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Abstract

   Interactive Connectivity Establishment (ICE) has been selected as the
   basis for establishing peer-to-peer UDP flows between Web Real-Time
   Communication (WebRTC) clients.  Using an unmodified ICE
   implementation in this context enables the use of the web platform as
   a denial of service platform.  The risks and complications arising
   from this choice are discussed.  A modified algorithm for sending ICE
   connectivity checks from the web platform is described.
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1.  Introduction

   ICE [RFC5245] describes a process whereby peers establish a bi-
   directional UDP flow.  This process has been adopted for use in Web
   Real-Time Communications (WebRTC) for establishing flows to and from
   web browsers ([I-D.ietf-rtcweb-overview]).

   Properties of ICE are also critical to the security of WebRTC (see
   Section 4.2.1 of [I-D.ietf-rtcweb-security]).
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   The design of RFC 5245 does not fully consider the threat models
   enabled by the web environment.  In particular, the following
   assumptions are not valid in a web context:

   o  A one-time consent to communicate is sufficient, and revocation of
      consent is not necessary.

   o  Signaling and control originates from actors that always operate
      in good faith.

   o  Only one ICE processing context operates at the one time.

   Implementations of ICE that are technically compliant with the
   algorithm described in RFC 5245 potentially expose controls to web
   applications that can be exploited.

   In the web context, an attacker is able to provide code (usually
   JavaScript) that is executed by those hosts in a sandbox.  The
   protections of the sandbox are critical, both for protecting the host
   running the sandbox, and for protecting the Internet as a whole from
   bad actors.

   The exposure of ICE features in the web browser could allow attackers
   to generate denial of service (DoS) traffic far in excess of the
   bandwidth needed to deploy the JavaScript.  A small (1KB) file can
   potentially generate many megabytes of connectivity checks in a short
   period, representing an amplication factor far greater than other
   similar amplification attacks (for instance, DNS reflection attacks).

   Mounting this sort of DoS attack does not rely on anything other than
   inducing a host to download and execute JavaScript.  This is
   generally very easy to accomplish, making it very easy to conscript
   large number of traffic sources.

   The issue regarding the one-time consent to communicate has already
   been identified as a serious problem for WebRTC.
   [I-D.muthu-behave-consent-freshness] describes a limit on the time
   that consent remains valid, requiring that communications consent be
   continuously refreshed.

   This document first describes the characteristics of ICE as they
   relate to the web and the way that these characteristics can be
   exploited.  In order to address the issues arising from allowing web
   application to initiate and control ICE processing, a modified
   algorithm is described, plus additional measures that can be employed
   to reduce the amount of traffic an attacker can produce.
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1.1.  Conventions and Terminology

   In cases where normative language needs to be emphasized, this
   document falls back on established shorthands for expressing
   interoperability requirements on implementations: the capitalized
   words "MUST", "MUST NOT", "SHOULD" and "MAY".  The meaning of these
   is described in [RFC2119].

2.  ICE in a Web Browser

   A web browser provides an API that applications can use to
   instantiate and control an ICE agent.  The web application is
   responsible for providing the ICE agent with signaling that it might
   need to operate successfully, as well as configuration information
   regarding TURN [RFC5766] or STUN [RFC5389] servers.

   In the web context, a browser treats the web application as being
   potentially hostile, providing access to features in a controlled
   fashion.  Therefore, some of the information that an ICE agent might
   depend on in other contexts has to be regarded as potentially suspect
   when provided by a web application.

2.1.  Factors Influencing DoS Capacity

   There are several parameters that affect the characteristics of DoS
   attacks that can be mounted using ICE.  These include:

   o  The number of candidate pairs that are created.  An attacker can
      add extra remote candidates to inflate this number to tbe maximum
      supported.  RFC 5245 recommends a default maximum of 100 candidate
      pairs.  Reducing this limit directly reduces DoS potential, though
      it could affect success in some legitimate scenarios (see the
      calculations in Appendix A).

   o  The time between consecutive connectivity checks.  Pacing of
      checks is discussed at length in Section 2.1.1.

   o  The total number and timing of retransmissions for each candidate
      pair.  Section 2.1.2 discusses the implications of
      retransmissions.

   o  The size of connectivity check packets.  Size considerations are
      described in Section 2.1.3.

   o  The number of ICE agents that can be operated concurrently.  RFC
      5245 does not consider scenarios like WebRTC where it is not only
      possible for there to be multiple agents.  The web security model
      allows for cases where multiple agents can be created
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      concurrently, often with a further restriction that a browser not
      leak information between agents.

