
MMUSIC M. Thomson
Internet-Draft Microsoft
Intended status: Standards Track October 19, 2013
Expires: April 22, 2014

 Using Interactive Connectivity Establishment (ICE) in Web Real-Time
 Communications (WebRTC)
 draft-thomson-mmusic-ice-webrtc-01

Abstract

 Interactive Connectivity Establishment (ICE) has been selected as the
 basis for establishing peer-to-peer UDP flows between Web Real-Time
 Communication (WebRTC) clients. Using an unmodified ICE
 implementation in this context enables the use of the web platform as
 a denial of service platform. The risks and complications arising
 from this choice are discussed. A modified algorithm for sending ICE
 connectivity checks from the web platform is described.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Thomson Expires April 22, 2014 [Page 1]

Internet-Draft ICE for WebRTC October 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Conventions and Terminology 4
 2. ICE in a Web Browser . 4
 2.1. Factors Influencing DoS Capacity 4
 2.1.1. Pacing of Connectivity Checks 5
 2.1.2. Retransmission of Connectivity Checks 5
 2.1.3. Connectivity Check Size 6
 2.2. Denial of Service Magnitude 6
 3. Modified ICE Algorithm 7
 3.1. Trickled and Peer Reflexive Candidates 9
 3.2. Multiple ICE Agents 10
 3.2.1. Introducing Artificial Contention 11
 3.2.2. Origin-First Round-Robin 11
 3.2.3. Inter-Agent Candidate Pair Freezing 11
 3.2.4. Delayed ICE Agent Start 12
 4. Further Reducing the Impact of Attacks 12
 4.1. Bandwidth Rate Limiting 12
 4.2. Malicious Application Penalties 13
 4.3. Limited Concurrent Access to ICE 13
 5. Negotiating Algorithm Use 13
 6. Security Considerations 14
 7. Acknowledgements . 14
 8. References . 14
 8.1. Normative References 14
 8.2. Informative References 14
 Appendix A. Defining Legitimate Uses of ICE 15
 A.1. Candidate Pair Count 15
 A.2. Connectivity Check Size 16
 A.3. Rate Calculations . 16
 A.4. Comparison: G.711 Audio 16
 A.5. Recommended Rate Limits 17
 Author’s Address . 17

1. Introduction

 ICE [RFC5245] describes a process whereby peers establish a bi-
 directional UDP flow. This process has been adopted for use in Web
 Real-Time Communications (WebRTC) for establishing flows to and from
 web browsers ([I-D.ietf-rtcweb-overview]).

 Properties of ICE are also critical to the security of WebRTC (see
 Section 4.2.1 of [I-D.ietf-rtcweb-security]).

Thomson Expires April 22, 2014 [Page 2]

Internet-Draft ICE for WebRTC October 2013

 The design of RFC 5245 does not fully consider the threat models
 enabled by the web environment. In particular, the following
 assumptions are not valid in a web context:

 o A one-time consent to communicate is sufficient, and revocation of
 consent is not necessary.

 o Signaling and control originates from actors that always operate
 in good faith.

 o Only one ICE processing context operates at the one time.

 Implementations of ICE that are technically compliant with the
 algorithm described in RFC 5245 potentially expose controls to web
 applications that can be exploited.

 In the web context, an attacker is able to provide code (usually
 JavaScript) that is executed by those hosts in a sandbox. The
 protections of the sandbox are critical, both for protecting the host
 running the sandbox, and for protecting the Internet as a whole from
 bad actors.

 The exposure of ICE features in the web browser could allow attackers
 to generate denial of service (DoS) traffic far in excess of the
 bandwidth needed to deploy the JavaScript. A small (1KB) file can
 potentially generate many megabytes of connectivity checks in a short
 period, representing an amplication factor far greater than other
 similar amplification attacks (for instance, DNS reflection attacks).

 Mounting this sort of DoS attack does not rely on anything other than
 inducing a host to download and execute JavaScript. This is
 generally very easy to accomplish, making it very easy to conscript
 large number of traffic sources.

 The issue regarding the one-time consent to communicate has already
 been identified as a serious problem for WebRTC.
 [I-D.muthu-behave-consent-freshness] describes a limit on the time
 that consent remains valid, requiring that communications consent be
 continuously refreshed.

