
TCP Maintenance and Minor Extensions (tcpm) F. Gont

Internet-Draft UTN-FRH / SI6 Networks

Updates: 793 (if approved) D. Borman

Intended status: Standards Track Quantum Corporation

Expires: September 12, 2019 March 11, 2019

 On the Validation of TCP Sequence Numbers

 draft-gont-tcpm-tcp-seq-validation-04.txt

Abstract

 When TCP receives packets that lie outside of the receive window, the

 corresponding packets are dropped and either an ACK, RST or no

 response is generated due to the out-of-window packet, with no

 further processing of the packet. Most of the time, this works just

 fine and TCP remains stable, especially when a TCP connection has

 unidirectional data flow. However, there are three scenarios in

 which packets that are outside of the receive window should still

 have their ACK field processed, or else a packet war will take place.

 The aforementioned issues have affected a number of popular TCP

 implementations, typically leading to connection failures, system

 crashes, or other undesirable behaviors. This document describes the

 three scenarios in which the aforementioned issues might arise, and

 formally updates RFC 793 such that these potential problems are

 mitigated.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Gont & Borman Expires September 12, 2019 [Page 1]

Internet-Draft TCP Sequence Number Validation March 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. TCP Sequence Number Validation 3

 3. Scenarios in which Undesirable Behaviors Might Arise 4

 3.1. TCP simultaneous open 4

 3.2. TCP self connects . 6

 3.3. TCP simultaneous close 6

 3.4. Simultaneous Window Probes 8

 4. Updating RFC 793 . 9

 4.1. TCP sequence number validation 9

 4.2. Alternative fix for TCP sequence number validation . . . 14

 4.3. TCP self connects . 14

 5. IANA Considerations . 14

 6. Security Considerations 14

 7. Acknowledgements . 14

 8. References . 14

 8.1. Normative References 15

 8.2. Informative References 15

 Authors’ Addresses . 15

1. Introduction

 TCP processes incoming packets in in-sequence order. Packets that

 are not in-sequence but have data that lies in the receive window are

 queued for later processing. Packets that lie outside of the receive

 window are dropped and either an ACK, RST or no response is generated

 due to the out-of-window packet, with no further processing of the

 packet. Most of the time, this works just fine and TCP remains

 stable, especially when a TCP connection has unidirectional data

 flow.

Gont & Borman Expires September 12, 2019 [Page 2]

Internet-Draft TCP Sequence Number Validation March 2019

 However, there are three situations in which packets that are outside

 of the receive window should still have their ACK field processed.

 These situations arise during a simultaneous open, simultaneous

 window probes and a simultaneous close. In all three of these cases,

 a packet will arrive with a sequence number that is one to the left

 of the window, but the acknowledgement field has updated information

 that needs to be processed to avoid entering a packet war, in which

 both sides of the connection generate a response to the received

 packet, which just causes the other side to do the same thing. This

 issue has affected a number of popular TCP implementations, typically

 leading to connection failures, system crashes, or other undesirable

 behaviors.

 Section 2 provides an overview of the TCP sequence number validation

 checks specified in RFC 793. Section 3 describes the three scenarios

 in which the current TCP sequence number validation checks can lead

 to undesirable behaviors. Section 4 formally updates RFC 793 such

 that these issues are mitigated.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

2. TCP Sequence Number Validation

 Section 3.3 of RFC 793 [RFC0793] specifies (in pp. 25-26) how the TCP

 sequence number of incoming segments is to be validated. It

 summarizes the validation of the TCP sequence number with the

 following table:

 Segment Receive Test

 Length Window

 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 RFC 793 states that if an incoming segment is not acceptable, an

 acknowledgment should be sent in reply (unless the RST bit is set),

 and that after sending the acknowledgment, the unacceptable segment

 should be dropped.

Gont & Borman Expires September 12, 2019 [Page 3]

Internet-Draft TCP Sequence Number Validation March 2019

 Section 3.9 of RFC 793 repeats (in pp. 69-76) the same validation

 checks when describing the processing of incoming TCP segments meant

 for connections that are in the SYN-RECEIVED, ESTABLISHED, FIN-WAIT-

 1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, or TIME-WAIT states

 (i.e., any state other than CLOSED, LISTEN, or SYN-SENT).

