Need for / Usage of Performance and Diagnostic Metrics Destination Options Header

Nalini Elkins: Inside Products, Inc. Mike Ackermann : BCBS Michigan (Team : Keven Haining : US Bank, Sigfrido Perdomo: DTCC, William Jouris: Inside Products, David Boyes : Sine Nomine)

Introduction

- Network traffic needs to be monitored
 - Diagnostics
 - Performance
 - Repair
 - Failures
- Traditionally done by:
 - instrumentation at hosts, router
 - IPv4 work-arounds (IP ID)

- Not all operators own all parts of network
 - Enterprises, business partners, software defined networks, Infrastructure as a Service
- Only visible portion of traffic is packets at end nodes

Not Zero-Impact

- Measurement at middle hardware and hosts not a zero-impact solution
- Data capture, measurement impacts performance
- Footprint of agents is substantial
- Diagnostics require packet (headers)
- More metrics needed

IPv4 Work-Arounds

- No unified place for performance / diagnostic metrics
- IPv4 IP ID field used as de facto packet sequence number
- Doesn't work for some platforms
- Not available in IPv6 (moved to fragment header)
- Timestamps for response time not available

Metrics Needed

- Packet sequence number
 - Speeds diagnostics
 - Many use cases given in Internet Draft, last IETF
 - IPv4 IP ID
- End-to-end response time WITHOUT agents
 - Service Level Agreements
 - First Mover Advantage
 - Separate metrics needed for quick triage:
 - Inbound network time
 - Server time
 - Outbound network time

Why Packet Sequence Number?

- Why current metrics not good enough?
 - TCP sequence number
 - distinguish between retransmit / duplicate packets
 - packets dropped and retransmitted (sender may have sent 4 times, we only received once)
 - not applicable to non-TCP traffic
- UDP
 - No current metric
 - Would have to change all apps
- Hashing technique (packet sequence number)
 - Known problem with packet duplication
 - Packets dropped and retransmitted (sender may have sent 4 times, we only received once)
 - Time / overhead delay

Requirement

 In basic IP transport

 Unmolested by middle systems Solution

- Implementation of existing extension header : Destination Options Header (DOH)
- Performance and Diagnostic Metrics (PDM) DOH

Response Time Measurements Packet Capture

Host B

Response Time Measurement Step 1

- Packet 1 sent from source host A
- Time-stamped leaving Host A
- Timestamp is in PDM extension header

Response Time Measurement Step 2

- Packet 1 received at Host B
- Time-stamped leaving Host A
- Inbound network time = Packet 1 rec'd (B) Packet 1 sent (A)

Response Time Measurement Step 3

- Packet 2 sent from Host B (response to Packet 1)
- Time-stamped leaving Host B
- Processing Time = Packet 2 sent (B) Packet 1 rec'd (B)

When Did it Get to Host A?

- When did Packet 2 to arrive at Host A?
- Return route may not be the same, may be congestion, packet might never arrive.

What is Needed?

- With each packet, add "Time Last Packet Received" in PDM EH
- When Packet 3 sent, has when Packet 2 got to Host A
- Outbound Network time = Last rec'd (A) Time sent (B)
- Processing Time (A) = Packet 3 sent (A) Last rec'd (A)

Appendix

PDM Destination Options EH

Size (bits)	Field Name	Description
8	Next Header	Points to next header or payload
8	Reserved	Set to 0.
8	Option Type	To be assigned by IANA
8	Option Length	Length
16	Packet Sequence Number	Initialized at 0 and monotonically incremented for protocol packet on the connection. 16-bit unsigned integer. This field will obviously wrap quickly. It is intended for human use.
64	Timestamp (This packet)	A 64-bit unsigned integer field containing a timestamp. This is the time this packet was sent. NTP format timestamp
64	Timestamp (Last Packet)	A 64-bit unsigned integer field containing a timestamp. This is the time the last packet was received. NTP format timestamp
64	Application Specific	To be used by end-nodes to convey information