 This document first describes the characteristics of ICE as they
 relate to the web and the way that these characteristics can be
 exploited. In order to address the issues arising from allowing web
 application to initiate and control ICE processing, a modified
 algorithm is described, plus additional measures that can be employed
 to reduce the amount of traffic an attacker can produce.

Thomson Expires April 22, 2014 [Page 3]

Internet-Draft ICE for WebRTC October 2013

1.1. Conventions and Terminology

 In cases where normative language needs to be emphasized, this
 document falls back on established shorthands for expressing
 interoperability requirements on implementations: the capitalized
 words "MUST", "MUST NOT", "SHOULD" and "MAY". The meaning of these
 is described in [RFC2119].

2. ICE in a Web Browser

 A web browser provides an API that applications can use to
 instantiate and control an ICE agent. The web application is
 responsible for providing the ICE agent with signaling that it might
 need to operate successfully, as well as configuration information
 regarding TURN [RFC5766] or STUN [RFC5389] servers.

 In the web context, a browser treats the web application as being
 potentially hostile, providing access to features in a controlled
 fashion. Therefore, some of the information that an ICE agent might
 depend on in other contexts has to be regarded as potentially suspect
 when provided by a web application.

2.1. Factors Influencing DoS Capacity

 There are several parameters that affect the characteristics of DoS
 attacks that can be mounted using ICE. These include:

 o The number of candidate pairs that are created. An attacker can
 add extra remote candidates to inflate this number to tbe maximum
 supported. RFC 5245 recommends a default maximum of 100 candidate
 pairs. Reducing this limit directly reduces DoS potential, though
 it could affect success in some legitimate scenarios (see the
 calculations in Appendix A).

 o The time between consecutive connectivity checks. Pacing of
 checks is discussed at length in Section 2.1.1.

 o The total number and timing of retransmissions for each candidate
 pair. Section 2.1.2 discusses the implications of
 retransmissions.

 o The size of connectivity check packets. Size considerations are
 described in Section 2.1.3.

 o The number of ICE agents that can be operated concurrently. RFC
 5245 does not consider scenarios like WebRTC where it is not only
 possible for there to be multiple agents. The web security model
 allows for cases where multiple agents can be created

Thomson Expires April 22, 2014 [Page 4]

Internet-Draft ICE for WebRTC October 2013

 concurrently, often with a further restriction that a browser not
 leak information between agents.

2.1.1. Pacing of Connectivity Checks

 ICE [RFC5245] describes a scheme for pacing connectivity checks.
 There are two primary reasons that are cited:

 o Pacing the initial connectivity checks for a given candidate pair
 allows middleboxes sufficient time to establish bindings.
 Empirical evidence suggests that failing to allow at least 20
 milliseconds between initial connectivity checks risks the
 bindings being dropped at some middleboxes.

 o Pacing limits the potential for connectivity checks to generate
 network congestion. Section 16.1 of [RFC5245] describes a formula
 for calculating the time between connectivity checks (Ta) that is
 based on the expected bandwidth of the real-time session that is
 being established.

 In the web context, information about the expected bandwidth used by
 the session comes from the web application. Since the web
 application has to be regarded as potentially malicious, information
 about expected media bandwidth cannot be used to determine the pacing
 of connectivity checks. A fixed minimum interval between
 connectivity checks becomes the primary mechanism for limiting the
 ability of web applications to generate packets that are potentially
 congestion inducing.

 Increasing the pacing interval directly reduces the amount of
 congestion that connectivity checks can generate, though this only
 reduces the peak bitrate that can be induced - the same amount of
 traffic is generated over a longer period. The cost of this is
 extended session setup times, where recent efforts have been focused
 on reducing this time.

2.1.2. Retransmission of Connectivity Checks

 The initial retransmission timer (RTO) can also be increased with
 similar effect to increasing the pacing timer. Furthermore, there is
 a strong desire to reduce the recommended value of the RTO in ICE
 from 500 milliseconds to values more reflective of common round trip
 times in well-connected locations, which might be as low as 50
 milliseconds.

 More relevant is the total number of connectivity check
 retransmissions that an implementation attempts for each candidate
 pair. Each additional retransmission directly increases the duration

Thomson Expires April 22, 2014 [Page 5]

Internet-Draft ICE for WebRTC October 2013

 and magnitude of a DoS attack. Following the exponential backoff
 recommended by RFC 5245 does extend the time between retransmissions,
 which could reduce the rate of connectivity checks after several
 retransmissions, but this depends on the initial retransmission time
 out (RTO).