2.1.1.  Pacing of Connectivity Checks

   ICE [RFC5245] describes a scheme for pacing connectivity checks.
   There are two primary reasons that are cited:

   o  Pacing the initial connectivity checks for a given candidate pair
      allows middleboxes sufficient time to establish bindings.
      Empirical evidence suggests that failing to allow at least 20
      milliseconds between initial connectivity checks risks the
      bindings being dropped at some middleboxes.

   o  Pacing limits the potential for connectivity checks to generate
      network congestion.  Section 16.1 of [RFC5245] describes a formula
      for calculating the time between connectivity checks (Ta) that is
      based on the expected bandwidth of the real-time session that is
      being established.

   In the web context, information about the expected bandwidth used by
   the session comes from the web application.  Since the web
   application has to be regarded as potentially malicious, information
   about expected media bandwidth cannot be used to determine the pacing
   of connectivity checks.  A fixed minimum interval between
   connectivity checks becomes the primary mechanism for limiting the
   ability of web applications to generate packets that are potentially
   congestion inducing.

   Increasing the pacing interval directly reduces the amount of
   congestion that connectivity checks can generate, though this only
   reduces the peak bitrate that can be induced - the same amount of
   traffic is generated over a longer period.  The cost of this is
   extended session setup times, where recent efforts have been focused
   on reducing this time.

2.1.2.  Retransmission of Connectivity Checks

   The initial retransmission timer (RTO) can also be increased with
   similar effect to increasing the pacing timer.  Furthermore, there is
   a strong desire to reduce the recommended value of the RTO in ICE
   from 500 milliseconds to values more reflective of common round trip
   times in well-connected locations, which might be as low as 50
   milliseconds.

   More relevant is the total number of connectivity check
   retransmissions that an implementation attempts for each candidate
   pair.  Each additional retransmission directly increases the duration
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   and magnitude of a DoS attack.  Following the exponential backoff
   recommended by RFC 5245 does extend the time between retransmissions,
   which could reduce the rate of connectivity checks after several
   retransmissions, but this depends on the initial retransmission time
   out (RTO).

   Reducing the number of retransmissions has the effect of reducing the
   probability of the check succeeding.  The selection of a total
   retransmission count is a trade-off of success rates against the
   potential for abuse.

2.1.3.  Connectivity Check Size

   As currently specified, an attacker is only able to influence the
   size of the USERNAME attribute.  [RFC5389] restricts USERNAME to a
   maximum size of 512 octets; the Session Description Protocol (SDP)
   signaling described in [RFC5245] limits the size of the username
   fragment an attacker can set to 256 bytes.

   A browser could reduce its username fragment to as little as 4 bytes,
   limiting the overall size of the attribute to 261 bytes.  A small
   username fragment does limit the collision resilience of the field,
   which is a property that is important for detecting other forms of
   attack (see Section 5.7.3 of [I-D.ietf-rtcweb-security-arch]).

   There is also the potential for new modifications to ICE that
   increase the packet size.  For instance [I-D.martinsen-mmusic-malice]
   provides an attacker with direct control over the bytes that are
   included in connectivity checks.

2.2.  Denial of Service Magnitude

   A malicious application is able to influence connectivity checking by
   altering the set of remote candidates and by changing the remote
   username fragment.  The default maximum sizes for remote username
   fragment (256 bytes) and number of candidate pairs (100) described in
   RFC 5245 can be exploited by an attacker to increase the number and
   size of packets.  Assuming an inter-check timer of the minimum of 20
   milliseconds, plus a minimal 28 bytes of IPv4 and UDP overhead, this
   results in an attacker being able to induce approximately 144kbps for
   every ICE agent it is able to instantiate.

   This rate is significantly higher than the minimal rate of 20kbps
   that a typical compressed voice stream generates.  By comparison, a
   G.711 audio stream, which cannot be rate limited in response to
   network congestion, but is generally regarded as safe to send to a
   willing target, generates about 74kbps.

Thomson                  Expires April 22, 2014                 [Page 6]



Internet-Draft               ICE for WebRTC                 October 2013

   ICE does not allow for any congestion feedback (other than ECN
   [RFC3168]), so this rate could conceivably be sustained for some
   time, though after several seconds the time between retries
   increases, reducing the check rate unless the application is able to
   instantiate another ICE agent.

