JSON Wor ki ng G oup T. Bray, Ed.
I nternet-Draft Googl e, Inc.
bsol etes: 4627 (if approved) Cct ober 11, 2013
I nt ended status: Standards Track

Expires: April 14, 2014

The JSON Data I nterchange For mat
draft-ietf-json-rfc4627bi s-06

Abst ract

JavaScript Object Notation (JSON) is a |lightweight, text-based,

| anguage-i ndependent data interchange format. It was derived from
the ECMAScri pt Progranm ng Language Standard. JSON defines a snall
set of formatting rules for the portable representation of structured
dat a.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on April 14, 2014.

Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Br ay Expires April 14, 2014 [Page 1]

Internet-Draft JSON bi s Cct ober 2013

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

Br ay

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
1.1. Conventions UBed in ThIS Docunent 3
1.2. Specifications of JSON . 3
1.3. Introduction to This Revision . 3

2. JSON G ammar 4

3. Values . 4

4. ojects . 5

5. Arrays . 5

6. Nunbers . 6

7. Strings . . e 7

8. String and Character | ssues . 8
8.1. Encoding and Detection 8
8.2. Unicode Characters 8
8.3. String Cbnparlson . 9

9. Parsers . . 9

10. Generators . . 9

11. | ANA ConS|derat|ons . 9

12. Security Considerations . 10

13. Exanpl es 10

14. Contributors 11

15. References . . 12
15.1. Nornmative References . 12
15.2. Informative References . 12

Appendi x A, Changes from RFC 4627 12

Aut hor’ s Addr ess o 14

I ntroduction

JavaScript Object Notation (JSON) is a text format for the

serialization of structured data. It is derived fromthe object

literals of JavaScript, as defined in the ECMAScri pt Progranmmi ng

Language Standard, Third Edition [ECMA-262].

JSON can represent four prinmtive types (strings, nunbers, bool eans,

and null) and two structured types (objects and arrays).

Expires April 14, 2014 [Page 2]

Internet-Draft JSON bi s Cct ober 2013

A string is a sequence of zero or nmore Unicode characters [UN CCDE|
An object is an unordered collection of zero or nore nane/val ue
pairs, where a nane is a string and a value is a string, nunber,
bool ean, null, object, or array.

An array is an ordered sequence of zero or nore val ues.

The terns "object” and "array"” come fromthe conventions of
JavaScri pt.

JSON s design goals were for it to be mininal, portable, textual, and
a subset of JavaScri pt.

1.1. Conventions Used in This Docunent
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

The grammatical rules in this docunent are to be interpreted as
described in [RFC5234].

1.2. Specifications of JSON

This docunment is an update of [RFC4627], which described JSON and
regi stered the Media Type "application/json”

A description of JSON in ECVMAScript ternms appears in version 5.1 of
the ECMAScript specification [ECMA-262], section 15.12. JSON is also
described in [ECVA-404]. ECMAscript 5.1 enunerates the differences
bet ween JSON as described in that specification and in RFC4627. The
nmost significant is that ECMAScript 5.1 does not require a JSON Text
to be an Array or an Object; thus, for exanple, these constructs
would all be valid JSON texts in the ECMAScri pt context:

o "Hello world!"

o 42

0 true

Al'l of the specifications of JSON syntax agree on the syntactic
el ements of the |anguage.

1.3. Introduction to This Revision

Br ay Expires April 14, 2014 [Page 3]

Internet-Draft JSON bi s Cct ober 2013

3.

In the years since the publication of RFC 4627, JSON has found very
wi de use. This experience has revealed certain patterns which, while
all owed by its specifications, have caused interoperability problens.
Al so, a small nunber of errata have been reported.

This revision does not change any of the rules of the specification
all texts which were legal JSON remain so, and none which were not
JSON become JSON. The revision’s goal is to fix the errata and

hi ghli ght practices which can lead to interoperability problens.

JSON G ammar

A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, nunbers, and three literal nanes.

A JSON text is a serialized object or array.

JSON-text = object / array

These are the six structural characters:

begi n-array =ws W5B ws ; [left square bracket
begi n- obj ect =ws W7Bws ; { left curly bracket
end- array =ws W5D ws ;] right square bracket
end- obj ect =ws W7D ws ; } right curly bracket
nane- separator = ws %3A ws ; : colon

val ue-separator = ws %2C ws ; , commm

I nsignificant whitespace is allowed before or after any of the six
structural characters

ws = *(
%20 / ; Space
%09 / ; Horizontal tab
9% 0A / ; Line feed or New |ine
90D) ; Carriage return
Val ues

Br ay Expires April 14, 2014 [Page 4]

Internet-Draft JSON bi s Cct ober 2013
A JSON val ue MIUST be an object, array, nunber, or string, or one of
the following three literal nanes:
false null true
The literal nanmes MJST be | owercase. No other literal nanes are
al | oned.