 Reducing the number of retransmissions has the effect of reducing the
 probability of the check succeeding. The selection of a total
 retransmission count is a trade-off of success rates against the
 potential for abuse.

2.1.3. Connectivity Check Size

 As currently specified, an attacker is only able to influence the
 size of the USERNAME attribute. [RFC5389] restricts USERNAME to a
 maximum size of 512 octets; the Session Description Protocol (SDP)
 signaling described in [RFC5245] limits the size of the username
 fragment an attacker can set to 256 bytes.

 A browser could reduce its username fragment to as little as 4 bytes,
 limiting the overall size of the attribute to 261 bytes. A small
 username fragment does limit the collision resilience of the field,
 which is a property that is important for detecting other forms of
 attack (see Section 5.7.3 of [I-D.ietf-rtcweb-security-arch]).

 There is also the potential for new modifications to ICE that
 increase the packet size. For instance [I-D.martinsen-mmusic-malice]
 provides an attacker with direct control over the bytes that are
 included in connectivity checks.

2.2. Denial of Service Magnitude

 A malicious application is able to influence connectivity checking by
 altering the set of remote candidates and by changing the remote
 username fragment. The default maximum sizes for remote username
 fragment (256 bytes) and number of candidate pairs (100) described in
 RFC 5245 can be exploited by an attacker to increase the number and
 size of packets. Assuming an inter-check timer of the minimum of 20
 milliseconds, plus a minimal 28 bytes of IPv4 and UDP overhead, this
 results in an attacker being able to induce approximately 144kbps for
 every ICE agent it is able to instantiate.

 This rate is significantly higher than the minimal rate of 20kbps
 that a typical compressed voice stream generates. By comparison, a
 G.711 audio stream, which cannot be rate limited in response to
 network congestion, but is generally regarded as safe to send to a
 willing target, generates about 74kbps.

Thomson Expires April 22, 2014 [Page 6]

Internet-Draft ICE for WebRTC October 2013

 ICE does not allow for any congestion feedback (other than ECN
 [RFC3168]), so this rate could conceivably be sustained for some
 time, though after several seconds the time between retries
 increases, reducing the check rate unless the application is able to
 instantiate another ICE agent.

 Some existing ICE implementations could generate about 3 or more
 times the basic rate of connectivity checks over a short period.
 These implementations do not pace retransmission of connectivity
 checks, resulting in significantly higher connectivity check rates
 during early rounds of retransmission.

 These implementations are ignoring the advice on calculating a
 minimum RTO from Section 16.1 of [RFC5245]. However, the shorter
 RTO allows ICE to complete much faster, which is a significant
 advantage.

 Implementations that do not limit the number of ICE agents that can
 be instantiated, and subsequently fail to enforce rate limits
 globally create a further multiplicative factor on the basic rate.

3. Modified ICE Algorithm

 This section describes an algorithm that ensures proper global pacing
 of connectivity checks. This limits the ability of any single
 attacker to generate a high rate of connectivity checks. This only
 limits the peak data rate that results from connectivity checks,
 reducing the intensity of DoS attacks.

 Measures that reduce the overall duration of attacks are described in
 Section 4.

 The modified algorithm for ICE does not alter the way that candidate
 pairs are selected, prioritized, frozen or signaled. It only affects
 the generation of connectivity checks. This algorithm affects
 candidate pairs in either of the "Waiting" or "In-Progress" states
 only (see Section 5.7.4 of [RFC5245]).

 The ICE agent maintains two queues for candidate pairs.

 waiting queue: The first is a prioritized list of candidate pairs in
 the "Waiting" state. The waiting queue is simply a prioritized
 list of all the candidate pairs in the check list (see Section 5.7
 of [RFC5245]) that are in the "Waiting" state. As candidate pairs
 enter the "Waiting" state, they are added to the waiting queue.
 As each candidate pair is added, it is prioritized relative to all
 the other candidate pairs in the waiting queue.

Thomson Expires April 22, 2014 [Page 7]

Internet-Draft ICE for WebRTC October 2013

 check queue: The second is for outstanding connectivity checks.
 Each entry in this list represents a connectivity check for a
 given candidate pair. Each entry also includes a counter
 representing the number of connectivity checks that have been sent
 on this candidate pair.