   Some existing ICE implementations could generate about 3 or more
   times the basic rate of connectivity checks over a short period.
   These implementations do not pace retransmission of connectivity
   checks, resulting in significantly higher connectivity check rates
   during early rounds of retransmission.

      These implementations are ignoring the advice on calculating a
      minimum RTO from Section 16.1 of [RFC5245].  However, the shorter
      RTO allows ICE to complete much faster, which is a significant
      advantage.

   Implementations that do not limit the number of ICE agents that can
   be instantiated, and subsequently fail to enforce rate limits
   globally create a further multiplicative factor on the basic rate.

3.  Modified ICE Algorithm

   This section describes an algorithm that ensures proper global pacing
   of connectivity checks.  This limits the ability of any single
   attacker to generate a high rate of connectivity checks.  This only
   limits the peak data rate that results from connectivity checks,
   reducing the intensity of DoS attacks.

   Measures that reduce the overall duration of attacks are described in
   Section 4.

   The modified algorithm for ICE does not alter the way that candidate
   pairs are selected, prioritized, frozen or signaled.  It only affects
   the generation of connectivity checks.  This algorithm affects
   candidate pairs in either of the "Waiting" or "In-Progress" states
   only (see Section 5.7.4 of [RFC5245]).

   The ICE agent maintains two queues for candidate pairs.

   waiting queue:  The first is a prioritized list of candidate pairs in
      the "Waiting" state.  The waiting queue is simply a prioritized
      list of all the candidate pairs in the check list (see Section 5.7
      of [RFC5245]) that are in the "Waiting" state.  As candidate pairs
      enter the "Waiting" state, they are added to the waiting queue.
      As each candidate pair is added, it is prioritized relative to all
      the other candidate pairs in the waiting queue.

Thomson                  Expires April 22, 2014                 [Page 7]



Internet-Draft               ICE for WebRTC                 October 2013

   check queue:  The second is for outstanding connectivity checks.
      Each entry in this list represents a connectivity check for a
      given candidate pair.  Each entry also includes a counter
      representing the number of connectivity checks that have been sent
      on this candidate pair.

   The ICE agent maintains two types of timer: a pacing timer and a
   retransmission timer.  There is only one pacing timer, though there
   can be multiple retransmission timers running concurrently.

   The first candidate pair that arrives in the waiting queue starts the
   pacing timer.  The pacing timer runs as long as there are items in
   any queue, ending if the timer expires when there are no entries in
   either queue.  The pacing timer resumes if an entry is added to
   either queue and the timer is not already running.

   Each time the pacing timer expires, the ICE agent performs the
   following steps:

   1.  If there are items on the waiting queue, but no items on the
       check queue, the first candidate pair is taken from the waiting
       queue.

       a.  The candidate pair transitions from "Waiting" to "In-
           Progress".

       b.  A check counter is associted with the candidate pair,
           initialized with a zero value.

       c.  The candidate pair is added to the check queue.  This could
           result in a connectivity check being sent immediately if the
           check queue is currently empty.

   2.  If there are items in the check queue, the ICE agent removes the
       first item and performs a connectivity check on the identified
       candidate pair.

       a.  The check counter associated with the candidate pair is
           incremented by one.

       b.  Based on the value of the check counter, a retransmission
           timer is scheduled for the candidate pair.  The
           retransmission timer is not scheduled if the check counter
           exceeds the maximum number of checks configured for the ICE
           agent.
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       c.  If the retransmission timer expires without the connectivity
           check succeeding, the candidate pair is returned to the end
           of the check queue along with the higher check counter.

       d.  The retransmission timer is cancelled if the connectivity
           check succeeds.  The process for handling successful checks
           in Section 7.1.3.2 of [RFC5245] is followed.

   3.  If no connectivity checks were sent, the pacing timer is stopped.

   An important characteristic of this algorithm is that it - as much as
   possible - prefers retransmission of connectivity checks over the
   initiation of new connectivity checks.  This ensures that once an
   initial connectivity check has established any necessary middlebox
   bindings, subsequent retries are not delayed excessively, which could
   cause the binding to time out.  However, the global pacing can cause
   the time between retransmission of connectivity checks to be extended
   as the check queue occasionally fills.