value = false / null / true / object / array / nunber / string

fal se = 9%66. 61. 6C. 73. 65 ; fal se

null = %6e. 75. 6¢C. 6C ;o null

true = %74.72.75.65 i true
4. ojects

An object structure is represented as a pair of curly brackets
surroundi ng zero or nore nane/value pairs (or nenbers). A nane is a
string. A single colon cones after each nane, separating the nane
fromthe value. A single comma separates a value froma follow ng
nane. The names within an object SHOULD be uni que.

obj ect = begin-object [nmenber *(val ue-separator nenber)]
end- obj ect
menber = string name-separator val ue

An obj ect whose nanmes are all unique is interoperable in the sense
that all software inplenentations which receive that object wll
agree on the name-val ue mappi ngs. Wen the nanes wi thin an object
are not unique, the behavior of software that receives such an object
is unpredictable. Many inplenmentations report the |ast name/val ue
pair only; other inplenmentations report an error or fail to parse the
obj ect; other inplenentations report all of the nane/value pairs,

i ncludi ng duplicates.

5. Arrays

An array structure is represented as square brackets surrounding zero
or nore values (or elenents). Elenents are separated by conmas

array = begin-array [value *(val ue-separator value)] end-array

Br ay Expires April 14, 2014 [Page 5]

Internet-Draft JSON bi s Cct ober 2013

6

Nunber s
The representation of nunbers is simlar to that used in nost
progranmm ng | anguages. A nunber contains an integer conponent that
may be prefixed with an optional mnus sign, which my be foll owed by
a fraction part and/or an exponent part.
Cctal and hex forns are not allowed. Leading zeros are not all owed.
A fraction part is a decinmal point followed by one or nore digits.
An exponent part begins with the letter E in upper or |owercase,
whi ch may be followed by a plus or minus sign. The E and optiona
sign are followed by one or nore digits.

Nuneric val ues that cannot be represented in the grammar bel ow (such
as Infinity and NaN) are not permtted.

number = [minus] int [frac] [exp]
deci mal - poi nt = W%&2E ;

digitl-9 = %31-39 ; 1-9

e = %65 / %45 ; e E

exp = e[mnus / plus] 1*DAT

frac = decinmal-point 1*DIAT

int =zero/ (digitl-9 *DIAT)

m nus = %2D Do

pl us % 2B ;+

Zero 9% 30 . 0

This specification allows inplenentations to set limts on the range
and precision of nunbers accepted. Since software which inplenents

| EEE 754-2008 bi nary64 (doubl e precision) nunbers [| EEE754] is
general ly avail abl e and wi dely used, good interoperability can be
achi eved by i npl enentati ons whi ch expect no nore precision or range
than these provide, in the sense that inplenmentations wll

approxi mate JSON nunbers within the expected precision. A JSON
nunber such as 1E400 or 3.141592653589793238462643383279 nay i ndi cate
potential interoperability problens since it suggests that the

Br ay Expires April 14, 2014 [Page 6]

Internet-Draft JSON bi s Cct ober 2013

software which created it it expected greater magnitude or precision
than is widely avail abl e.

Not e that when such software is used, nunbers which are integers and
are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
sense that inplenmentations will agree exactly on their numeric

val ues.

7. Strings

The representation of strings is simlar to conventions used in the C
fam ly of progranmm ng | anguages. A string begins and ends with
quotation marks. Al Unicode characters may be placed within the
quot ati on marks except for the characters that nust be escaped:

quot ati on mark, reverse solidus, and the control characters (U+0000

t hrough U+001F).

Any character nmay be escaped. |f the character is in the Basic

Mul tilingual Plane (W+0000 through U+FFFF), then it may be
represented as a six-character sequence: a reverse solidus, followed
by the | owercase letter u, followed by four hexadecimal digits that
encode the character’s code point. The hexadecinal letters A though
F can be upper or |owercase. So, for exanple, a string containing
only a single reverse solidus character nmay be represented as

"\ u005C".

Alternatively, there are two-character sequence escape
representations of some popul ar characters. So, for exanple, a
string containing only a single reverse solidus character may be
represented nore conpactly as "\\".

To escape an extended character that is not in the Basic Miltilingua
Pl ane, the character is represented as a twel ve-character sequence,
encodi ng the UTF-16 surrogate pair. So, for exanple, a string
containing only the G clef character (U+1D11E) nmy be represented as
"\ uD834\ uDD1E".

Br ay Expires April 14, 2014 [Page 7]

Internet-Draft JSON bi s Cct ober 2013

8.

8.

8.

1.

