
Network Working Group P. Eardley
Internet-Draft BT
Intended status: Informational July 12, 2013
Expires: January 13, 2014

 Survey of MPTCP Implementations
 draft-eardley-mptcp-implementations-survey-02

Abstract

 This document presents results from the survey to gather information
 from people who have implemented MPTCP, in particular to help
 progress the protocol from Experimental to Standards track.

 The document currently includes answers from four teams: a Linux
 implementation from UCLouvain, a FreeBSD implementation from
 Swinburne, an anonymous implementation in a commercial OS, and a
 NetScalar Firmware implementation from Citrix Systems, Inc. Thank-
 you!

 In summary, we have four independent implementations of all the MPTCP
 signalling messages, with the exception of address management, and
 some interoperabiity testing has been done by the other three
 implementations with the ’reference’ Linux implementation. So it
 appears that the RFC is (at least largely) clear and correct. On
 address management, we have only one implementation of ADD_ADDR with
 two teams choosing not to implement it. We have one implementation
 of the working group’s coupled congestion control (RFC6356) and none
 of the MPTCP-aware API (RFC6897).

 The main suggested improvements are around

 o how MPTCP falls back (if the signalling is interrupted by a
 middlebox): (1) corner cases that are not handled properly, (2) at
 the IETF, the MPTCP community should work with middlebox vendors,
 either to reduce or eliminate the need for fallback or to
 understand the middlebox interactions better.

 o security: both better MPTCP security (perhaps building on SSL) and
 a lighter weight mechanism, preferably both in one mechanism.

 It is hoped that the next version can include information from any
 other implementations. If you are an implementer and want to
 contribute your answers, please see the -01 version of this document
 for a blank survey ready to be filled in.

Status of this Memo

Eardley Expires January 13, 2014 [Page 1]

Internet-Draft Survey of MPTCP Implementations July 2013

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Eardley Expires January 13, 2014 [Page 2]

Internet-Draft Survey of MPTCP Implementations July 2013

Table of Contents

 1. Introduction . 4
 2. Survey - summary of replies 4
 3. Interesting aspects of replies 6
 3.1. Question 1: Your details 6
 3.2. Question 2: Preliminary information about your
 implementation . 7
 3.3. Question 3: Support for MPTCP’s Signalling
 Functionality . 7
 3.4. Question 4: Fallback from MPTCP 7
 3.5. Question 5: Heuristics 8
 3.6. Question 6: Security 9
 3.7. Question 7: IANA . 9
 3.8. Question 8: Congestion control and subflow policy 9
 3.9. Question 9: API . 10
 3.10. Question 10: Deployments, use cases and operational
 experiences . 10
 3.11. Question 11: Improvements to RFC6824 11
 4. IANA Considerations . 11
 5. Security Considerations 11
 6. Acknowledgements . 11
 7. Full survey response for Implementation 1 11
 8. Full survey response for Implementation 2 19
 9. Full survey response for Implementation 3 23
 10. Full survey response for Implementation 4 31
 11. Normative References . 38
 Author’s Address . 38

Eardley Expires January 13, 2014 [Page 3]

Internet-Draft Survey of MPTCP Implementations July 2013

1. Introduction

 The document reports the results from a survey to gather information
 from people who have implemented MPTCP. The goal is to help progress
 the protocol from Experimental to Standards track.

 Four responses have been received. Thank-you! They are independent
 implementations:

 o the Linux implementation from UCLouvain,

 o the FreeBSD implementation from Swinburne

 o an anonymous implementation in a commercial OS

 o a NetScaler Firmware implementation from Citrix Systems, Inc.

 The Table below presents a highly-compressed summary, with each row
 corresponding to one question or sub-question of the survey. The
 following section highlights some interesting aspects of the replies
 in less compressed form. The full survey responses are in Appendix
 A, B, C and D.

 It is hoped that the next version of this document can include
 information about a further (independent) implementation:

 o Georg Hampel’s user-space implementation (publicly available but
 not longer maintained)

 o any other implementations.

2. Survey - summary of replies

 The Table below presents a highly-compressed summary, with each row
 corresponding to one question or sub-question of the survey. A
 column is left blank for any future responses.

+--+
| | 1 | 2 | 3 | 4 | |
|Institution | UCLouvain | Swinburne | Anon | Citrix | |
| |
| Question 2 asks about some preliminary topics, including whether the |
| implementation is publicly available and interoperability with the |
| Linux implementation (#1). |
	UCLouvain	Swinburne	Anon	Citrix	
OS	Linux	FreeBSD-10	Commercial	NetScaler	
v4 & v6	Both	IPv4	Both	Both	

Eardley Expires January 13, 2014 [Page 4]

Internet-Draft Survey of MPTCP Implementations July 2013

public	Yes	Yes	No	Yes (pay)	
independent	Yes	Yes	Yes	Yes	
interop	Yes(!)	Mostly	Mostly	Yes	
Question 3: Support for MPTCP’s signalling functionality					
MPTCP’s signalling messages are: MP_CAPABLE, MP_JOIN, Data transfer					
(DSS), ADD_ADDR, REMOVE_ADDR, MP_FASTCLOSE. There are sub-questions					
for MP_JOIN and DSS.					
	UCLouvain	Swinburne	Anon	Citrix	
MP_CAPABLE	Yes	Yes	Yes	Yes	
MP_JOIN	Yes	Yes	Yes	Yes	
initiated by	first end	either end	first end	first end	
#subflows	32	8	no limit	6	
DSS	Yes	Yes	Yes	Yes	
DATA ACK	4 bytes	4 or 8 byte	4 or 8 byte	4 or 8 byte	
Data seq num	4 bytes	4 or 8 byte	4 or 8 byte	4 or 8 byte	
DATA_FIN	Yes	Yes	Yes	Yes	
Checksum	Yes	No	Yes	Yes	
ADD_ADDR	Yes	No	No (never)	No (never?)	
REMOVE_ADDR	Yes	No	Partly	Yes	
FAST_CLOSE	Yes	No	Yes	Yes	
Question 4 asks about fallback from MPTCP: if a middlebox mangles					
MPTCP’s signalling by removing MP_CAPABLE, MP_JOIN, DSS or DATA_ACK;					
if data is protected with Checksum in DSS option; if fallback to TCP					
uses an infinte mapping; and if any corner cases have been found.					
	UCLouvain	Swinburne	Anon	Citrix	
MP_CAPABLE	Yes	Yes	Yes	Yes	
MP_JOIN	Yes	Yes	Yes	Yes	
DSS	Yes	No	Yes	Yes	
DATA_ACK	Yes	No	No		
Checksum	Yes	No	Yes	Yes	
infinte map	Yes	Yes	Yes	Yes	
corner cases	No		Yes	Yes	
Question 5 asks about heuristics: aspects that are not required for					
protocol correctness but impact the performance. Questions are about					
sized the receiver and sender buffers, re-transmission policy, if					
additional subflows use the same port number as for the first subflow					
	UCLouvain	Swinburne	Anon	Citrix	
Recvr buffer	auto-tune	TCP_MAXWIN	no tuning	tuned	
Sendr buffer	auto-tune	cwnd	no tuning	as TCP	
Re-transmits	2nd subflow	2nd subflow	2nd subflow	1st subflow	
Port usage	same ports	same ports	diff local		
Question 6 asks about what security mechanisms are implemented: the					
one defined in RFC6824 and any others.					
	UCLouvain	Swinburne	Anon	Citrix	

Eardley Expires January 13, 2014 [Page 5]

Internet-Draft Survey of MPTCP Implementations July 2013

|HMAC-SHA1 |Yes |Yes |Yes |Yes | |
|other |Yes |No |No |No | |
| |
| Question 7 asks whether the implementation follows the IANA-related |
| definitions (for TCP Option Kind and sub-registries). |
| | UCLouvain | Swinburne | Anon | Citrix | |
|RFC6824 |Yes |Yes |Yes |Yes | |
| |
| Question 8 asks about congestion control and related issues: how |
| traffic is shared across multiple subflows; support for ’handover’; |
| and support of RFC6356 (or other) coupled congestion control. |
	UCLouvain	Swinburne	Anon	Citrix	
sharing	shared, RTT	shared	active/back	active/back	
handover	Yes		Yes	Yes	
coupled cc	Yes	No	No	No	
other ccc	Yes, OLIA	No	No	No	
MP-PRIO & B	Yes	No	Yes	Yes	
Question 9 is about the API: how legacy applications interact with					
the MPTCP stack, and if implemented the RFC6897 API for MPTCP-aware					
applications.					
	UCLouvain	Swinburne	Anon	Citrix	
legacy apps	default	sysctl	private API	configured	
MPTCP API	No	No	No	No	
advanced API	No	No	No	No	
Question 10 gathers some limited information about operational					
experiences and deployments.					
	UCLouvain	Swinburne	Anon	Citrix	
Scenario	several	several	mobile	proxy	
environment	internet	controlled	internet	internet	
ends / proxy	end hosts	end hosts	end hosts	proxy	
+--+

3. Interesting aspects of replies

 This section tries to highlight some interesting comments made in the
 surveys. The Appendices can be consulted for further detials.