 The ICE agent maintains two types of timer: a pacing timer and a
 retransmission timer. There is only one pacing timer, though there
 can be multiple retransmission timers running concurrently.

 The first candidate pair that arrives in the waiting queue starts the
 pacing timer. The pacing timer runs as long as there are items in
 any queue, ending if the timer expires when there are no entries in
 either queue. The pacing timer resumes if an entry is added to
 either queue and the timer is not already running.

 Each time the pacing timer expires, the ICE agent performs the
 following steps:

 1. If there are items on the waiting queue, but no items on the
 check queue, the first candidate pair is taken from the waiting
 queue.

 a. The candidate pair transitions from "Waiting" to "In-
 Progress".

 b. A check counter is associted with the candidate pair,
 initialized with a zero value.

 c. The candidate pair is added to the check queue. This could
 result in a connectivity check being sent immediately if the
 check queue is currently empty.

 2. If there are items in the check queue, the ICE agent removes the
 first item and performs a connectivity check on the identified
 candidate pair.

 a. The check counter associated with the candidate pair is
 incremented by one.

 b. Based on the value of the check counter, a retransmission
 timer is scheduled for the candidate pair. The
 retransmission timer is not scheduled if the check counter
 exceeds the maximum number of checks configured for the ICE
 agent.

Thomson Expires April 22, 2014 [Page 8]

Internet-Draft ICE for WebRTC October 2013

 c. If the retransmission timer expires without the connectivity
 check succeeding, the candidate pair is returned to the end
 of the check queue along with the higher check counter.

 d. The retransmission timer is cancelled if the connectivity
 check succeeds. The process for handling successful checks
 in Section 7.1.3.2 of [RFC5245] is followed.

 3. If no connectivity checks were sent, the pacing timer is stopped.

 An important characteristic of this algorithm is that it - as much as
 possible - prefers retransmission of connectivity checks over the
 initiation of new connectivity checks. This ensures that once an
 initial connectivity check has established any necessary middlebox
 bindings, subsequent retries are not delayed excessively, which could
 cause the binding to time out. However, the global pacing can cause
 the time between retransmission of connectivity checks to be extended
 as the check queue occasionally fills.

 Favoring retransmission over initial checks directly contradicts the
 guidance on RTO selection in Section 16.1 of [RFC5245]. This is
 necessary due to the delays induced by potential interactions between
 multiple ICE agents, which might otherwise cause retries to be
 significantly delayed. Improvements to candidate prioritization are
 expected to reduce the impact of this change.

3.1. Trickled and Peer Reflexive Candidates

 Trickled ICE candidates [I-D.ivov-mmusic-trickle-ice] generate
 candidate pairs after connectivity checking has commenced. In order
 to avoid trickled candidates negatively affecting the chances of a
 connectivity check succeeding, connectivity checks on newly appearing
 candidate pairs must be prioritized below any existing connectivity
 check.

 Trickled candidates are in many respects identical to peer reflexive
 candidates. Both arrive after the algorithm has commenced.

 In either case, as new candidates arrive (or are discovered), they
 are paired as normal (Section 5.7.1 of [RFC5245]), and - if
 appropriate - entered into the "Waiting" state. This causes the
 candidate pair to enter the waiting queue. Candidate pairs in the
 waiting queue are not ordered based on arrival time, they are ordered
 based on priority alone.

 Trickling regular candidates does introduce the potential for a
 mismatch in the ordering of candidate pairs between peers, since
 trickled candidates will appear in the sending side well before the

Thomson Expires April 22, 2014 [Page 9]

Internet-Draft ICE for WebRTC October 2013

 receiving side can act upon them, resulting in the sending peer
 potentially commencing checks much earlier than the receiving peer.
 This is particularly important given the possibility that
 retransmissions of connectivity checks can block the progress of a
 candidate pair from the "Waiting" state into the "In-Progress" state,
 resulting in potentially large differences in the commencement time
 for any given candidate pair.

 A trickle ICE implementation MAY choose not to immediately enqueue
 local candidates as they are discovered to allow some time for
 trickle signaling to propagate in order to increase the probability
 that checks remain synchronized.

3.2. Multiple ICE Agents

 In a system that has potentially more than one ICE agent, it’s
 important that connectivity checks from any given ICE agent cannot be
 blocked or starved by other ICE agents. It is also important that an
 attacker is unable to circumvent any limits by instantiating multiple
 ICE agents.