   Favoring retransmission over initial checks directly contradicts the
   guidance on RTO selection in Section 16.1 of [RFC5245].  This is
   necessary due to the delays induced by potential interactions between
   multiple ICE agents, which might otherwise cause retries to be
   significantly delayed.  Improvements to candidate prioritization are
   expected to reduce the impact of this change.

3.1.  Trickled and Peer Reflexive Candidates

   Trickled ICE candidates [I-D.ivov-mmusic-trickle-ice] generate
   candidate pairs after connectivity checking has commenced.  In order
   to avoid trickled candidates negatively affecting the chances of a
   connectivity check succeeding, connectivity checks on newly appearing
   candidate pairs must be prioritized below any existing connectivity
   check.

   Trickled candidates are in many respects identical to peer reflexive
   candidates.  Both arrive after the algorithm has commenced.

   In either case, as new candidates arrive (or are discovered), they
   are paired as normal (Section 5.7.1 of [RFC5245]), and - if
   appropriate - entered into the "Waiting" state.  This causes the
   candidate pair to enter the waiting queue.  Candidate pairs in the
   waiting queue are not ordered based on arrival time, they are ordered
   based on priority alone.

   Trickling regular candidates does introduce the potential for a
   mismatch in the ordering of candidate pairs between peers, since
   trickled candidates will appear in the sending side well before the
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   receiving side can act upon them, resulting in the sending peer
   potentially commencing checks much earlier than the receiving peer.
   This is particularly important given the possibility that
   retransmissions of connectivity checks can block the progress of a
   candidate pair from the "Waiting" state into the "In-Progress" state,
   resulting in potentially large differences in the commencement time
   for any given candidate pair.

   A trickle ICE implementation MAY choose not to immediately enqueue
   local candidates as they are discovered to allow some time for
   trickle signaling to propagate in order to increase the probability
   that checks remain synchronized.

3.2.  Multiple ICE Agents

   In a system that has potentially more than one ICE agent, it’s
   important that connectivity checks from any given ICE agent cannot be
   blocked or starved by other ICE agents.  It is also important that an
   attacker is unable to circumvent any limits by instantiating multiple
   ICE agents.

   To that end, a single pacing timer is maintained globally whenever
   multiple ICE agents are operated.  Each time the pacing timer fires,
   the global context selects ICE agents in a round-robin fashion.  In
   addition to ensuring a global rate limit, this selection method
   ensures that no single ICE agent is completely starved.

   In a shared context, ICE agents do not stop or start the pacing timer
   unless they are the first or last ICE agent to be active.  The first
   ICE agent to commence checking starts the global timer, the last ICE
   agent to cancel the timer causes the global timer to be cancelled.
   At all other instances, "starting" the pacing timer for an ICE agent
   simply adds the ICE agent to the set of agents that can be selected;
   "stopping" the pacing timer removes the ICE agent from the set of ICE
   agents that are in consideration.

   A global pacing timer causes each individual ICE agent to execute
   checks more slowly than a lone ICE agent would.  Where there are many
   candidate pairs to test, this could have a negative impact on the
   synchronization of checks between peers.  Poor check synchronization
   can have a negative impact on success rates.  Peers with asymmetric
   contention can have lower priority candidate pairs started on the
   less contended peer long before the contended peer is able to
   commence checking, which can result in those checks failing.

   Several measures are suggested for mitigating the impact of
   contention: artificial contention, origin-first distribution, inter-
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   agent candidate pair freezing, and delayed start.  However, it is
   important to note that similar artificial constraints have
   classically been quickly circumvented on the web if they have overly
   negative performance consequences.

3.2.1.  Introducing Artificial Contention

   In cases where there is zero contention, artificial contention can be
   introduced to ensure a certain minimum effective pacing timer.  In
   effect, this would increase the basic pacing timer from 20ms by a
   minimum multiple for any single ICE agent.  Artificially contention
   would result in no checks being sent at all at different phases,
   spacing genuine connectivity checks.

   For instance, contention could be increased to a minimum of 3 ICE
   agents.  Assuming a 20ms basic interval, the first ICE agent would be
   able to send connectivity checks every 60ms, as though it were
   contending with two other ICE agents.  Adding another ICE agent would
   have no effect on this rate.  It would only be if a fourth ICE agent
   were added that all ICE agents would be reduced to sending checks at
   80ms intervals.