3.1. Question 1: Your details

 Implementation 1 has been implemented by Sebastien Barre, Christoph
 Paasch and a large team, mainly at UCLouvain. Implementation 2 has
 been implemented by Lawrence Stewart and Nigel Williams at Swinburne
 University of Technology. Both these implementations are publicly
 available. Implementation 3 comes from an anonymous team with a

Eardley Expires January 13, 2014 [Page 6]

Internet-Draft Survey of MPTCP Implementations July 2013

 commercial OS. Implementation 4 comes from Citrix Systems, Inc.

3.2. Question 2: Preliminary information about your implementation

 Three of the four implementations are publicly available, two for
 free (under GPLv2 and BSD licences) and one for a fee (NetScaler
 Firmware). Implementation 3 (commercial OS) is planned for use in a
 mobile environment, with MPTCP is used in active/backup mode.

 All implementations support IPv4 and three of four support IPv6.

 All implementations are being actively worked on, in order to improve
 performance and stability and conformance with the RFC.

3.3. Question 3: Support for MPTCP’s Signalling Functionality

 Three of the four implementations have implemented all the MPTCP
 signalling, with the interesting exception of address management,
 whilst Implementation 2 plans to add support for all those signalling
 capabilities it does not yet support.

 On address management, two implementations have decided not to
 implement ADD_ADDR. (ADD_ADDR allows an MPTCP host to signal a new
 address explicitly to the other host to allow it to initiate a new
 subflow - as an alternative to using MP_JOIN to directly start a new
 subflow). Implementation 3 decided not to support sending ADD_ADDR
 or processing ADD_ADDR as it is considered a security risk.
 Implementation 4 decided not to support ADD_ADDR because it didn’t
 think it would be useful as most clients are behind NATing devices.
 However, both implemented REMOVE_ADDR (in Implementation 3 the client
 can send a REMOVE_ADDR but ignores incoming REMOVE_ADDR).

 In Implementations 1, 3 and 4 only the initiator of the original
 subflow can start a new subflow (a reason mentioned is that NATs make
 it hard for the server to reach the client).

 All implementations support 4 bytes "Data ACK" and "Data sequence
 number" fields, and will interoperate with an implementation sending
 8 bytes. Implementation 1 uses only 4 bytes fields; if an
 implementation sends an 8 byte data sequence number it replies with a
 4 byte data ack.

3.4. Question 4: Fallback from MPTCP

 Question 4 asks about action when there is a problem with MPTCP, for
 example due to a middlebox mangling MPTCP’s signalling. The
 connection needs to fall back: if the problem is on the first subflow
 then MPTCP falls back to TCP, whilst if the problem is on an

Eardley Expires January 13, 2014 [Page 7]

Internet-Draft Survey of MPTCP Implementations July 2013

 additional subflow then that subflow is closed with a TCP RST, as
 discussed in [Section 3.6 RFC6824].

 Implementations 3 and 4 made several comments about fallback.

 Implementation 3 suggests that both sender and receiver behaviours
 could be outlined with more detail, in particular when DSS checksum
 is not in use and the MPTCP options are stripped. Implementation 3
 falls back to TCP when there’s one sub flow, but not when there are
 multiple sub flows (MPTCP is used in active/backup mode, and it is
 assumed that the sub flow transferring data is most likely to be more
 usable than any other established sub flow, hence the sub flow on
 which fallback occurred is kept alive and other sub flows are
 closed).

 Implementation 4 found a corner case where it is not clear what to
 do: if a pure ack or data packet without DSS is received in middle of
 transaction (which can happen if the routing changes and the new path
 drops MPTCP options). Also, Implementation 4 suggests that
 clarifying whether the infinite map exchange is unidirectional or
 bidirectional.

 Implementation 1 has developed a publicly available test suite that
 tests MPTCP’s traversal of middleboxes.

3.5. Question 5: Heuristics

 Question 5 gathers information about heuristics: aspects that are not
 required for protocol correctness but impact the performance. We
 would like to document best practice so that future implementers can
 learn from the experience of pioneers.

 There are several differences between the implementations.

 For receiver buffer, Implementation 1 uses a slightly modified
 version of Linux’s auto-tuning algorithm; Implementation 2 determines
 the receiver buffer by using "TCP_MAXWIN << tp->rcv_scale" (this is a
 temporary measure); Implementation 3 uses MPTCP in active/backup
 mode, so the receive buffer sizes at the MPTCP and subflow level is
 the same (automatic buffer tuning is turned off); Implementation 4
 varies the receiver buffer size based on the services and application
 type.

 For the sender buffer, Implementation 1 uses Linux auto-tuning,
 Implementation 2 scales based on occupancy, whilst Implementation 3
 turns off automatic buffer tuning, and Implementation 4 uses MPTCP-
 level (sub)flow control that is (almost) the same as regular TCP flow
 control.

Eardley Expires January 13, 2014 [Page 8]

Internet-Draft Survey of MPTCP Implementations July 2013

 Implementations 1, 2 and 3 re-transmit unacknowledged data on a
 different subflow (and not the same subflow), whilst Implementation 4
 re-transmits on original subflow for 3 RTOs and then uses another
 subflow.

 For port usage, Implementations 1 and 2 uses the same ports for the
 additional subflows, whilst Implementation 3 uses the same
 detsination port but a different local port, so that on the wire it
 looks like two connections to the same remote destination.

 Implementation 4 suggests that the RFC should more clearly
 /extensively define failure cases and how to handle unexpected
 signals.

3.6. Question 6: Security

 Question 6 asks about security related matters.

 All Implementations have implemented the hash-based, HMAC-SHA1
 security mechanism defined in [RFC6824]. Implementation 3 suggests
 that a more secure mechanism could be tied with SSL. Implementation
 4 suggests that a more secure and lightweight mechanism is needed, as
 keys are exchanged (in the MP_CAPABLE option) in plain text and the
 key generation mechanism is highly computational intensive.
 Implementation 1 has implemented two additional mechanisms in a
 separate Linux branch - one lightweight and the other SSL-based.

3.7. Question 7: IANA

 All Implementations have followed the IANA-related definitions
 [Section 8 RFC6824] for: TCP Option Kind number (30); the sub-
 registry for "MPTCP Option Subtypes"; and the sub-registry for "MPTCP
 Handshake Algorithms".

3.8. Question 8: Congestion control and subflow policy

 Question 8 asks how is shared across multiple subflows.

 Implementation 1 has added support for coupled congestion control
 (both that defined in [RFC6356] and in OLIA,
 draft-khalili-mptcp-congestion-control. The other implementations do
 not include coupled congestion control. Whilst Implementation 2
 plans to add it (currently it uses a simple algorithm spreads traffic
 across the subflows), Implementations 3 and 4 do not plan to add
 coupled congestion control - they use one subflow at a time, with
 others as a backup. Implementation 3 believes it is not currently
 useful to share load across all network interfaces on a mobile node,
 as the interfaces have different characteristics for cost, bring-up

Eardley Expires January 13, 2014 [Page 9]

Internet-Draft Survey of MPTCP Implementations July 2013

 and power usage. They have both found the B bit (in MP-JOIN) and MP-
 PRIO option very useful for this active /backup operation.

 Implementation 2 is also interested in experimenting with congestion
 control across paths with different path-cost metrics.

3.9. Question 9: API

 Question 9 gathers information about the API. None have implemented
 the [RFC6897] "basic MPTCP API" for MPTCP-aware applications. For
 three implementations MPTCP is used for all applications (set by
 configuration), whilst Implementation 3 uses a private API that
 allows MPTCP to be used on a per application basis.

3.10. Question 10: Deployments, use cases and operational experiences

 Question 10 takes the opportunity of this survey to gather some
 limited information about operational experiences and deployments.

 The Implementations mention different use cases.

 Implementation 2 is interested in using MPTCP for several use cases:
 vehicle to infrastructure (V2I) connectivity (to provide a persistent
 connection using 3G and roadside wifi); multi-homed "home-user"
 environments; high throughput data transfers. Implementation 3 is
 interested in the mobile scenario, with MPTCP providing an active
 /backup mode so achieving session continuity across changing network
 environments. Implementation 4 is interested in MPTCP giving
 reliability and fault tolerance via a proxy. Implementation 1
 already uses MPTCP on www.multipath-tcp.org and for internal ssh
 servers at UCLouvain.

 Implementation 4 uses a proxy (MPTCP connections from a client are
 terminated and the TCP connection established on the other side),
 whilst the other Implementations are on end hosts. Implementation 2
 is so far within controlled testbeds, whilst Implementation 3 is on
 the Internet.

 Implementation 2 is currently an alpha-quality build, so limited
 testing so far.

 Implementation 3 suggests working at the IETF with firewall vendors,
 to get them to change their defaults to allow MPTCP signals. This
 would also reduce the "over-engineering" needed to handle fallback
 cases. Implementation 1 suggests retrieving logs from middleboxes,
 as the best approach to understanding the interactions of MPTCP
 signalling with middleboxes.

Eardley Expires January 13, 2014 [Page 10]

Internet-Draft Survey of MPTCP Implementations July 2013

 Implementation 3 discusses a scenario that should be handled better.
 A backup subflow may never sent data. If the initial subflow fails,
 data is retransmitted on the backup subflow, but that path has a
 middlebox stripping options. Then it may not be possible to recover
 the MPTCP session.

