● S-NAPTR RFC allows for partial execution of discovery
– As soon as the highest-priority server is resolved, break

out of algorithm
– Try that server
– If connection doesn't come up satisfactorily, get back to

discovery and continue to next-best option
– lather, rinse, repeat

● Makes « forward-to-self » detection harder/impossible
● But also makes the whole discovery process faster
● Breakout/return code is more complex, but that's an

implementation problem :-)

Loop Detection

● Forward-to-self detection in NAPTR discovery can only
capture loops introduced due to discovery

● Other loops may exist but will be undetected
● Decision needed :

– make NAPTR discovery as thorough as possible,
minimising (but not zeroing) risk

– or don't insist on full discovery of all targets in the
interest of speed

● NB : we would not need a decision if loop detection were
solved in the general case. If only we had that ! ;-)

Loop Detection I-D ?

● We've had arguments about a loop-detection attribute
previously
– Processed-By : <someid>
– Proxy-State : <blob>

● Both inflate the packet until it reaches 4K boundary and
dies

● Packet-TTL : int, decrement → would not inflate
● Previous arguments were : the packet size boundary will

take care of this, so no need to bother
● Enter : Sam Hartman's proposal of lifting the boundary

– Many more loop rounds until packet dies, performance
hit !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

