Updating TCP to support Rate-
Limited Traffic

draft-ietf-tcpm-newcwv-02

G. Fairhurst, A. Sathiaseelan, R. Secchi

IETF 87 - 30 July 2013 - Berlin

NewCWYV (key concepts)

* New-CWV is a replacement for RFC 2861 Congestion Window
Validation for CC of rate-limited traffic

* PipeACK: Recently used capacity

— PipeACK is a lower bound for the TCP sustainable rate during
data-limited periods

— PipeACK is calculated from ACKs that acknowledge new data
(not the FlightSize)

* Basic mechanism

— While cwnd/2 < pipeack < cwnd, the cwnd is “validated”
 Cwnd isincreased using normal TCP rules

— While pipeack <= cwnd/2, the cwnd is non-validated
 Cwnd is frozen

— Different cwnd reduction upon loss in NVP

— cwnd is halved after 5min of low path utilization

NewCWYV behaviour

- -~ ssthresh pipeACK < % * cwnd for NVP?
data rate - ssthresh = max (ssthresh, 3*cwnd/4)

- cwnd = max (cwnd/2,IW)

cwnd

Changes in draft-ietf-tcpm-newcwv-02

Clarified the pipeACK calculation

— pipeACK sample is the acknowledged data for an RTT — stored
for the pipeACK Sampling Period (PSP)

— pipeACK variable is measured from one or more pipeACK
samples and used to determine the non-validated phase

Response to congestion takes into account pipeACK

— When congestion is detected:
 cwnd = Min (cwnd/2, Max (pipeACK variable, LossFlightSize))

* Avoids reducing cwnd to very small values when few packets happen
to be in flight during recovery

— At end of the recovery phase:
* cwnd = (LossFlightSize - R) /2
» “R”is the number of retransmission (known at the end of recovery)
* Inspired by Almann’s Jump-Start

Status of Implementation & Testing

* Implemented NewCWYV in a Link Loadable Kernel Module (LKM):
tcp_newcwv.ko

— Uses Linux framework for testing CC algorithms
— Should be compatible with a range of Linux kernels
— Tested with kernel 2.6 and 3.8

 Implementation proposes a strategy to compute pipeACK
— Selects the maximum observed pipeACK sample in recent history
— Updated draft to include example of how to implement

* Maximum Filter
— Reduces jitter in Flightsize for bursty traffic
— pipeACK SP determined based on RTT: max (3 * RTT, 1 sec)
— Implementation can be simplified using multiple bins

NewCWYV benefits applications

time to send a burst (s)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

NewCWYV tested using virtual hosts in Linux
— Internet path emulated using Netem (RTT=20ms)
— Application sends a sequence of bursts (50kB, burst inter-arrival=1sec)

Bursts using RFC 2861 take longer to transmit in general; the
newCWYV variants finishes earlier because cwnd not reduced

1ERBRNIRN I

0 2 4 6 8 10 12

experimenttime (s)

[reno with cwv newCWV EZZZZ1 newCWV History E55 |

Stabilizing pipeACK with maximum filter

70 -
60 - . * pipeACK variable set to pipeACK sample
9 * Measured almost every RTT
§ .
- * For bursty application, highly
| fluctuating pipeACK variable
0 2 : 6 8 10 12 14 16 burst ssthresh —— pipeACK —8— cwnd —¥—
- _I I [| I I [I I |
60 | _‘*.«—ax—)nHHH«— _
___T” * pipeACK variable calculated from
S0 ¥ T multiple pipeACK samples (using
2 a0l ‘ i maximum filter)
(®]
S :
> 3or | 1 Retains peak value for PSP
20 |- e \ -
WL In | » Stabilizes pipeACK variable
0 | | | | | | |

Plan to revise draft

* Michael Scharf: After finishing recovery,
cwnd = (LossFlightSize-R) /2

- Can ‘R’ be larger than LossFlightSize?
- Not encountered such a case
- However happy to add that cwnd is always >= 1 MSS.

- Why is cwnd set differently at start and end of recovery?

- Beginning and end of recovery represent upper and lower bounds of
safe values

- We'll try simulations to see if we can improve calculation.

* End of burst losses
- Can max (pipeACKsample , LossFlightSize) resolve this?

* Now looking for people to experiment with!