3.11. Question 11: Improvements to RFC6824

 Question 11 asks if there are any areas where RFC6824 could be
 improved. The main topics have been mentioned earlier:

 o fallback: the need for more clarity in the fallback cases is
 mentioned by Implementations 3 and 4.

 o security: the need for both a more secure and a more lightweight
 mechanism is mentioned.

 Implementation 3 also suggests several potential improvements, which
 are outside the scope of RFC6824: support for sub flow level
 automatic buffer scaling, varying QoS support, and varying window
 scaling support on each sub flow; also, additional work on option
 signlling will be brought up in future discussions.

4. IANA Considerations

 This document makes no request of IANA.

5. Security Considerations

 This survey does not impact the security of MPTCP, except to the
 extent that it uncovers security issues that can be tackled in a
 future version of the protocol.

6. Acknowledgements

 Many thanks to the people who replied to the survey: Christoph
 Paasch, Nigel Williams, anon, and Krishna Khanal. Very many thanks
 to all of the teams who actually did the implementation and testing
 and are continuing to improve them.

7. Full survey response for Implementation 1

 Question 1: Your details Question 1 gathers some information about
 the team that has implemented MPTCP.

Eardley Expires January 13, 2014 [Page 11]

Internet-Draft Survey of MPTCP Implementations July 2013

 1. Your institution: UCLouvain, IP Networking Lab
 (http://inl.info.ucl.ac.be)

 2. Name(s) of people in your implementation and test teams: Initial
 design from Sebastien Barre. Since then, numerous code-contributors
 (ordered by number of commits): Christoph Paasch (UCLouvain) Gregory
 Detal (UCLouvain) Jakko Korkeaniemi (Aalto University) Mihai P.
 Andrei (Intel) Fabien Duchene (UCLouvain) Andreas Seelinger (RWTH
 Aachen) Stefan Sicleru (Intel) Lavkesh Lahngir Catalin Nicutar (PUB
 Bucharest) Andrei Maruseac (Intel) Andreas Ripke (NEC) Vlad Dogaru
 (Intel) Octavian Purdila (Intel) Niels Laukens (VRT Belgium) John
 Ronan (TSSG) Brandon Heller (Stanford University) Conformance
 Testing: Yvan Coene (UCLouvain)

 3. Do you want your answers to Question 1.1 and 1.2 above to be
 anonymised? No.

 3.2. Question 2: Preliminary information about your implementation
 Question 2 gathers some preliminary information.

 1. What OS is your implementation for? (or is it application layer?)
 Linux Kernel.

 2. Do you support IPv4 or IPv6 addresses or both? We support both.

 3. Is it publicly available (or will it be?) (for free or a fee?)
 Publicly available (GPLv2) at www.multipath-tcp.org

 4. Overall, what are you implementation and testing plans? (details
 can be given against individual items later) We plan to continue to
 align our implementation with the IETF specifications and improve its
 performance and stability.

 5. Is it an independent implementation? Or does it build on another
 MPTCP implementation -which one? Independent implementation.

 6. Have you already done some interop tests, for example with
 UCLouvain’s "reference" Linux implementation? /

 7. Would you be prepared to take part in an interop event, for
 example adjacent to IETF-87 in Berlin? Yes. We are also ready to
 help in organising such an event if needed.

 3.3. Question 3: Support for MPTCP’s Signalling Functionality
 Question 3 asks about support for the various signalling messages
 that the MPTCP protocol defines. *** For each message, please give a
 little information about the status of your implementation: for
 example, you may have implemented it and fully tested it; the

Eardley Expires January 13, 2014 [Page 12]

Internet-Draft Survey of MPTCP Implementations July 2013

 implementation may be in progress; you have not yet implemented it
 but plan to soon (timescale?); you may you have no intention to
 implement it (why?); etc.

 1. Connection initiation (MP_CAPABLE) [Section 3.1 RFC6824]

 a. What is the status of your implementation? Fully support the
 MP_CAPABLE exchange.

 b. Any other comments or information? We generate the random key as
 a hash of the 5-tuple, sequence number and a local secret. This
 significantly improves the performance, instead of using a pseudo-
 random number generator. The performance benefit has been shown
 during IETF85
 http://tools.ietf.org/agenda/85/slides/slides-85-mptcp-2.pdf

 2. Starting a new subflow (MP_JOIN) [Section 3.2 RFC6824]

 a. What is the status of your implementation? Fully support the
 MP_JOIN exchange.

 b. Can either end of the connection start a new subflow (or only the
 initiator of the original subflow)? Currently, only the initiator of
 the original subflow starts a new subflow. Given the widespread
 deployment of NATs, it is often difficult for the server to reach the
 client. This is the main reason why the server currently does not
 start new subflows in our implementation. But, the initiator would
 accept a SYN+MP_JOIN if sent by another implementation.

 c. What is the maximum number of subflows your implementation can
 support? Currently 32.

 d. Any other comments or information?

 3. Data transfer (DSS) [Section 3.3 RFC6824]

 a. What is the status of your implementation? Fully working
 implementation of data transfer.

 b. The "Data ACK" field can be 4 or 8 octets. Which one(s) have you
 implemented? We use 4 bytes for the DATA-ACK field.

 c. The "Data sequence number" field can be 4 or 8 octets. Which
 one(s) have you implemented? We use 4 bytes for the data sequence
 number.

 d. Does your implementation support the "DATA_FIN" operation to
 close an MPTCP connection? Yes.

Eardley Expires January 13, 2014 [Page 13]

Internet-Draft Survey of MPTCP Implementations July 2013

 e. Does your implementation support the "Checksum" field (which is
 negotiated in the MP_CAPABLE handshake)? Yes. This is configurable
 via a sysctl.

 f. Any other comments or information? We support interoperability
 with implementations that do send 64-bit data sequence numbers and
 data acks. However, even if the peer sends 64-bit data sequence
 numbers, we will only reply with a 32-bit data-ack. We do not have
 heuristics to trigger the sending of DATA_ACKs. We simply send the
 DATA_ACK in each packet.

 4. Address management (ADD_ADDR and REMOVE_ADDR) [Section 3.4
 RFC6824]

 a. What is the status of your implementation? We support ADD_ADDR/
 REMOVE_ADDR messages.

 b. Can your implementation do ADD_ADDRESS for addresses that appear
 after the connection has been established? Yes, as shown in:
 "Exploring Mobile/WiFi Handover with Multipath TCP", C. Paasch et.
 al, ACM SIGCOMM workshop on Cellular Networks (Cellnet’12), 2012.

 c. Any other comments or information? We do not send out TCP
 keepalive-messages upon the reception of a REMOVE_ADDR-message.

 5. Fast close (MP_FASTCLOSE) [Section 3.5 RFC6824]

 a. What is the status of your implementation? We support the
 MP_FASTCLOSE implementation.

 b. Any other comments or information?

 3.4. Question 4: Fallback from MPTCP Question 4 asks about action
 when there is a problem with MPTCP, for example due to a middlebox
 mangling MPTCP’s signalling. The connection needs to fall back: if
 the problem is on the first subflow then MPTCP falls back to TCP,
 whilst if the problem is on an additional subflow then that subflow
 is closed with a TCP RST, as discussed in [Section 3.6 RFC6824].

 1. If the MP_CAPABLE option is removed by a middlebox, does your
 implementation fall back to TCP? Yes.

 2. If the MP_JOIN option does not get through on the SYNs, does your
 implementation close the additional subflow? Yes.

 3. If the DSS option does not get through on the first data
 segment(s), does your implementation fall back? (either falling back
 to MPTCP (if the issue is on the first subflow) or closing the

Eardley Expires January 13, 2014 [Page 14]

Internet-Draft Survey of MPTCP Implementations July 2013

 additional subflow (if the issue is on an additional subflow)) Yes.
 On the initial subflow we do a seamless fallback, additional subflows
 will be closed by a RST.

 4. Similarly, if the "DATA ACK" field does not correctly acknowledge
 the first data segment(s), does your implementation fall back? Yes.
 Same as above.

 5. Does your implementation protect data with the "Checksum" field
 in the DSS option [Section 3.3 RFC6824]? If the checksum fails
 (because the subflow has been affected by a middlebox), does your
 implementation immediately close the affected subflow (with a TCP
 RST) with the MP_FAIL Option? If the checksum fails and there is a
 single subflow, does your implementation handle this as a special
 case, as described in [Section 3.6 RFC6824]? Yes, we support the
 DSS-checksum. If the checksum is wrong and there exist other
 subflows, we close the current subflow with an RST. If there is no
 other subflow, we send an ACK + MP_FAIL and do a fallback to infinite
 mapping. This fallback has successfully been tested with different
 type of NAT middleboxes, while using FTP.

 6. Does your implementation fall back to TCP by using an "infinite
 mapping" [Section 3.3.1 RFC6824] (so that the subflow-level data is
 mapped to the connection-level data for the remainder of the
 connection)? Yes.

 7. Did you find any corner cases where MPTCP’s fallback didn’t
 happen properly? No. We have developped a test-suite to test the
 middlebox-traversal of MPTCP, available at
 http://multipath-tcp.org/pmwiki.php/Users/AboutMeasures

 8. Any other comments or information about fallback?

 3.5. Question 5: Heuristics Question 5 gathers information about
 heuristics: aspects that are not required for protocol correctness
 but impact the performance. We would like to document best practice
 so that future implementers can learn from the experience of
 pioneers. The references contain some initial comments about each
 topic.

