
JSON Working Group T. Bray, Ed.
Internet-Draft Google, Inc.
Obsoletes: 4627 (if approved) October 11, 2013
Intended status: Standards Track
Expires: April 14, 2014

 The JSON Data Interchange Format
 draft-ietf-json-rfc4627bis-06

Abstract

 JavaScript Object Notation (JSON) is a lightweight, text-based,
 language-independent data interchange format. It was derived from
 the ECMAScript Programming Language Standard. JSON defines a small
 set of formatting rules for the portable representation of structured
 data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 14, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Bray Expires April 14, 2014 [Page 1]

Internet-Draft JSON bis October 2013

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Conventions Used in This Document 3
 1.2. Specifications of JSON 3
 1.3. Introduction to This Revision 3
 2. JSON Grammar . 4
 3. Values . 4
 4. Objects . 5
 5. Arrays . 5
 6. Numbers . 6
 7. Strings . 7
 8. String and Character Issues 8
 8.1. Encoding and Detection 8
 8.2. Unicode Characters 8
 8.3. String Comparison . 9
 9. Parsers . 9
 10. Generators . 9
 11. IANA Considerations . 9
 12. Security Considerations 10
 13. Examples . 10
 14. Contributors . 11
 15. References . 12
 15.1. Normative References 12
 15.2. Informative References 12
 Appendix A. Changes from RFC 4627 12
 Author’s Address . 14

1. Introduction

 JavaScript Object Notation (JSON) is a text format for the
 serialization of structured data. It is derived from the object
 literals of JavaScript, as defined in the ECMAScript Programming
 Language Standard, Third Edition [ECMA-262].

 JSON can represent four primitive types (strings, numbers, booleans,
 and null) and two structured types (objects and arrays).

Bray Expires April 14, 2014 [Page 2]

Internet-Draft JSON bis October 2013

 A string is a sequence of zero or more Unicode characters [UNICODE].

 An object is an unordered collection of zero or more name/value
 pairs, where a name is a string and a value is a string, number,
 boolean, null, object, or array.

 An array is an ordered sequence of zero or more values.

 The terms "object" and "array" come from the conventions of
 JavaScript.

 JSON’s design goals were for it to be minimal, portable, textual, and
 a subset of JavaScript.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The grammatical rules in this document are to be interpreted as
 described in [RFC5234].

1.2. Specifications of JSON

 This document is an update of [RFC4627], which described JSON and
 registered the Media Type "application/json".

 A description of JSON in ECMAScript terms appears in version 5.1 of
 the ECMAScript specification [ECMA-262], section 15.12. JSON is also
 described in [ECMA-404]. ECMAscript 5.1 enumerates the differences
 between JSON as described in that specification and in RFC4627. The
 most significant is that ECMAScript 5.1 does not require a JSON Text
 to be an Array or an Object; thus, for example, these constructs
 would all be valid JSON texts in the ECMAScript context:

 o "Hello world!"

 o 42

 o true

 All of the specifications of JSON syntax agree on the syntactic
 elements of the language.

1.3. Introduction to This Revision

Bray Expires April 14, 2014 [Page 3]

Internet-Draft JSON bis October 2013

 In the years since the publication of RFC 4627, JSON has found very
 wide use. This experience has revealed certain patterns which, while
 allowed by its specifications, have caused interoperability problems.

 Also, a small number of errata have been reported.

 This revision does not change any of the rules of the specification;
 all texts which were legal JSON remain so, and none which were not
 JSON become JSON. The revision’s goal is to fix the errata and
 highlight practices which can lead to interoperability problems.

2. JSON Grammar

 A JSON text is a sequence of tokens. The set of tokens includes six
 structural characters, strings, numbers, and three literal names.

 A JSON text is a serialized object or array.