2

string = quotation-mark *char quotati on-mark

char = unescaped /

escape (
w22 |/ ;" quotation mark W+0022
9% 5C / ;o\ reverse solidus U+005C
W 2F / i sol i dus U+002F
w62 / ;b backspace U+0008
%x66 / ;o f formfeed U+000C
W 6E / ;N line feed U+000A
W72 |/ por carriage return W000D
w74 | ;o tab U+0009
%75 AHEXDI G) ; UuXXXX U+ XXXX
escape = %5C o\

quot ati on-mark = %22 ;o

unescaped = %&20-21 / %23-5B / 9%5D- 10FFFF

String and Character |ssues
Encodi ng and Detection

JSON text SHALL be encoded in Unicode. The default encoding is
UTF- 8.

Since the first two characters of a JSON text will always be ASCII
characters [RFC0020], it is possible to determ ne whether an octet
streamis UTF-8, UTF-16 (BE or LE), or UTF-32 (BE or LE) by I ooking
at the pattern of nulls in the first four octets.

00 00 00 xx UTF-32BE
00 xx 00 xx UTF-16BE
xx 00 00 00 UTF-32LE
xX 00 xx 00 UTF-16LE
XX XX XX XX UTF-8

Uni code Characters

When all the strings represented in a JSON text are conposed entirely
of Uni code characters [UNI CODE] (however escaped), then that JSON
text is interoperable in the sense that all software inplenentations
which parse it will agree on the contents of nanes and of string

val ues in objects and arrays.

Br ay Expires April 14, 2014 [Page 8]

Internet-Draft JSON bi s Cct ober 2013

8. 3.

10.

11.

However, the ABNF in this specification allows nmenber nanes and
string values to contain bit sequences which cannot encode Uni code
characters, for exanple "\uDEAD' (a single unpaired UTF-16
surrogate). Instances of this have been observed, for exanple when a
library truncates a UTF-16 string w thout checking whether the
truncation split a surrogate pair. The behavior of software which
recei ves JSON texts containing such values is unpredictable; for
exanpl e, inplenentations nmight return different values for the length
of a string value, or even suffer fatal runtinme exceptions.

String Conparison

Software inplenmentations are typically required to test names of

obj ect menbers for equality. |Inplenentations which transformthe
textual representation into sequences of Unicode code units, and then
performthe conparison nunerically, code unit by code unit, are
interoperable in the sense that inplenentations will agree in al
cases on equality or inequality of two strings. For exanple,

i mpl ement ati ons which conpare strings with escaped characters
unconverted may incorrectly find that "a\b" and "a\u005Ch" are not
equal .

Par sers
A JSON parser transforms a JSON text into another representation. A
JSON parser MJST accept all texts that conformto the JSON grammar.
A JSON parser MAY accept non-JSON forns or extensions.
An inplenentation may set linmits on the size of texts that it
accepts. An inplenmentation nmay set linmts on the maxi num depth of
nesting. An inplenentation nay set linmts on the range and precision
of nunbers. An inplenentation may set limts on the |length and
character contents of strings.

Generators

A JSON generator produces JSON text. The resulting text MJST
strictly conformto the JSON gramar.

| ANA Consi derati ons
The M ME nedia type for JSON text is application/json.
Type nane: application
Subt ype nane: json

Requi red paraneters: n/a

Br ay Expires April 14, 2014 [Page 9]

Internet-Draft JSON bi s Cct ober 2013

12.

13.

Optional paraneters: n/a

Encodi ng considerations: 8bit if UTF-8; binary if UTF-16 or UTF-32
JSON may be represented using UTF-8, UTF-16, or UTF-32. When JSON
is witten in UTF-8, JSON is 8bit conpatible. Wen JSONis
witten in UTF-16 or UTF-32, the binary content-transfer-encoding
nmust be used.

Interoperability considerations: Described in this docunent
Publ i shed specification: This docunent

Applications that use this nedia type: JSON has been used to exchange
data between applications witten in all of these progranm ng
| anguages: ActionScript, C C#, O ojure, Col dFusion, Common Lisp
E, Erlang, Go, Java, JavaScript, Lua, bjective CAM., Perl, PHP
Pyt hon, Rebol, Ruby, Scala, and Schene.

Addi tional information: Magic nunber(s): n/a
File extension(s): .json
Maci ntosh file type code(s): TEXT

Person & email address to contact for further information: |ESG
<iesg@etf.org

I nt ended usage: COWVMON
Restrictions on usage: none

Aut hor: Dougl as Crockford
dougl as@r ockf ord. com

Change controller: |ESG
<iesg@etf.org

Security Considerations

Generally there are security issues with scripting | anguages. JSON
is a subset of JavaScript, but excludes assignnent and invocation

Since JSON' s syntax is borrowed from JavaScript, it is possible to
use that |anguage’'s "eval ()" function to parse JSON texts. This
generally constitutes an unacceptable security risk, since the text
coul d contain executable code along with data declarations. The same
consi deration applies in any other progranm ng | anguage in which JSON
texts conformto that |anguage’s syntax.