 1. Receiver considerations [S3.3.4, RFC6824]: What receiver buffer
 have you used? Does this depend on the retransmission strategy?
 What advice should we give about the receiver? Linux includes an
 autuning algorithm for the TCP receiver buffer. This algorithm has
 been slightly modified for Multipath TCP. The receive-buffer does
 not depend on the retransmission strategy.

 2. Sender considerations [S3.3.5, RFC6824]: How do you determine how

Eardley Expires January 13, 2014 [Page 15]

Internet-Draft Survey of MPTCP Implementations July 2013

 much data a sender is allowed to send and how big the sender buffer
 is? What advice should we give about the sender? The send-buffer is
 autotuned similarly as the receive-buffer (see above). We send as
 much data as possible, filling the congestion windows of each
 subflow. The sender deploys the "Opportunistic Retransmission" and
 "Penalization" algorithms from the paper: "How Hard Can It Be?
 Designing and Implementing a Deployable Multipath TCP", C. Raiciu et.
 al, NSDI 2012.

 3. Reliability and retransmissions [S3.3.6, RFC6824]: What is your
 retransmission policy? (when do you retransmit on the original
 subflow vs on another subflow or subflows?) When do you decide that
 a subflow is underperforming and should be reset, and what do you
 then do? What advice should we give about this issue? Upon an RTO
 on subflow A, we reinject all the unacknowledged data of subflow A on
 another subflows. We do not currently have a mechanism to detect
 that a subflow is underperforming.

 4. Port usage [S3.3.8.1, RFC6824]: Does your implementation use the
 same port number for additional subflows as for the first subflow?
 Have you used the ability to define a specific port in the Add
 Address option? What advice should we give about this issue? We
 always use the same port number as for the first subflow. Except, if
 the ADD_ADDRESS option that has been received contained a specific
 port. We do not have a means to configure the specific port in the
 ADD_ADDRESS option, but we support reception of the port.

 5. Delayed subflow start [S3.3.8.2, RFC6824]: What factors does your
 implementation consider when deciding about opening additional
 subflows? What advice should we give about this issue? As soon as
 we are sure that the initial subflow is fully MPTCP-capable
 (reception of a DATA_ACK), we create a full mesh among all IP-
 addresses between the two hosts. We do not explicitly delay the
 creation of new subflows.

 6. Failure handling [S3.3.8.3, RFC6824]: Whilst the protocol defines
 how to handle some unexpected signals, the behaviour after other
 unexpected signals is not defined. What advice should we give about
 this issue? We did not implement the caching mentioned in Section
 3.8.3.

 7. Use of TCP options: As discussed in [Appendix A, RFC6824], the
 TCP option space is limited, but a brief study found there was enough
 room to fit all the MPTCP options. However there are constraints on
 which MPTCP option(s) can be included in packets with other TCP
 options - do the suggestions in Appendix A need amending or
 expanding? We do not implement specific heuristics to reduce the TCP
 option-space usage. If timestamp is enabled we will only be able to

Eardley Expires January 13, 2014 [Page 16]

Internet-Draft Survey of MPTCP Implementations July 2013

 send two SACK-blocks, because the DATA_ACK consumes the remaining
 bytes.

 8. What other heuristics should we give advice about? Any other
 comments or information?

 3.6. Question 6: Security Question 6 asks about Security related
 matters [Section 5 RFC6824].

 1. Does your implementation use the hash-based, HMAC-SHA1 security
 mechanism defined in [RFC6824]? Yes.

 2. Does your implementation support any other handshake algorithms?
 We have in a separate branch, an implementation of
 draft-paasch-mptcp-lowoverhead and draft-paasch-mptcp-ssl.

 3. It has been suggested that a Standards-track MPTCP needs a more
 secure mechanism. Do you have any views about how to achieve this?
 We believe that the solution described in draft-paasch-mptcp-ssl
 would be a good starting point since it leverages the security of the
 upper layer.

 4. Any other comments or information?

 3.7. Question 7: IANA Question 7 asks about IANA related matters.

 1. Does your implementation follow the IANA-related definitions?
 [Section 8 RFC6824] defines: TCP Option Kind number (30); the sub-
 registry for "MPTCP Option Subtypes"; and the sub-registry for "MPTCP
 Handshake Algorithms" Yes.

 2. Any other comments or information?

 3.8. Question 8: Congestion control and subflow policy Question 8
 asks about how you share traffic across multiple subflows.

 1. How does your implementation share traffic over the available
 paths? For example: as a spare path on standby (’all-or- nothing’),
 as an ’overflow’, etc? Does it have the ability to send /receive
 traffic across multiple subflows simultaneously? The implementation
 is able to send and receive traffic on all subflows simultaneously.
 Our scheduler first tries to send traffic on the subflow with the
 lowest RTT. As this subflow’s congestion window is full, we pick the
 subflow with the next lower RTT.

 2. Does your implementation support "handover" from one subflow to
 another when losing an interface? Yes, as described in: "Exploring
 Mobile/WiFi Handover with Multipath TCP", C. Paasch et. al, ACM

Eardley Expires January 13, 2014 [Page 17]

Internet-Draft Survey of MPTCP Implementations July 2013

 SIGCOMM workshop on Cellular Networks (Cellnet’12), 2012.

 3. Does your implementation support the coupled congestion control
 defined in [RFC6356]? Yes.

 4. Does your implementation support some other coupled congestion
 control (ie that balances traffic on multiple paths according to
 feedback)? We also support the OLIA congestion control
 (draft-khalili-mptcp-congestion-control-00).

 5. The MP_JOIN (Starting a new subflow) Option includes the "B" bit,
 which allows the sender to indicate whether it wishes the new subflow
 to be used immediately or as a backup if other path(s) fail. The
 MP_PRIO Option is a request to change the "B" bit - either on the
 subflow on which it is sent, or (by setting the optional Address ID
 field) on other subflows. Does your implementation support the "B"
 bit and MP_PRIO mechanisms? Do you think they’re useful, or have
 another suggestion? Yes, we support the "B"-bit of the MP_JOIN and
 the MP_PRIO option. It is configurable on a per-interface basis.
 Experiences with the "B"-bit can be found in our paper: "Exploring
 Mobile/WiFi Handover with Multipath TCP", C. Paasch et. al, ACM
 SIGCOMM workshop on Cellular Networks (Cellnet’12), 2012.

 6. Any other comments or information or suggestions about the advice
 we should give about congestion control [S3.3.7 RFC6824] and subflow
 policy [S3.3.8 RFC6824]?

 3.9. Question 9: API Question 9 gathers information about your API.
 [RFC6897] considers the MPTCP Application Interface.

 1. With your implementation, can legacy applications use (the
 existing sockets API to use) MPTCP? How does the implementation
 decide whether to use MPTCP? Should the advice in [Section 4,
 RFC6897] be modified or expanded? Yes, a standard TCP socket API can
 be used. By default MPTCP is enabled on all connections.

 2. The "basic MPTCP API" enables MPTCP-aware applications to
 interact with the MPTCP stack via five new socket options. For each
 one, have you implemented it? has it been useful? None of them are
 part of the current stable release MPTCP v0.86.
 http://multipath-tcp.org/pmwiki.php?n=Main.Release86 a.
 TCP_MULTIPATH_ENABLE? b. TCP_MULTIPATH_ADD? c.
 TCP_MULTIPATH_REMOVE? d. TCP_MULTIPATH_SUBFLOWS? e.
 TCP_MULTIPATH_CONNID?

 3. Have you implemented any aspects of an "advanced MPTCP API"?
 ([Appendix A, RFC6897] hints at what it might include.) No.

Eardley Expires January 13, 2014 [Page 18]

Internet-Draft Survey of MPTCP Implementations July 2013

 4. Any other comments or information?

 3.10. Question 10: Deployments, use cases and operational
 experiences Question 10 takes the opportunity of this survey to
 gather some limited information about operational experiences and
 deployments. Any very brief information would be appreciated, for
 example: 1. What deployment scenarios are you most interested in? 2.
 Is your deployment on "the Internet" or in a controlled environment?
 3. Is your deployment on end hosts or with a MPTCP-enabled proxy (at
 one or both ends?)? 4. What do you see as the most important
 benefits of MPTCP in your scenario(s)? 5. How extensively have you
 deployed and experimented with MPTCP so far?

 Our implementation is open-source and has been discussed for various
 types of tests/deployments based on the messages received on the
 mptcp-dev mailing list. We currently use Multipath TCP on
 www.multipath-tcp.org and also on internal ssh servers at UCLouvain.
 6. MPTCP’s design seeks to maximise the chances that the signalling
 works through middleboxes. Did you find cases where middleboxes
 blocked MPTCP signalling? We have implemented a test suite based on
 a slightly modified version of the Multipath TCP implementation that
 allows to check the interoperability between Multipath TCP and
 middleboxes. We have used it over Internet paths and identified some
 potential problems. However, the best approach to test these
 interactions would be to control the middlebox and analyse its logs
 during the Multipath TCP test. The test suite can be retrieved from
 http://multipath-tcp.org/pmwiki.php/Users/AboutMeasures

 7. MPTCP’s design seeks to ensure that, if there is a problem with
 MPTCP signalling, then the connection either falls back to TCP or
 removes the problematic subflow. Did you find any corner cases where
 this didn’t happen properly? See above.