 JSON-text = object / array

 These are the six structural characters:

 begin-array = ws %x5B ws ; [left square bracket

 begin-object = ws %x7B ws ; { left curly bracket

 end-array = ws %x5D ws ;] right square bracket

 end-object = ws %x7D ws ; } right curly bracket

 name-separator = ws %x3A ws ; : colon

 value-separator = ws %x2C ws ; , comma

 Insignificant whitespace is allowed before or after any of the six
 structural characters.

 ws = *(
 %x20 / ; Space
 %x09 / ; Horizontal tab
 %x0A / ; Line feed or New line
 %x0D) ; Carriage return

3. Values

Bray Expires April 14, 2014 [Page 4]

Internet-Draft JSON bis October 2013

 A JSON value MUST be an object, array, number, or string, or one of
 the following three literal names:

 false null true

 The literal names MUST be lowercase. No other literal names are
 allowed.

 value = false / null / true / object / array / number / string

 false = %x66.61.6c.73.65 ; false

 null = %x6e.75.6c.6c ; null

 true = %x74.72.75.65 ; true

4. Objects

 An object structure is represented as a pair of curly brackets
 surrounding zero or more name/value pairs (or members). A name is a
 string. A single colon comes after each name, separating the name
 from the value. A single comma separates a value from a following
 name. The names within an object SHOULD be unique.

 object = begin-object [member *(value-separator member)]
 end-object

 member = string name-separator value

 An object whose names are all unique is interoperable in the sense
 that all software implementations which receive that object will
 agree on the name-value mappings. When the names within an object
 are not unique, the behavior of software that receives such an object
 is unpredictable. Many implementations report the last name/value
 pair only; other implementations report an error or fail to parse the
 object; other implementations report all of the name/value pairs,
 including duplicates.

5. Arrays

 An array structure is represented as square brackets surrounding zero
 or more values (or elements). Elements are separated by commas.

 array = begin-array [value *(value-separator value)] end-array

Bray Expires April 14, 2014 [Page 5]

Internet-Draft JSON bis October 2013

6. Numbers

 The representation of numbers is similar to that used in most
 programming languages. A number contains an integer component that
 may be prefixed with an optional minus sign, which may be followed by
 a fraction part and/or an exponent part.

 Octal and hex forms are not allowed. Leading zeros are not allowed.

 A fraction part is a decimal point followed by one or more digits.

 An exponent part begins with the letter E in upper or lowercase,
 which may be followed by a plus or minus sign. The E and optional
 sign are followed by one or more digits.

 Numeric values that cannot be represented in the grammar below (such
 as Infinity and NaN) are not permitted.

 number = [minus] int [frac] [exp]

 decimal-point = %x2E ; .

 digit1-9 = %x31-39 ; 1-9

 e = %x65 / %x45 ; e E

 exp = e [minus / plus] 1*DIGIT

 frac = decimal-point 1*DIGIT

 int = zero / (digit1-9 *DIGIT)

 minus = %x2D ; -

 plus = %x2B ; +

 zero = %x30 ; 0

 This specification allows implementations to set limits on the range
 and precision of numbers accepted. Since software which implements
 IEEE 754-2008 binary64 (double precision) numbers [IEEE754] is
 generally available and widely used, good interoperability can be
 achieved by implementations which expect no more precision or range
 than these provide, in the sense that implementations will
 approximate JSON numbers within the expected precision. A JSON
 number such as 1E400 or 3.141592653589793238462643383279 may indicate
 potential interoperability problems since it suggests that the

Bray Expires April 14, 2014 [Page 6]

Internet-Draft JSON bis October 2013

 software which created it it expected greater magnitude or precision
 than is widely available.

 Note that when such software is used, numbers which are integers and
 are in the range [-(2**53)+1, (2**53)-1] are interoperable in the
 sense that implementations will agree exactly on their numeric
 values.

7. Strings

 The representation of strings is similar to conventions used in the C
 family of programming languages. A string begins and ends with
 quotation marks. All Unicode characters may be placed within the
 quotation marks except for the characters that must be escaped:
 quotation mark, reverse solidus, and the control characters (U+0000
 through U+001F).

 Any character may be escaped. If the character is in the Basic
 Multilingual Plane (U+0000 through U+FFFF), then it may be
 represented as a six-character sequence: a reverse solidus, followed
 by the lowercase letter u, followed by four hexadecimal digits that
 encode the character’s code point. The hexadecimal letters A though
 F can be upper or lowercase. So, for example, a string containing
 only a single reverse solidus character may be represented as
 "\u005C".

 Alternatively, there are two-character sequence escape
 representations of some popular characters. So, for example, a
 string containing only a single reverse solidus character may be
 represented more compactly as "\\".

 To escape an extended character that is not in the Basic Multilingual
 Plane, the character is represented as a twelve-character sequence,
 encoding the UTF-16 surrogate pair. So, for example, a string
 containing only the G clef character (U+1D11E) may be represented as
 "\uD834\uDD1E".