 To that end, a single pacing timer is maintained globally whenever
 multiple ICE agents are operated. Each time the pacing timer fires,
 the global context selects ICE agents in a round-robin fashion. In
 addition to ensuring a global rate limit, this selection method
 ensures that no single ICE agent is completely starved.

 In a shared context, ICE agents do not stop or start the pacing timer
 unless they are the first or last ICE agent to be active. The first
 ICE agent to commence checking starts the global timer, the last ICE
 agent to cancel the timer causes the global timer to be cancelled.
 At all other instances, "starting" the pacing timer for an ICE agent
 simply adds the ICE agent to the set of agents that can be selected;
 "stopping" the pacing timer removes the ICE agent from the set of ICE
 agents that are in consideration.

 A global pacing timer causes each individual ICE agent to execute
 checks more slowly than a lone ICE agent would. Where there are many
 candidate pairs to test, this could have a negative impact on the
 synchronization of checks between peers. Poor check synchronization
 can have a negative impact on success rates. Peers with asymmetric
 contention can have lower priority candidate pairs started on the
 less contended peer long before the contended peer is able to
 commence checking, which can result in those checks failing.

 Several measures are suggested for mitigating the impact of
 contention: artificial contention, origin-first distribution, inter-

Thomson Expires April 22, 2014 [Page 10]

Internet-Draft ICE for WebRTC October 2013

 agent candidate pair freezing, and delayed start. However, it is
 important to note that similar artificial constraints have
 classically been quickly circumvented on the web if they have overly
 negative performance consequences.

3.2.1. Introducing Artificial Contention

 In cases where there is zero contention, artificial contention can be
 introduced to ensure a certain minimum effective pacing timer. In
 effect, this would increase the basic pacing timer from 20ms by a
 minimum multiple for any single ICE agent. Artificially contention
 would result in no checks being sent at all at different phases,
 spacing genuine connectivity checks.

 For instance, contention could be increased to a minimum of 3 ICE
 agents. Assuming a 20ms basic interval, the first ICE agent would be
 able to send connectivity checks every 60ms, as though it were
 contending with two other ICE agents. Adding another ICE agent would
 have no effect on this rate. It would only be if a fourth ICE agent
 were added that all ICE agents would be reduced to sending checks at
 80ms intervals.

 This has the advantage of ensuring that a lightly contended client
 has the same rate of checking as a client with only a small number of
 ICE agents so that checks are more likely to be synchronized.

3.2.2. Origin-First Round-Robin

 In a system such as a browser, there are potentially competing
 interests sharing the same limited resources. In this type of
 context, each competing user - in the browser, this is an origin
 [RFC6454] - can first be selected using a round-robin or similar
 allocation scheme.

 Thus, as a first step, selection is performed from the set origins
 that have an active ICE agent. Once an origin is selected, agents
 are selected from within that origin. This ensures that no single
 origin can receive more than a proportional share of the access to
 connectivity checking.

 This is particularly important if multiple users (or origins) are
 each able to create multiple ICE agents. Selecting based on users
 first prevents a single origin from monopolizing access to
 connectivity checks.

3.2.3. Inter-Agent Candidate Pair Freezing

Thomson Expires April 22, 2014 [Page 11]

Internet-Draft ICE for WebRTC October 2013

 In some cases, it might be necessary to instantiate multiple ICE
 agents from the same application, between the same two peers. An ICE
 agent MAY place candidate pairs in the "Frozen" state based on
 candidate pairs with the same foundation being "Waiting" or "In-
 Progress" on another ICE agent. This reduces the overall demand for
 connectivity checks without any significant negative effect on the
 chances that ICE succeeds.

 In the browser context, information about the success of connectivity
 checks cannot leak between different domains. This could allow
 information about activities on another tab to be leaked, violating
 the origin security model of the browser. Thus, any inter-agent
 freezing logic MUST be constrained to ICE agents that operate in the
 same origin.

3.2.4. Delayed ICE Agent Start

 In cases where there is high contention for access to connectivity
 checking, it might be preferable to delay the start of connectivity
 checks for an ICE agent rather than have the effective pacing timer
 increased.

4. Further Reducing the Impact of Attacks

 A global pacing timer allows a web application to determine whether
 another domain is currently establishing an ICE transport, simply by
 observing the pacing of connectivity checks that it requests.
 Section 3.2.1 describes a method that allows a limited number of ICE
 agents to operate without being detectable.