 8. Have you encountered any issues or drawbacks with MPTCP?

 9. Any other comments or information?

 3.11. Question 11: Improvements to RFC6824

 1. Are there any areas where [RFC6824] could be improved, either in
 technical content or clarity? 2. Any other issues you want to raise?

8. Full survey response for Implementation 2

 Question 1: Your details

Eardley Expires January 13, 2014 [Page 19]

Internet-Draft Survey of MPTCP Implementations July 2013

 1.1 Swinburne University of Technology, Hawthorn, Victoria, Australia

 1.2 Lawrence Stewart, Nigel Williams

 1.3 No

 Question 2: Preliminary information about your implementation

 2.1 FreeBSD-10

 2.2 Currently IPv4 only (IPv6 support will eventually be added)

 2.3 Publicly available (http://caia.swin.edu.au/urp/newtcp/mptcp/).
 The code is released under the BSD license. 2.3

 2.5 Independent

 2.6 Yes, some limited testing to establish interoperability.

 2.7 Yes, with some additional work this should be possible (if not
 then IETF-88). Q

 uestion 3: Support for MPTCP’s Signaling Functionality

 3.1 a) MP_CAPABLE Implemented

 b) Do not currently honour checksum flag (to be implemented)

 3.2 a) MP_JOIN Implemented

 b) Either end can initiate a MP_JOIN

 c) 8 (controlled via sysctl)

 d) Currently do not include HMAC verification during handshake, but
 this will be enabled in the next patch (several weeks from time of
 submission)

 3.3 a) DSS Implemented

 b) 4 (default) and 8

 c) 4 (default) and 8

 d) Yes, however the connection tear-down exchange is not fully
 implemented - the connection shuts down but the DFIN may not be

Eardley Expires January 13, 2014 [Page 20]

Internet-Draft Survey of MPTCP Implementations July 2013

 correctly acknowledged.

 e) No. This will be supported eventually (time-frame unknown)

 3.4 a) ADD_ADDR implemented, REMOVE_ADDR not implemented (to be done,
 timeframe unknown)

 b) No. Functionality to be added

 3.5 MP_FASTCLOSE not implemented. Plan to implement eventually

 Question 4: Fallback from MPTCP

 4.1 Yes

 4.2 The subflow PCBs remain allocated, however the subflow is not
 used to send data.

 4.3 No, tbd

 4.4 No, tbd

 4.5 No, checksumming not implemented

 4.6 Yes

 4.8 Fallback hasn’t really been put through any structured tests yet

 Question 5: Heuristics

 5.1 We use "TCP_MAXWIN << tp->rcv_scale". This is temporary and we
 will use a call into the "multipath" control layer to determine this
 value in future releases (we need to investigate a suitable way of
 calculating this).

 5.2 cwnd determines the amount of data to send (given that rcv window
 is always very large). Sendbuffer is scaled based on occupancy.

 5.3 We currently don’t have Data-level retransmits enabled. However
 our policy is to retransmit on the next subflow that requests data to
 send that is suitable. There is no intelligence in the packet
 schedular currently,

 5.4 The same port numbers are re-used for additional subflows.

 Question 6: Security

Eardley Expires January 13, 2014 [Page 21]

Internet-Draft Survey of MPTCP Implementations July 2013

 6.1 Yes

 6.2 No

 Question 7: IANA

 7.1 Yes

 Question 8: Congestion Control and subflow policy

 8.1 A simple algorithm is used to divide the send buffer between
 subflows, so that traffic is spread across the subflows.

 8.3 No. (to be added)

 8.4 No

 8.5 No

 Question 9: API

 9.1 Legacy applications are able to use MPTCP. MPTCP is set globally
 via a sysctl variable.

 9.2 No

 9.3 No

 Question 10: API

 10.1 Some current project work is based on MPTCPs use in vehicle to
 infrastructure (V2I) connectivity (to provide a persistent connection
 using 3G and roadside wifi). Other interests are in multi-homed
 "home-user" environments, high throughput data transfers.... We are
 also interested in experimenting with congestion control across paths
 with different path-cost metrics.

 10.2 So far only within controlled testbeds

 10.3 End hosts

 10.4 Depending on the scenario, connection persistence, throughput...

Eardley Expires January 13, 2014 [Page 22]

Internet-Draft Survey of MPTCP Implementations July 2013

 10.5 Still an alpha-quality build, so limited testing so far.

9. Full survey response for Implementation 3

 Survey 3.1. Question 1: Your details Question 1 gathers some
 information about the team that has implemented MPTCP.

 1. Your institution: anonymized.

 2. Name(s) of people in your implementation and test teams: There
 were several folks involved in the implementation and testing.

 3. Do you want your answers to Question 1.1 and 1.2 above to be
 anonymised? Yes.

 3.2. Question 2: Preliminary information about your implementation
 Question 2 gathers some preliminary information.

 1. What OS is your implementation for? (or is it application layer?)
 anonymized (commercial OS)

 2. Do you support IPv4 or IPv6 addresses or both? Both.

 3. Is it publicly available (or will it be?) (for free or a fee?)
 No.

 4. Overall, what are you implementation and testing plans? (details
 can be given against individual items later) We plan to use it in a
 mobile environment.

 5. Is it an independent implementation? Or does it build on another
 MPTCP implementation -which one? It is an independent
 implementation.

 6. Have you already done some interop tests, for example with
 UCLouvain’s "reference" Linux implementation? Most MPTCP option
 formats were tested with the reference Linux implementation.

 7. Would you be prepared to take part in an interop event, for
 example adjacent to IETF-87 in Berlin? Unsure at this point.

 3.3. Question 3: Support for MPTCP’s Signalling Functionality
 Question 3 asks about support for the various signalling messages
 that the MPTCP protocol defines. *** For each message, please give a
 little information about the status of your implementation: for
 example, you may have implemented it and fully tested it; the
 implementation may be in progress; you have not yet implemented it

Eardley Expires January 13, 2014 [Page 23]

Internet-Draft Survey of MPTCP Implementations July 2013

 but plan to soon (timescale?); you may you have no intention to
 implement it (why?); etc.

 1. Connection initiation (MP_CAPABLE) [Section 3.1 RFC6824] a. What
 is the status of your implementation? Fully implemented and tested
 against the reference Linux implementation.

 b. Any other comments or information?

 2. Starting a new subflow (MP_JOIN) [Section 3.2 RFC6824] a. What
 is the status of your implementation? Fully implemented and tested
 against the reference Linux implementation.

 b. Can either end of the connection start a new subflow (or only the
 initiator of the original subflow)? Only the initiator of the
 original sub flow can start other sub flows.

 c. What is the maximum number of subflows your implementation can
 support? There is no hard limit.

 d. Any other comments or information?

 3. Data transfer (DSS) [Section 3.3 RFC6824] a. What is the status
 of your implementation? Fully implemented and tested.

 b. The "Data ACK" field can be 4 or 8 octets. Which one(s) have you
 implemented? Both have been implemented but the use of the 4-byte
 field is the default. When an 8 byte DSS is received, an 8 byte Data
 ACK is sent in response.

 c. The "Data sequence number" field can be 4 or 8 octets. Which
 one(s) have you implemented? Both have been implemented but the use
 of the 4-byte field is the default. When a wraparound of the lower
 32-bit part of the DSS is detected, the full 8 byte DSS is sent.

 d. Does your implementation support the "DATA_FIN" operation to
 close an MPTCP connection? Yes. There are cases however where the
 sub flows are closed (TCP FIN’d) but the DATA_FIN is not sent - in
 this case the MPTCP connection must be closed through a garbage
 collector after some idle time.

 e. Does your implementation support the "Checksum" field (which is
 negotiated in the MP_CAPABLE handshake)? Yes.

 f. Any other comments or information?

 4. Address management (ADD_ADDR and REMOVE_ADDR) a. What is the
 status of your implementation? It does not support sending ADD_ADDR

Eardley Expires January 13, 2014 [Page 24]

Internet-Draft Survey of MPTCP Implementations July 2013

 or processing ADD_ADDR as it is considered a security risk. Also, we
 only have a client side implementation at the moment which always
 initiates the sub flows. The remote end does not send ADD_ADDR in
 our configuration. The client can send REMOVE_ADDR however when one
 of the established sub flow’s source address goes away. The client
 ignores incoming REMOVE_ADDR options also.

 b. Can your implementation do ADD_ADDRESS for addresses that appear
 after the connection has been established? No. c. Any other
 comments or information?

 5. Fast close (MP_FASTCLOSE) [Section 3.5 RFC6824] a. What is the
 status of your implementation? It is supported. Though
 Retransmission of Fast close is not supported yet.

 b. Any other comments or information?

 3.4. Question 4: Fallback from MPTCP Question 4 asks about action
 when there is a problem with MPTCP, for example due to a middlebox
 mangling MPTCP’s signalling. The connection needs to fall back: if
 the problem is on the first subflow then MPTCP falls back to TCP,
 whilst if the problem is on an additional subflow then that subflow
 is closed with a TCP RST, as discussed in [Section 3.6 RFC6824].