Bray Expires April 14, 2014 [Page 7]

Internet-Draft JSON bis October 2013

 string = quotation-mark *char quotation-mark

 char = unescaped /
 escape (
 %x22 / ; " quotation mark U+0022
 %x5C / ; \ reverse solidus U+005C
 %x2F / ; / solidus U+002F
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX

 escape = %x5C ; \

 quotation-mark = %x22 ; "

 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

8. String and Character Issues

8.1. Encoding and Detection

 JSON text SHALL be encoded in Unicode. The default encoding is
 UTF-8.

 Since the first two characters of a JSON text will always be ASCII
 characters [RFC0020], it is possible to determine whether an octet
 stream is UTF-8, UTF-16 (BE or LE), or UTF-32 (BE or LE) by looking
 at the pattern of nulls in the first four octets.

 00 00 00 xx UTF-32BE
 00 xx 00 xx UTF-16BE
 xx 00 00 00 UTF-32LE
 xx 00 xx 00 UTF-16LE
 xx xx xx xx UTF-8

8.2. Unicode Characters

 When all the strings represented in a JSON text are composed entirely
 of Unicode characters [UNICODE] (however escaped), then that JSON
 text is interoperable in the sense that all software implementations
 which parse it will agree on the contents of names and of string
 values in objects and arrays.

Bray Expires April 14, 2014 [Page 8]

Internet-Draft JSON bis October 2013

 However, the ABNF in this specification allows member names and
 string values to contain bit sequences which cannot encode Unicode
 characters, for example "\uDEAD" (a single unpaired UTF-16
 surrogate). Instances of this have been observed, for example when a
 library truncates a UTF-16 string without checking whether the
 truncation split a surrogate pair. The behavior of software which
 receives JSON texts containing such values is unpredictable; for
 example, implementations might return different values for the length
 of a string value, or even suffer fatal runtime exceptions.

8.3. String Comparison

 Software implementations are typically required to test names of
 object members for equality. Implementations which transform the
 textual representation into sequences of Unicode code units, and then
 perform the comparison numerically, code unit by code unit, are
 interoperable in the sense that implementations will agree in all
 cases on equality or inequality of two strings. For example,
 implementations which compare strings with escaped characters
 unconverted may incorrectly find that "a\b" and "a\u005Cb" are not
 equal.

9. Parsers

 A JSON parser transforms a JSON text into another representation. A
 JSON parser MUST accept all texts that conform to the JSON grammar.
 A JSON parser MAY accept non-JSON forms or extensions.

 An implementation may set limits on the size of texts that it
 accepts. An implementation may set limits on the maximum depth of
 nesting. An implementation may set limits on the range and precision
 of numbers. An implementation may set limits on the length and
 character contents of strings.

10. Generators

 A JSON generator produces JSON text. The resulting text MUST
 strictly conform to the JSON grammar.

11. IANA Considerations

 The MIME media type for JSON text is application/json.

 Type name: application

 Subtype name: json

 Required parameters: n/a

Bray Expires April 14, 2014 [Page 9]

Internet-Draft JSON bis October 2013

 Optional parameters: n/a

 Encoding considerations: 8bit if UTF-8; binary if UTF-16 or UTF-32.
 JSON may be represented using UTF-8, UTF-16, or UTF-32. When JSON
 is written in UTF-8, JSON is 8bit compatible. When JSON is
 written in UTF-16 or UTF-32, the binary content-transfer-encoding
 must be used.

 Interoperability considerations: Described in this document

 Published specification: This document

 Applications that use this media type: JSON has been used to exchange
 data between applications written in all of these programming
 languages: ActionScript, C, C#, Clojure, ColdFusion, Common Lisp,
 E, Erlang, Go, Java, JavaScript, Lua, Objective CAML, Perl, PHP,
 Python, Rebol, Ruby, Scala, and Scheme.

 Additional information: Magic number(s): n/a
 File extension(s): .json
 Macintosh file type code(s): TEXT

 Person & email address to contact for further information: IESG
 <iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Douglas Crockford
 douglas@crockford.com

 Change controller: IESG
 <iesg@ietf.org

12. Security Considerations

 Generally there are security issues with scripting languages. JSON
 is a subset of JavaScript, but excludes assignment and invocation.