 The algorithm and the measures it describes are based on an
 assumption that ICE agents are created legitimately. Even with these
 measures, it’s possible to generate a steady amount of bandwidth
 toward arbitrary hosts. The remainder of this section is dedicated
 to additional measures that might be employed to reduce the ability
 of malicious users to generate unwanted connectivity checks over
 time.

4.1. Bandwidth Rate Limiting

 A measure of the bandwidth generated by connectivity checks can be
 maintained, on both global and a per-origin basis. As this number
 increases, the browser can reduce the rate of connectivity checks.
 This reduction might either be gained by increasing the duration of
 the pacing timer or skipping occasional connectivity checks.

Thomson Expires April 22, 2014 [Page 12]

Internet-Draft ICE for WebRTC October 2013

 Appendix A includes some simple calculations and recommendations on
 what might be appropriate limits to set on the bandwidth used by
 connectivity checks.

4.2. Malicious Application Penalties

 An attacker that only wishes to generate traffic is unlikely to
 provide valid candidates for two reasons:

 o a successful connectivity check is likely to cause the ICE agent
 to terminate further checking

 o serving connectivity checks requires the dedication of greater
 resources by the attacker

 A long sequence of unsuccessful connectivity checks is therefore a
 likely indicator for an attack. An ICE agent could choose to reduce
 the rate at which connectivity checks are generated for an
 application that has a large number of failed checks.

 Any measure that penalizes for unsuccessful checks will have to allow
 for some failures. Even legitimate uses of ICE can result in
 significant numbers of failed connectivity checks. For instance, an
 implementation that exclusively prioritizes IPv6 over IPv4 on a
 network with broken IPv6 will legitimately see a large number of
 failures. Similarly, if a remote peer is behind a NAT, prior to the
 commencement of checking by that peer all connectivity checks are
 likely to be discarded by the NAT.

4.3. Limited Concurrent Access to ICE

 Setting an absolute maximum on the number of ICE agents that can be
 instantiated could overly constrain legitimate applications that
 depend on having multiple active sessions. However, limiting
 concurrent access to active ICE agents by delaying the start of
 connectivity checking, as described in Section 3.2.4 might allow an
 implementation to reduce the ability of a single origin to generate
 unwanted connectivity checks.

5. Negotiating Algorithm Use

 The algorithm defined in Section 3 could cause some ICE agents to
 perform checks in a very different order to the order of an
 unmodified ICE agent. Failing to coordinate when checks occur
 reduces the probability that ICE is successful.

 TODO: Determine whether an ice-options token that enables negotiation
 of this algorithm is appropriate, or whether something more

Thomson Expires April 22, 2014 [Page 13]

Internet-Draft ICE for WebRTC October 2013

 definitive is required, since an answerer could negotiate an ice-
 options token away. Note that WebRTC implementations probably won’t
 be able to accept a session that does not use this algorithm.

6. Security Considerations

 This entire document is about security.

7. Acknowledgements

 The bulk of the algorithm described in this document came out of a
 discussion with Emil Ivov and Pal-Erik Martinsen. Eric Rescorla and
 Bernard Aboba provided some feedback regarding the DoS considerations
 and possible mitigations.

8. References

8.1. Normative References

 [I-D.ivov-mmusic-trickle-ice]
 Ivov, E., Rescorla, E., and J. Uberti, "Trickle ICE:
 Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol", draft-ivov-
 mmusic-trickle-ice-01 (work in progress), March 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

8.2. Informative References

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for Brower-
 based Applications", draft-ietf-rtcweb-overview-08 (work
 in progress), September 2013.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-
 rtcweb-security-arch-07 (work in progress), July 2013.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for WebRTC", draft-
 ietf-rtcweb-security-05 (work in progress), July 2013.

Thomson Expires April 22, 2014 [Page 14]

Internet-Draft ICE for WebRTC October 2013

 [I-D.martinsen-mmusic-malice]
 Penno, R., Martinsen, P., Wing, D., and A. Zamfir, "Meta-
 data Attribute signaLling with ICE", draft-martinsen-
 mmusic-malice-00 (work in progress), July 2013.

 [I-D.muthu-behave-consent-freshness]
 Perumal, M., Wing, D., R, R., and T. Reddy, "STUN Usage
 for Consent Freshness", draft-muthu-behave-consent-
 freshness-04 (work in progress), July 2013.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC
 3168, September 2001.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454, December
 2011.