 1. If the MP_CAPABLE option is removed by a middlebox, does your
 implementation fall back to TCP? Yes.

 2. If the MP_JOIN option does not get through on the SYNs, does your
 implementation close the additional subflow? Yes.

 3. If the DSS option does not get through on the first data
 segment(s), does your implementation fall back? (either falling back
 to MPTCP (if the issue is on the first subflow) or closing the
 additional subflow (if the issue is on an additional subflow)) Yes it
 falls back to TCP when there’s one sub flow. When there are multiple
 sub flows, since MPTCP is used in active/backup mode, it is assumed
 that the sub flow transferring data is most likely to be more usable
 than any other established sub flow. So the sub flow on which
 fallback occurred is kept alive and other sub flows are closed.
 Fallback though is not guaranteed to occur safely when there are more
 than one sub flows because the infinite mapping option may be
 stripped like other DSS options and the MP_FAIL option if used in
 scenarios other than for reporting checksum failure can also be
 stripped.

 4. Similarly, if the "DATA ACK" field does not correctly acknowledge
 the first data segment(s), does your implementation fall back? No.
 Current implementation just ignores the unexpected data ack.

Eardley Expires January 13, 2014 [Page 25]

Internet-Draft Survey of MPTCP Implementations July 2013

 5. Does your implementation protect data with the "Checksum" field
 in the DSS option [Section 3.3 RFC6824]? If the checksum fails
 (because the subflow has been affected by a middlebox), does your
 implementation immediately close the affected subflow (with a TCP
 RST) with the MP_FAIL Option? If the checksum fails and there is a
 single subflow, does your implementation handle this as a special
 case, as described in [Section 3.6 RFC6824]? Yes.

 6. Does your implementation fall back to TCP by using an "infinite
 mapping" [Section 3.3.1 RFC6824] (so that the subflow-level data is
 mapped to the connection-level data for the remainder of the
 connection)? Yes.

 7. Did you find any corner cases where MPTCP’s fallback didn’t
 happen properly? If the very first sub flow does not send any data
 and is disconnected right away, then the current implementation
 allows a join to occur with the addition of another sub flow which
 then becomes a fully mp capable sub flow. Thus we allow break before
 make by letting additional sub flows to be joined if the very first
 one disconnected even without sending any data. This is a very
 corner case but an instance where we do not follow the rules of
 fallback (allow second sub flow even when first sub flow did not
 send/receive data/data acks).

 8. Any other comments or information about fallback? Fallback after
 connection establishment and after a few data packets were
 transferred with MPTCP options is complicated. The spec does not
 clearly cover the cases of options being stripped by middle boxes.
 It goes into good detail about what to do when the DSS checksum
 fails, but not when DSS checksum is not in use and the MPTCP options
 are stripped. Both sender/receiver behaviors could be outlined with
 more detail.

 3.5. Question 5: Heuristics Question 5 gathers information about
 heuristics: aspects that are not required for protocol correctness
 but impact the performance. We would like to document best practice
 so that future implementers can learn from the experience of
 pioneers. The references contain some initial comments about each
 topic.

 1. Receiver considerations [S3.3.4, RFC6824]: What receiver buffer
 have you used? Does this depend on the retransmission strategy?
 What advice should we give about the receiver? We are just using
 MPTCP in active/backup mode. This mode is simpler wrt receive buffer
 utilization. The receive buffer sizes at the MPTCP and sub flow
 level is the same. Automatic buffer tuning is turned off when MPTCP
 is in use.

Eardley Expires January 13, 2014 [Page 26]

Internet-Draft Survey of MPTCP Implementations July 2013

 2. Sender considerations [S3.3.5, RFC6824]: How do you determine how
 much data a sender is allowed to send and how big the sender buffer
 is? What advice should we give about the sender? Automatic buffer
 tuning is turned off when MPTCP is in use.

 3. Reliability and retransmissions [S3.3.6, RFC6824]: What is your
 retransmission policy? (when do you retransmit on the original
 subflow vs on another subflow or subflows?) When do you decide that
 a subflow is underperforming and should be reset, and what do you
 then do? What advice should we give about this issue?
 Retransmissions at MPTCP level do not occur on the same sub flow
 except when MP_FAIL option is received. A sub flow is said to be
 underperforming when its network connectivity goes away.

 4. Port usage [S3.3.8.1, RFC6824]: Does your implementation use the
 same port number for additional subflows as for the first subflow?
 Have you used the ability to define a specific port in the Add
 Address option? What advice should we give about this issue? The
 destination port is the same. The local port changes for additional
 sub flows so on the wire it is like two tcp connections to the same
 remote destination. We have not used Add Address option at all.

 5. Delayed subflow start [S3.3.8.2, RFC6824]: What factors does your
 implementation consider when deciding about opening additional
 subflows? What advice should we give about this issue? The client
 implementation is aware of network interfaces coming up or going down
 and establishes new sub flows or removes existing sub flows
 accordingly.

 6. Failure handling [S3.3.8.3, RFC6824]: Whilst the protocol defines
 how to handle some unexpected signals, the behaviour after other
 unexpected signals is not defined. What advice should we give about
 this issue? Fallback, post establishment is probably a case that
 needs to be more clearly defined.

 7. Use of TCP options: As discussed in [Appendix A, RFC6824], the
 TCP option space is limited, but a brief study found there was enough
 room to fit all the MPTCP options. However there are constraints on
 which MPTCP option(s) can be included in packets with other TCP
 options - do the suggestions in Appendix A need amending or
 expanding? Looks good already.

 8. What other heuristics should we give advice about? Any other
 comments or information?

 3.6. Question 6: Security Question 6 asks about Security related
 matters [Section 5 RFC6824].

Eardley Expires January 13, 2014 [Page 27]

Internet-Draft Survey of MPTCP Implementations July 2013

 1. Does your implementation use the hash-based, HMACSHA1 security
 mechanism defined in [RFC6824]? Yes.

 2. Does your implementation support any other handshake algorithms?
 No.

 3. It has been suggested that a Standards-track MPTCP needs a more
 secure mechanism. Do you have any views about how to achieve this?
 No. But the mechanism could be tied with SSL because SSL is used
 wherever security is deemed important.

 4. Any other comments or information?

 3.7. Question 7: IANA Question 7 asks about IANA related matters.

 1. Does your implementation follow the IANA-related definitions?
 [Section 8 RFC6824] defines: TCP Option Kind number (30); the sub-
 registry for "MPTCP Option Subtypes"; and the Page 12 of 17 Survey
 6/22/13, 5:55 PM sub-registry for "MPTCP Handshake Algorithms" Yes.

 2. Any other comments or information? No.

 3.8. Question 8: Congestion control and subflow policy Question 8
 asks about how you share traffic across multiple subflows.

 1. How does your implementation share traffic over the available
 paths? For example: as a spare path on standby (’all-ornothing’), as
 an ’overflow’, etc? Does it have the ability to send /receive
 traffic across multiple subflows simultaneously? It uses active/
 backup where one sub flow is preferred or has higher priority over
 other sub flows. When the preferred sub flow fails or begins to
 experience retransmission timeouts, the other sub flows are used.

 2. Does your implementation support "handover" from one subflow to
 another when losing an interface? Yes.

 3. Does your implementation support the coupled congestion control
 defined in [RFC6356]? No.

 4. Does your implementation support some other coupled congestion
 control (ie that balances traffic on multiple paths according to
 feedback)? No.

 5. The MP_JOIN (Starting a new subflow) Option includes the "B" bit,
 which allows the sender to indicate whether it wishes the new subflow
 to be used immediately or as a backup if other path(s) fail. The
 MP_PRIO Option is a request to change the "B" bit - either on the
 subflow on which it is sent, or (by setting the optional Address ID

Eardley Expires January 13, 2014 [Page 28]

Internet-Draft Survey of MPTCP Implementations July 2013

 field) on other subflows. Does your implementation support the "B"
 bit and MP_PRIO mechanisms? Do you think they’re useful, or have
 another suggestion? Yes the implementation uses the B bit and the
 MP_PRIO option. They are very useful for the active/backup mode of
 operation.

 6. Any other comments or information or suggestions about the advice
 we should give about congestion control [S3.3.7 RFC6824] and subflow
 policy [S3.3.8 RFC6824]?

 3.9. Question 9: API Question 9 gathers information about your API.
 [RFC6897] considers the MPTCP Application Interface.

 1. With your implementation, can legacy applications use (the
 existing sockets API to use) MPTCP? How does the implementation
 decide whether to use MPTCP? Should the advice in [Section 4,
 RFC6897] be modified or expanded? The implementation does not
 support MPTCP with existing sockets API. MPTCP is exposed through a
 private SPI today. If MPTCP becomes prolific over the next few
 years, MPTCP use shall be expanded.

 2. The "basic MPTCP API" enables MPTCP-aware applications to
 interact with the MPTCP stack via five new socket options. For each
 one, have you implemented it? has it been useful? a.
 TCP_MULTIPATH_ENABLE? b. TCP_MULTIPATH_ADD? c.
 TCP_MULTIPATH_REMOVE? d. TCP_MULTIPATH_SUBFLOWS? e.
 TCP_MULTIPATH_CONNID? This mode of API is not used. Proprietary
 methods are used for achieving these basic operations.