 Since JSON’s syntax is borrowed from JavaScript, it is possible to
 use that language’s "eval()" function to parse JSON texts. This
 generally constitutes an unacceptable security risk, since the text
 could contain executable code along with data declarations. The same
 consideration applies in any other programming language in which JSON
 texts conform to that language’s syntax.

13. Examples

Bray Expires April 14, 2014 [Page 10]

Internet-Draft JSON bis October 2013

 This is a JSON object:

 {
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": 100
 },
 "Animated" : false,
 "IDs": [116, 943, 234, 38793]
 }
 }

 Its Image member is an object whose Thumbnail member is an object and
 whose IDs member is an array of numbers.

 This is a JSON array containing two objects:

 [
 {
 "precision": "zip",
 "Latitude": 37.7668,
 "Longitude": -122.3959,
 "Address": "",
 "City": "SAN FRANCISCO",
 "State": "CA",
 "Zip": "94107",
 "Country": "US"
 },
 {
 "precision": "zip",
 "Latitude": 37.371991,
 "Longitude": -122.026020,
 "Address": "",
 "City": "SUNNYVALE",
 "State": "CA",
 "Zip": "94085",
 "Country": "US"
 }
]

14. Contributors

Bray Expires April 14, 2014 [Page 11]

Internet-Draft JSON bis October 2013

 RFC 4627 was written by Douglas Crockford. This document was
 constructed by making a relatively small number of changes to that
 document; thus the vast majority of the text here is his.

15. References

15.1. Normative References

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", 2008,
 <http://grouper.ieee.org/groups/754/>.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version 4.0
 ", 2003, <http://www.unicode.org/versions/latest/>.

15.2. Informative References

 [ECMA-262]
 European Computer Manufacturers Association, "ECMAScript
 Language Specification 5.1 Edition ", June 2011, <http://
 www.ecma-international.org/ecma-262/5.1/>.

 [ECMA-404]
 Ecma International, "The JSON Data Interchange Format ",
 October 2013, <http://www.ecma-international.org/
 publications/standards/Ecma-404.htm>.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

Appendix A. Changes from RFC 4627

 This section lists changes between this document and the text in RFC
 4627.

 o Changed Working Group attribution to JSON Working Group.

 o Changed title of document.

 o Change the reference to [UNICODE] to be be non-version-specific.

Bray Expires April 14, 2014 [Page 12]

Internet-Draft JSON bis October 2013

 o Added a "Specifications of JSON" section.

 o Added an "Introduction to this Revision" section.

 o Added language about duplicate object member names and
 interoperability.

 o Applied erratum #607 from RFC 4627 to correctly align the artwork
 for the definition of "object".

 o Changed "as sequences of digits" to "in the grammar below" in
 "Numbers" section.

 o Added language about number interoperability as a function of
 IEEE754, and an IEEE754 reference.

 o Added language about interoperability and Unicode characters, and
 about string comparisons. To do this, turned the old "Encoding"
 section into a "String and Character Issues" section, with three
 subsections: The old "Encoding" material, and two new sections for
 "Unicode Characters" and "String Comparison".

 o Changed guidance in "Parsers" section to point out that
 implementations may set limits on the range "and precision" of
 numbers.

 o Updated and tidied the "IANA Considerations" section.

 o Made a real "Security Considerations" section, and lifted the text
 out of the existing "IANA Considerations" section.

 o Applied erratum #3607 from RFC 4627 by removing the security
 consideration that begins "A JSON text can be safely passed" and
 the JavaScript code that went with that consideration.

 o Added a note to the "Security Considerations" section pointing out
 the risks of using the "eval()" function in JavaScript or any
 other language in which JSON texts conform to that language’s
 syntax.

 o Changed "100" to 100 and added a boolean field, both in the first
 example.

 o Added "Contributors" section crediting Douglas Crockford.

 o Added a reference to RFC4627.

Bray Expires April 14, 2014 [Page 13]

Internet-Draft JSON bis October 2013

 o Moved the ECMAScript reference from Normative to Informative,
 updated it to reference ECMAScript 5.1, and added reference to
 ECMA 404.

Author’s Address

 Tim Bray (editor)
 Google, Inc.

 Email: tbray@textuality.com

Bray Expires April 14, 2014 [Page 14]