   This has the advantage of ensuring that a lightly contended client
   has the same rate of checking as a client with only a small number of
   ICE agents so that checks are more likely to be synchronized.

3.2.2.  Origin-First Round-Robin

   In a system such as a browser, there are potentially competing
   interests sharing the same limited resources.  In this type of
   context, each competing user - in the browser, this is an origin
   [RFC6454] - can first be selected using a round-robin or similar
   allocation scheme.

   Thus, as a first step, selection is performed from the set origins
   that have an active ICE agent.  Once an origin is selected, agents
   are selected from within that origin.  This ensures that no single
   origin can receive more than a proportional share of the access to
   connectivity checking.

   This is particularly important if multiple users (or origins) are
   each able to create multiple ICE agents.  Selecting based on users
   first prevents a single origin from monopolizing access to
   connectivity checks.

3.2.3.  Inter-Agent Candidate Pair Freezing
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   In some cases, it might be necessary to instantiate multiple ICE
   agents from the same application, between the same two peers.  An ICE
   agent MAY place candidate pairs in the "Frozen" state based on
   candidate pairs with the same foundation being "Waiting" or "In-
   Progress" on another ICE agent.  This reduces the overall demand for
   connectivity checks without any significant negative effect on the
   chances that ICE succeeds.

   In the browser context, information about the success of connectivity
   checks cannot leak between different domains.  This could allow
   information about activities on another tab to be leaked, violating
   the origin security model of the browser.  Thus, any inter-agent
   freezing logic MUST be constrained to ICE agents that operate in the
   same origin.

3.2.4.  Delayed ICE Agent Start

   In cases where there is high contention for access to connectivity
   checking, it might be preferable to delay the start of connectivity
   checks for an ICE agent rather than have the effective pacing timer
   increased.

4.  Further Reducing the Impact of Attacks

   A global pacing timer allows a web application to determine whether
   another domain is currently establishing an ICE transport, simply by
   observing the pacing of connectivity checks that it requests.
   Section 3.2.1 describes a method that allows a limited number of ICE
   agents to operate without being detectable.

   The algorithm and the measures it describes are based on an
   assumption that ICE agents are created legitimately.  Even with these
   measures, it’s possible to generate a steady amount of bandwidth
   toward arbitrary hosts.  The remainder of this section is dedicated
   to additional measures that might be employed to reduce the ability
   of malicious users to generate unwanted connectivity checks over
   time.

4.1.  Bandwidth Rate Limiting

   A measure of the bandwidth generated by connectivity checks can be
   maintained, on both global and a per-origin basis.  As this number
   increases, the browser can reduce the rate of connectivity checks.
   This reduction might either be gained by increasing the duration of
   the pacing timer or skipping occasional connectivity checks.
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   Appendix A includes some simple calculations and recommendations on
   what might be appropriate limits to set on the bandwidth used by
   connectivity checks.

4.2.  Malicious Application Penalties

   An attacker that only wishes to generate traffic is unlikely to
   provide valid candidates for two reasons:

   o  a successful connectivity check is likely to cause the ICE agent
      to terminate further checking

   o  serving connectivity checks requires the dedication of greater
      resources by the attacker

   A long sequence of unsuccessful connectivity checks is therefore a
   likely indicator for an attack.  An ICE agent could choose to reduce
   the rate at which connectivity checks are generated for an
   application that has a large number of failed checks.

   Any measure that penalizes for unsuccessful checks will have to allow
   for some failures.  Even legitimate uses of ICE can result in
   significant numbers of failed connectivity checks.  For instance, an
   implementation that exclusively prioritizes IPv6 over IPv4 on a
   network with broken IPv6 will legitimately see a large number of
   failures.  Similarly, if a remote peer is behind a NAT, prior to the
   commencement of checking by that peer all connectivity checks are
   likely to be discarded by the NAT.

4.3.  Limited Concurrent Access to ICE

   Setting an absolute maximum on the number of ICE agents that can be
   instantiated could overly constrain legitimate applications that
   depend on having multiple active sessions.  However, limiting
   concurrent access to active ICE agents by delaying the start of
   connectivity checking, as described in Section 3.2.4 might allow an
   implementation to reduce the ability of a single origin to generate
   unwanted connectivity checks.

5.  Negotiating Algorithm Use

   The algorithm defined in Section 3 could cause some ICE agents to
   perform checks in a very different order to the order of an
   unmodified ICE agent.  Failing to coordinate when checks occur
   reduces the probability that ICE is successful.