 3. Have you implemented any aspects of an "advanced MPTCP API"?
 ([Appendix A, RFC6897] hints at what it might include.) No.

 4. Any other comments or information?

 3.10. Question 10: Deployments, use cases and operational
 experiences Question 10 takes the opportunity of this survey to
 gather some limited information about operational experiences and
 deployments. Any very brief information would be appreciated, for
 example:

 1. What deployment scenarios are you most interested in? MPTCP in
 mobile environments is very powerful when used in the active/backup
 mode. Since the network interfaces available on mobile devices have
 different cost characteristics as well as different bring up and
 power usage characteristics, it is not useful to share load across
 all available network interfaces - at least not currently. Providing
 session continuity across changing network environments is the key
 deployment scenario.

Eardley Expires January 13, 2014 [Page 29]

Internet-Draft Survey of MPTCP Implementations July 2013

 2. Is your deployment on "the Internet" or in a controlled
 environment? The deployment is on the Internet.

 3. Is your deployment on end hosts or with a MPTCPenabled proxy (at
 one or both ends?)? The deployment supports MPTCP on both ends.

 4. What do you see as the most important benefits of MPTCP in your
 scenario(s)? Described in point 1 of this section.

 5. How extensively have you deployed and experimented with MPTCP so
 far? Deployment is still in early stages. We have been
 experimenting with MPTCP for about a year.

 6. MPTCP’s design seeks to maximise the chances that the signalling
 works through middleboxes. Did you find cases where middleboxes
 blocked MPTCP signalling? Corporate firewalls block MPTCP signaling
 by default. IETF is one venue where Cisco, and other firewall
 vendors can be asked to change their defaults to allow MPTCP signals.

 7. MPTCP’s design seeks to ensure that, if there is a problem with
 MPTCP signalling, then the connection either falls back to TCP or
 removes the problematic subflow. Did you find any corner cases where
 this didn’t happen properly? This has been covered a bit in the
 Fallback section. When using two sub flows in active/backup mode,
 there is a possibility that a backup sub flow that never sent data
 starts being used for retransmitting data that is not going through
 on the active path. While it is preferable to keep the initial sub
 flow that successfully sent MPTCP options and drop the backup path,
 the initial sub flow may be the failing one, and we may want to move
 to the backup path. But the backup path can be retransmitting data
 that did not get sent successfully on the active path and if there is
 a middle box in the backup sub flow’s path stripping options, then we
 have a case where the MPTCP session may not be recoverable as it may
 not be evident from what point in the MPTCP sequence space, data was
 being sent. The spec does talk of retaining the initial sub flow and
 closing the failed flow. So perhaps doing the reverse is not
 recommended, however, it would certainly be advantageous to support
 MPTCP better in such a failing environment. Also, in parallel
 working with firewall vendors to allow MPTCP options always to not
 have to over-engineer these cases.

 8. Have you encountered any issues or drawbacks with MPTCP?

 9. Any other comments or information?

 3.11. Question 11: Improvements to RFC6824 1. Are there any areas
 where [RFC6824] could be improved, either in technical content or
 clarity? Discussed in the fallback section. Other areas around

Eardley Expires January 13, 2014 [Page 30]

Internet-Draft Survey of MPTCP Implementations July 2013

 MPTCP performance such as support for sub flow level automatic buffer
 scaling, varying QoS support, varying window scaling support on each
 sub flow may be worth discussing further, although they are outside
 the scope of the current spec.

 2. Any other issues you want to raise? Some additional work on
 option signaling that we will bring up in future discussions.

10. Full survey response for Implementation 4

 1. Your institution: Citrix Systems, Inc.

 2. Name(s) of people in your implementation and test teams: NA

 3. Do you want your answers to Question 1.1 and 1.2 above to be
 anonymised? No

 3.2. Question 2: Preliminary information about your implementation
 Question 2 gathers some preliminary information.

 1. What OS is your implementation for? (or is it application layer?)
 NetScaler Firmware

 2. Do you support IPv4 or IPv6 addresses or both? Both

 3. Is it publicly available (or will it be?) (for free or a fee?)
 It is available for purchase

 4. Overall, what are you implementation and testing plans? (details
 can be given against individual items later)

 5. Is it an independent implementation? Or does it build on another
 MPTCP implementation -which one? It is an independent implementation

 6. Have you already done some interop tests, for example with
 UCLouvain’s "reference" Linux implementation? Yes, our
 implementation is extensively tested with Linux reference
 implementation

 7. Would you be prepared to take part in an interop event, for
 example adjacent to IETF-87 in Berlin?

 3.3. Question 3: Support for MPTCP’s Signalling Functionality
 Question 3 asks about support for the various signalling messages
 that the MPTCP protocol defines. *** For each message, please give a
 little information about the status of your implementation: for
 example, you may have implemented it and fully tested it; the

Eardley Expires January 13, 2014 [Page 31]

Internet-Draft Survey of MPTCP Implementations July 2013

 implementation may be in progress; you have not yet implemented it
 but plan to soon (timescale?); you may you have no intention to
 implement it (why?); etc.

 1. Connection initiation (MP_CAPABLE) [Section 3.1 RFC6824] a. What
 is the status of your implementation? Fully implemented and tested

 b. Any other comments or information? One security concern here is
 that the keys are exchanged in plain text which is prone to attacks
 and also the key generation mechanism is highly computational
 intensive

 2. Starting a new subflow (MP_JOIN) [Section 3.2 RFC6824] a. What
 is the status of your implementation? Fully implemented and tested

 b. Can either end of the connection start a new subflow (or only the
 initiator of the original subflow)? Only the initiator of the
 original subflow can initiate additional subflows.

 c. What is the maximum number of subflows your implementation can
 support? we support maximum 6 subflows.

 d. Any other comments or information?

 3. Data transfer (DSS) [Section 3.3 RFC6824] a. What is the status
 of your implementation? Fully implemented and tested

 b. The "Data ACK" field can be 4 or 8 octets. Which one(s) have you
 implemented? Our implementation supports both 4 or 8 Octets Data Ack
 in both the directions

 c. The "Data sequence number" field can be 4 or 8 octets. Which
 one(s) have you implemented? Our implementation supports both 4 or 8
 Octets DSN in both the directions

 d. Does your implementation support the "DATA_FIN" operation to
 close an MPTCP connection? YES

 e. Does your implementation support the "Checksum" field (which is
 negotiated in the MP_CAPABLE handshake)? YES

 f. Any other comments or information?

 4. Address management (ADD_ADDR and REMOVE_ADDR) [Section 3.4
 RFC6824]

 a. What is the status of your implementation? REMOVE_ADDR is
 implemented and tested

Eardley Expires January 13, 2014 [Page 32]

Internet-Draft Survey of MPTCP Implementations July 2013

 b. Can your implementation do ADD_ADDRESS for addresses that appear
 after the connection has been established? NO

 c. Any other comments or information? ADD_ADDRESS may not be much
 useful in the real environment situation given that most of the
 clients are behind the NATing devices.

 5. Fast close (MP_FASTCLOSE) [Section 3.5 RFC6824] a. What is the
 status of your implementation? Implemented and tested b. Any other
 comments or information?

 3.4. Question 4: Fallback from MPTCP Question 4 asks about action
 when there is a problem with MPTCP, for example due to a middlebox
 mangling MPTCP’s signalling. The connection needs to fall back: if
 the problem is on the first subflow then MPTCP falls back to TCP,
 whilst if the problem is on an additional subflow then that subflow
 is closed with a TCP RST, as discussed in [Section 3.6 RFC6824].

 1. If the MP_CAPABLE option is removed by a middlebox, does your
 implementation fall back to TCP? YES

 2. If the MP_JOIN option does not get through on the SYNs, does your
 implementation close the additional subflow? YES

 3. If the DSS option does not get through on the first data
 segment(s), does your implementation fall back? (either falling back
 to MPTCP (if the issue is on the first subflow) or closing the
 additional subflow (if the issue is on an additional subflow)) YES

 4. Similarly, if the "DATA ACK" field does not correctly acknowledge
 the first data segment(s), does your implementation fall back? If
 the sender receives pure ack for its first DSS packet then it
 fallsback to regular TCP.

 5. Does your implementation protect data with the "Checksum" field
 in the DSS option [Section 3.3 RFC6824]? If the checksum fails
 (because the subflow has been affected by a middlebox), does your
 implementation immediately close the affected subflow (with a TCP
 RST) with the MP_FAIL Option? If the checksum fails and there is a
 single subflow, does your implementation handle this as a special
 case, as described in [Section 3.6 RFC6824]? Yes, our implementation
 supports DSS checksum and will close the subflow with RST if the
 checksum validation fails and there are more than one subflows and
 sends MP_FAIL if there is a single subflow expecting infinite map
 from the peer.

 6. Does your implementation fall back to TCP by using an "infinite
 mapping" [Section 3.3.1 RFC6824] (so that the subflow-level data is

Eardley Expires January 13, 2014 [Page 33]

Internet-Draft Survey of MPTCP Implementations July 2013

 mapped to the connection-level data for the remainder of the
 connection)? YES.