Exanpl es

Br ay Expires April 14, 2014 [Page 10]

Internet-Draft

JSON bi s

This is a JSON object:

Its I nage nenber is an object whose Thunbnai l

Cct ober 2013

"http://ww. exanpl e. conl i mage/ 481989943",

"I mage": {
"Wdth": 800,
"Hei ght": 600,
"Title": "View from 15th Floor",
"Thunbnai |l ": {
"Ul":
"Hei ght": 125,
"Wdth": 100
},
"Ani mat ed" : false,
"IDs": [116, 943, 234, 38793]

whose | Ds nenber is an array of nunbers.

This is a JSON array containing two objects:

[

14.

Br ay

{

"precision":

"Latitude":

"Longi t ude":

" Addr ess":
"Cty":
"State":

" Zi p":
"Country":

"precision":

"Latitude":

"Longi t ude":

" Addr ess":
"Cty":
"State":
"Zi p":
"Country":

Contributors

"zip",
37. 7668,
-122. 3959,

" SAN FRANCI SCO'

" mll ,
"94107",
" US”

"zip",
37.371991,
-122. 026020,
" SUNNYVALE" ,
" A

" 94085",

" US"

Expires April

14, 2014

nmenber

is an object and

[Page 11]

Internet-Draft JSON bi s Cct ober 2013

15.

15.

15.

RFC 4627 was written by Douglas Crockford. This docunment was
constructed by making a relatively small nunber of changes to that
docunent; thus the vast majority of the text here is his.

Ref er ences
1. Nornmtive References

[EEE754] |1 EEE, "IEEE Standard for Floating-Point Arithnetic", 2008,
<http://grouper.ieee.org/ groups/ 754/ >.

[RFC0020] Cerf, V., "ASCI| format for network interchange", RFC 20,
COct ober 1969.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC5234] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[UNI CODE] The Uni code Consortium "The Uni code Standard, Version 4.0
", 2003, <http://wwv. uni code.org/versions/|atest/>.

2. Informative References

[ECVA- 262]
Eur opean Conput er Manufacturers Associ ation, "ECMAScri pt
Language Specification 5.1 Edition ", June 2011, <http://
WWw. ecna- i nt ernati onal . org/ ecna- 262/ 5. 1/ >.

[ECVA- 404]

Ecma International, "The JSON Data |nterchange Format ",
Cct ober 2013, <http://ww. ecma-international . org/
publ i cati ons/ st andar ds/ Ecma- 404. ht n.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

Appendi x A. Changes from RFC 4627

This section lists changes between this docunent and the text in RFC
4627.

0 Changed Wrking Goup attribution to JSON Wrking G oup.
0 Changed title of docunent.

0 Change the reference to [UNICODE] to be be non-version-specific.

Br ay Expires April 14, 2014 [Page 12]

Internet-Draft JSON bi s Cct ober 2013

Br ay

Added a "Specifications of JSON' section
Added an "Introduction to this Revision" section.

Added | anguage about duplicate object nmenber nanmes and
interoperability.

Applied erratum #607 from RFC 4627 to correctly align the artwork
for the definition of "object”.

Changed "as sequences of digits" to "in the grammar below' in
"Nurber s" secti on.

Added | anguage about nunber interoperability as a function of
| EEE754, and an | EEE754 reference.

Added | anguage about interoperability and Uni code characters, and
about string conmparisons. To do this, turned the old "Encodi ng"
section into a "String and Character |ssues" section, with three
subsections: The old "Encoding" material, and two new sections for
"Uni code Characters” and "String Conparison”.

Changed gui dance in "Parsers" section to point out that

i mpl ementations may set limits on the range "and precision" of
numbers.

Updated and tidied the "I ANA Consi derations” section.

Made a real "Security Considerations" section, and lifted the text
out of the existing "I ANA Consi derati ons" section

Applied erratum #3607 from RFC 4627 by renoving the security

consi deration that begins "A JSON text can be safely passed" and
the JavaScript code that went with that consideration

Added a note to the "Security Considerations" section pointing out
the risks of using the "eval ()" function in JavaScript or any

ot her | anguage in which JSON texts conformto that |anguage’s

synt ax.

Changed "100" to 100 and added a boolean field, both in the first
exanpl e.

Added "Contri butors" section crediting Dougl as Crockford.

Added a reference to RFC4627

Expires April 14, 2014 [Page 13]

Internet-Draft JSON bi s Cct ober 2013

o Myved the ECMAScript reference from Normative to I nformative,
updated it to reference ECMAScript 5.1, and added reference to
ECMVA 404.
Aut hor’ s Address

TimBray (editor)
Googl e, Inc.

Email: tbray@extuality.com

Br ay Expires April 14, 2014 [Page 14]