   TODO: Determine whether an ice-options token that enables negotiation
   of this algorithm is appropriate, or whether something more
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   definitive is required, since an answerer could negotiate an ice-
   options token away.  Note that WebRTC implementations probably won’t
   be able to accept a session that does not use this algorithm.

6.  Security Considerations

   This entire document is about security.
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Appendix A.  Defining Legitimate Uses of ICE

   Limiting the bandwidth generated by connectivity checks depends on
   knowing how much ICE could use under normal circumstances.  This
   ensures any absolute limit doesn’t adversely affect a legitimate use
   of ICE.

   Any calculation should allow for slightly abnormal configurations
   that might generate higher than average data rates.  Otherwise, an
   average might adversely affect legitimate users.  The intent is to
   avoid having legitimate uses concerned with the limit.

A.1.  Candidate Pair Count

   Our sample legitimate user has 2 local network interfaces.  This can
   result in as many as 14 candidates, 8 of them IPv4 plus 6 IPv6.  Each
   interface has 1 IPv4 address, an IPv6 address, plus a link-local IPv6
   address.  Assuming a different public IPv4 NAT address for each
   interface and IP version (using either NAT4-4 or NAT6-4 as
   appropriate) other than the link local addresses, this adds another 4
   addresses.  In addition to this, two TURN servers might be contacted
   by either IPv4 or IPv6, providing 4 more addresses.
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   Two peers with this configuration will generate 100 candidate pairs,
   since only IPv4 candidates are paired with IPv4 candidates.

   Assuming that all candidates are checked once before ICE completes on
   a second round of checks, there are in excess of 100 connectivity
   checks sent.  Even at the fastest permitted pacing, this means that
   ICE completes in at least 2 seconds, plus the round trip time.

A.2.  Connectivity Check Size

   The STUN message used for a connectivity check can vary, but making
   some reasonable assumptions, it is likely to be 149 or 169 bytes on
   the wire (plus network layer encapsulation).  This makes the
   following assumptions:

   IP Header:  20 bytes (IPv4) or 40 bytes (IPv6) with no extensions

   UDP Header:  8 bytes

   STUN Header:  20 bytes

   USE-CANDIDATE Attribute:  4 bytes

   CONTROLLED or CONTROLLING Attribute:  4 bytes

   PRIORITY Attribute:  4 bytes

   MESSAGE-INTEGRITY Attribute:  24 bytes

   FINGERPRINT Attribute:  8 bytes

   USER Attribute:  49 bytes carries two 20 character username fragments

A.3.  Rate Calculations

   Assuming a 150 byte connectivity check and a global pacing timer of
   20ms, this produces 60kbps at peak (68kpbs for IPv6).

   For 100 candidate pairs, with at most 5 connectivity checks on each
   pair, this peak could be sustained for 10 seconds by a single ICE
   agent.

   The question is: is this a tolerable rate?

A.4.  Comparison: G.711 Audio

   G.711 audio is commonly used without any congestion feedback
   mechanisms in place - primarily because it is unflexible and unable
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   to scale its network usage in response to congestion signals.  The
   theory is that it might be acceptable to generate a similar amount of
   traffic without congestion controls.

   It should be immediately obvious that this theory has a major flaw.
   Even though the impact on the network might be similar, G.711 is not
   sent to an unwilling recipient, whereas no such guarantee can be made
   for connectivity checks.

   Assuming 80bit integrity on SRTP, no header extensions and no CSRCs,
   G.711 produces 84kbps.  That would suggest that a single ICE agent
   with 20ms pacing might be tolerable, at least over short intervals.

A.5.  Recommended Rate Limits

   Enforcing a limit of 96kbps would allow for a substantial increase in
   the size of STUN connectivity check messages without affecting
   legitimate uses.

   Over a longer interval, this high rate is likely to be unnecessary.
   Even with 100 candidate pairs, ICE should complete in between 2 and 5
   seconds, especially if candidate pairs are frozen across multiple ICE
   agents.  Providing a lower limit over a 10 to 20 second interval
   should further limit the damage.  Enforcing a longer term limit of 48
   kilobytes (every 20 seconds or so) would allow for 6 seconds of
   continuous checking with the size described above, or 4 seconds of
   checking at the short term rate limit.
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