 7. Did you find any corner cases where MPTCP’s fallback didn’t
 happen properly? We have found few cases where the draft is not
 clear about the recommended action and fallback strategy, like: 1.
 what is the expected behavior when pure ack or data packet without
 dss is received in middle of transaction? How the hosts should
 fallback in this case? This can happen if the routing changes and
 the new path drops mptcp options. In this case MP_FAIL/infinite map
 exchange may not be possible and so could not decide whether both
 parties are in sync to fallback to tcp. 2. whether infinite map is
 unidirectional or bidirectional? If one host is sending infinite map
 to peer, does the peer also needs to send infinite map to the host?
 Exchanging infinite map and falling back to TCP from both ends is
 easy from implementation point of view. 8. Any other comments or
 information about fallback?

 3.5. Question 5: Heuristics Question 5 gathers information about
 heuristics: aspects that are not required for protocol correctness
 but impact the performance. We would like to document best practice
 so that future implementers can learn from the experience of
 pioneers. The references contain some initial comments about each
 topic.

 1. Receiver considerations [S3.3.4, RFC6824]: What receiver buffer
 have you used? Does this depend on the retransmission strategy?
 What advice should we give about the receiver? Our implementation
 uses varying buffer size based on the services and application type.

 2. Sender considerations [S3.3.5, RFC6824]: How do you determine how
 much data a sender is allowed to send and how big the sender buffer
 is? What advice should we give about the sender? The send side flow
 control is handled at mptcp level and is independent to subflows.
 The mptcp level flow control is (almost) same as the regular TCP flow
 control.

 3. Reliability and retransmissions [S3.3.6, RFC6824]: What is your
 retransmission policy? (when do you retransmit on the original
 subflow vs on another subflow or subflows?) When do you decide that
 a subflow is underperforming and should be reset, and what do you
 then do? What advice should we give about this issue? The
 retransmission is done by the subflows as long as the subflow is
 alive and is not removed by the REM_ADDR/RST/.. . If 3 RTO happens
 on the subflow doing retransmission and multiple subflows are
 available then the mptcp starts retransmission from additional
 subflow. The original subflow continues retransmission for 7RTO and
 will be closed after that with RST.

Eardley Expires January 13, 2014 [Page 34]

Internet-Draft Survey of MPTCP Implementations July 2013

 4. Port usage [S3.3.8.1, RFC6824]: Does your implementation use the
 same port number for additional subflows as for the first subflow?
 Have you used the ability to define a specific port in the Add
 Address option? What advice should we give about this issue? Our
 current implementation doesnot support ADD_ADDR and subflow
 initiation.

 5. Delayed subflow start [S3.3.8.2, RFC6824]: What factors does your
 implementation consider when deciding about opening additional
 subflows? What advice should we give about this issue? NA

 6. Failure handling [S3.3.8.3, RFC6824]: Whilst the protocol defines
 how to handle some unexpected signals, the behaviour after other
 unexpected signals is not defined. What advice should we give about
 this issue? RFC should clearly define failure case handling
 otherwise it creates interoperability problems among various
 implementations. Our strategy in most of the unexpected failuire
 case is to send MP_FAIL RST with expected DSN if there are multiple
 subflows and MP_FAIL if there is a single subflow expecting infinite
 map from the peer.

 7. Use of TCP options: As discussed in [Appendix A, RFC6824], the
 TCP option space is limited, but a brief study found there was enough
 room to fit all the MPTCP options. However there are constraints on
 which MPTCP option(s) can be included in packets with other TCP
 options - do the suggestions in Appendix A need amending or
 expanding? Looks fine now. Atleast timestamp can be included with
 every dss packet (28bytes for dss and 12bytes for Timestamp), but if
 there are any other options which needs to be included in data
 packets then the implementation has to choose which one to include
 among them.

 8. What other heuristics should we give advice about? Any other
 comments or information?

 3.6. Question 6: Security Question 6 asks about Security related
 matters [Section 5 RFC6824].

 1. Does your implementation use the hash-based, HMAC-SHA1 security
 mechanism defined in [RFC6824]? YES.

 2. Does your implementation support any other handshake algorithms?
 NO.

 3. It has been suggested that a Standards-track MPTCP needs a more
 secure mechanism. Do you have any views about how to achieve this?
 Yes we also feel more secure and light weight mechanism is required.

Eardley Expires January 13, 2014 [Page 35]

Internet-Draft Survey of MPTCP Implementations July 2013

 4. Any other comments or information?

 3.7. Question 7: IANA Question 7 asks about IANA related matters.

 1. Does your implementation follow the IANA-related definitions?
 [Section 8 RFC6824] defines: TCP Option Kind number (30); the sub-
 registry for "MPTCP Option Subtypes"; and the sub-registry for "MPTCP
 Handshake Algorithms" YES. 2. Any other comments or information?

 3.8. Question 8: Congestion control and subflow policy Question 8
 asks about how you share traffic across multiple subflows.

 1. How does your implementation share traffic over the available
 paths? For example: as a spare path on standby (’all-or- nothing’),
 as an ’overflow’, etc? Does it have the ability to send /receive
 traffic across multiple subflows simultaneously? We give preference
 to the path that client is currently using to send data/ack and also
 has policy based on primary/backup setup. We accept data from
 multiple subflows simultaneously but don’t send it simultaneously
 out.

 2. Does your implementation support "handover" from one subflow to
 another when losing an interface? YES.

 3. Does your implementation support the coupled congestion control
 defined in [RFC6356]? NO.

 4. Does your implementation support some other coupled congestion
 control (ie that balances traffic on multiple paths according to
 feedback)? NO.

 5. The MP_JOIN (Starting a new subflow) Option includes the "B" bit,
 which allows the sender to indicate whether it wishes the new subflow
 to be used immediately or as a backup if other path(s) fail. The
 MP_PRIO Option is a request to change the "B" bit - either on the
 subflow on which it is sent, or (by setting the optional Address ID
 field) on other subflows. Does your implementation support the "B"
 bit and MP_PRIO mechanisms? Do you think they’re useful, or have
 another suggestion? YES, our implementation supports both ’B’ flag
 and MP_PRIO options, they are much useful to change the priority of
 the subflows and to decide which subflow to use for data transfer.

 6. Any other comments or information or suggestions about the advice
 we should give about congestion control [S3.3.7 RFC6824] and subflow
 policy [S3.3.8 RFC6824]?

 3.9. Question 9: API Question 9 gathers information about your API.
 [RFC6897] considers the MPTCP Application Interface.

Eardley Expires January 13, 2014 [Page 36]

Internet-Draft Survey of MPTCP Implementations July 2013

 1. With your implementation, can legacy applications use (the
 existing sockets API to use) MPTCP? How does the implementation
 decide whether to use MPTCP? Should the advice in [Section 4,
 RFC6897] be modified or expanded? NA.

 2. The "basic MPTCP API" enables MPTCP-aware applications to
 interact with the MPTCP stack via five new socket options. For each
 one, have you implemented it? has it been useful? a.
 TCP_MULTIPATH_ENABLE? b. TCP_MULTIPATH_ADD? c.
 TCP_MULTIPATH_REMOVE? d. TCP_MULTIPATH_SUBFLOWS? e.
 TCP_MULTIPATH_CONNID? NA.

 3. Have you implemented any aspects of an "advanced MPTCP API"?
 ([Appendix A, RFC6897] hints at what it might include.) NA. 4. Any
 other comments or information?

 3.10. Question 10: Deployments, use cases and operational
 experiences Question 10 takes the opportunity of this survey to
 gather some limited information about operational experiences and
 deployments. Any very brief information would be appreciated, for
 example:

 1. What deployment scenarios are you most interested in? MPTCP
 Proxy deployment where the mptcp connections from the clients are
 terminated and the tcp connection is established on the other side.

 2. Is your deployment on "the Internet" or in a controlled
 environment? Targeted for the Internet deployment.

 3. Is your deployment on end hosts or with a MPTCP-enabled proxy (at
 one or both ends?)? Proxy.

 4. What do you see as the most important benefits of MPTCP in your
 scenario(s)? Reliability and fault tolerance.

 5. How extensively have you deployed and experimented with MPTCP so
 far?

 6. MPTCP’s design seeks to maximise the chances that the signalling
 works through middleboxes. Did you find cases where middleboxes
 blocked MPTCP signalling? Yes some firewalls seem dropping MPTCP
 options.

 7. MPTCP’s design seeks to ensure that, if there is a problem with
 MPTCP signalling, then the connection either falls back to TCP or
 removes the problematic subflow. Did you find any corner cases where
 this didn’t happen properly? Few cases listed above.

Eardley Expires January 13, 2014 [Page 37]

Internet-Draft Survey of MPTCP Implementations July 2013

 8. Have you encountered any issues or drawbacks with MPTCP? 9. Any
 other comments or information?

 3.11. Question 11: Improvements to RFC6824

 1. Are there any areas where [RFC6824] could be improved, either in
 technical content or clarity? More clarity required in fallback
 cases.

 2. Any other issues you want to raise?

11. Normative References

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, October 2011.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

Author’s Address

 Philip Eardley
 BT

Eardley Expires January 13, 2014 [Page 38]