Appendix A. Defining Legitimate Uses of ICE

 Limiting the bandwidth generated by connectivity checks depends on
 knowing how much ICE could use under normal circumstances. This
 ensures any absolute limit doesn’t adversely affect a legitimate use
 of ICE.

 Any calculation should allow for slightly abnormal configurations
 that might generate higher than average data rates. Otherwise, an
 average might adversely affect legitimate users. The intent is to
 avoid having legitimate uses concerned with the limit.

A.1. Candidate Pair Count

 Our sample legitimate user has 2 local network interfaces. This can
 result in as many as 14 candidates, 8 of them IPv4 plus 6 IPv6. Each
 interface has 1 IPv4 address, an IPv6 address, plus a link-local IPv6
 address. Assuming a different public IPv4 NAT address for each
 interface and IP version (using either NAT4-4 or NAT6-4 as
 appropriate) other than the link local addresses, this adds another 4
 addresses. In addition to this, two TURN servers might be contacted
 by either IPv4 or IPv6, providing 4 more addresses.

Thomson Expires April 22, 2014 [Page 15]

Internet-Draft ICE for WebRTC October 2013

 Two peers with this configuration will generate 100 candidate pairs,
 since only IPv4 candidates are paired with IPv4 candidates.

 Assuming that all candidates are checked once before ICE completes on
 a second round of checks, there are in excess of 100 connectivity
 checks sent. Even at the fastest permitted pacing, this means that
 ICE completes in at least 2 seconds, plus the round trip time.

A.2. Connectivity Check Size

 The STUN message used for a connectivity check can vary, but making
 some reasonable assumptions, it is likely to be 149 or 169 bytes on
 the wire (plus network layer encapsulation). This makes the
 following assumptions:

 IP Header: 20 bytes (IPv4) or 40 bytes (IPv6) with no extensions

 UDP Header: 8 bytes

 STUN Header: 20 bytes

 USE-CANDIDATE Attribute: 4 bytes

 CONTROLLED or CONTROLLING Attribute: 4 bytes

 PRIORITY Attribute: 4 bytes

 MESSAGE-INTEGRITY Attribute: 24 bytes

 FINGERPRINT Attribute: 8 bytes

 USER Attribute: 49 bytes carries two 20 character username fragments

A.3. Rate Calculations

 Assuming a 150 byte connectivity check and a global pacing timer of
 20ms, this produces 60kbps at peak (68kpbs for IPv6).

 For 100 candidate pairs, with at most 5 connectivity checks on each
 pair, this peak could be sustained for 10 seconds by a single ICE
 agent.

 The question is: is this a tolerable rate?

A.4. Comparison: G.711 Audio

 G.711 audio is commonly used without any congestion feedback
 mechanisms in place - primarily because it is unflexible and unable

Thomson Expires April 22, 2014 [Page 16]

Internet-Draft ICE for WebRTC October 2013

 to scale its network usage in response to congestion signals. The
 theory is that it might be acceptable to generate a similar amount of
 traffic without congestion controls.

 It should be immediately obvious that this theory has a major flaw.
 Even though the impact on the network might be similar, G.711 is not
 sent to an unwilling recipient, whereas no such guarantee can be made
 for connectivity checks.

 Assuming 80bit integrity on SRTP, no header extensions and no CSRCs,
 G.711 produces 84kbps. That would suggest that a single ICE agent
 with 20ms pacing might be tolerable, at least over short intervals.

A.5. Recommended Rate Limits

 Enforcing a limit of 96kbps would allow for a substantial increase in
 the size of STUN connectivity check messages without affecting
 legitimate uses.

 Over a longer interval, this high rate is likely to be unnecessary.
 Even with 100 candidate pairs, ICE should complete in between 2 and 5
 seconds, especially if candidate pairs are frozen across multiple ICE
 agents. Providing a lower limit over a 10 to 20 second interval
 should further limit the damage. Enforcing a longer term limit of 48
 kilobytes (every 20 seconds or so) would allow for 6 seconds of
 continuous checking with the size described above, or 4 seconds of
 checking at the short term rate limit.

Author’s Address

 Martin Thomson
 Microsoft
 3210 Porter Drive
 Palo Alto, CA 94304
 US

 Email: martin.thomson@skype.net

Thomson Expires April 22, 2014 [Page 17]