 A key problem with the aforementioned checks is that it assumes that

 a segment must be processed only if a portion of it overlaps with the

 receive window. However, there are some cases in which the

 Acknowledgement information in an incoming segment needs to be

 processed by TCP even if the contents of the segment does not overlap

 with the receive window. Otherwise, the TCP state machine may become

 dead-locked, and this situation may result in undesirable behaviors

 such as system crashes.

3. Scenarios in which Undesirable Behaviors Might Arise

 The following subsections describe the three scenarios in which the

 TCP Sequence Number validation specified n RFC 793 (and described in

 Section 2 of this document) could result in undesirable behaviors.

3.1. TCP simultaneous open

 The following figure illustrates a typical "simultaneous open"

 attempt.

Gont & Borman Expires September 12, 2019 [Page 4]

Internet-Draft TCP Sequence Number Validation March 2019

 TCP A TCP B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <--

 7. ... <SEQ=100><ACK=301><CTL=SYN,ACK> -->

 8. --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 9. <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <--

 10. ... <SEQ=100><ACK=301><CTL=ACK> -->

 (Failed) Simultaneous Connection Synchronization

 In line 2, TCP A performs an "active open" by sending a SYN segment

 to TCP B, and enters the SYN-SENT state. In line 3, TCP B performs

 an "active open" by sending a SYN segment to TCP A, and enters the

 "SYN-SENT" state; when TCP A receives this SYN segment sent by TCP B,

 it enters the SYN-RECEIVED state, and its RCV.NXT becomes 301. In

 line 4, similarly, when TCP B receives the SYN segment sent by TCP A,

 it enters the SYN-RECEIVED STATE and its RCV.NXT becomes 101. In

 line 5, TCP A sends a SYN/ACK in response to the received SYN segment

 from line 3. In line 6, TCP B sends a SYN/ACK in response to the

 received SYN segment from line 4. In line 7, TCP B receives the SYN/

 ACK from line 5. In line 8, TCP A receives the SYN/ACK from line 6,

 which fails the TCP Sequence Number validation check. As a result,

 the received packet is dropped, and a SYN/ACK is sent in response.

 In line 9, TCP B processes the SYN/ACK from line 7, which fails the

 TCP Sequence Number validation check. As a result, the received

 packet is dropped, and a SYN/ACK is sent in response. In line 10,

 the SYN/ACK from line 9 arrives at TCP B. The segment exchange from

 lines 8-10 will continue forever (with both TCP end-points will be

 stuck in the SYN-RECEIVED state), thus leading to a SYN/ACK war.

Gont & Borman Expires September 12, 2019 [Page 5]

Internet-Draft TCP Sequence Number Validation March 2019

3.2. TCP self connects

 Some systems have been found to be unable to process TCP connection

 requests in which the source endpoint {Source Address, Source Port}

 is the same as the destination end-point {Destination Address,

 Destination Port}. Such a scenario might arise e.g. if a process

 creates a socket, bind()s a local end-point (IP address and TCP

 port), and then issues a connect() to the same end-point as that

 specified to bind().

 While not widely employed in existing applications, such a socket

 could be employed as a "full-duplex pipe" for Inter-Process

 Communication (IPC).

 This scenario is described in detail in pp. 960-962 of

 [Wright1994].

 The aforementioned scenario has been reported to cause malfunction of

 a number of implementations [CERT1996], and has been exploited in the

 past to perform Denial of Service (DoS) attacks [Meltman1997]

 [CPNI-TCP].

 While this scenario is not common in the real world, TCP should

 nevertheless be able to process them without the need of any "extra"

 code: a SYN segment in which the source end-point {Source Address,

 Source Port} is the same as the destination end-point {Destination

 Address, Destination Port} should result in a "simultaneous open"

 scenario, such as the one described in page 32 of RFC 793 [RFC0793].

 Therefore, those TCP implementations that correctly handle

 simultaneous opens should already be prepared to handle these unusual

 TCP segments.

3.3. TCP simultaneous close

 The following figure illustrates a typical "simultaneous close"

 attempt, in which the FIN segments sent by each TCP end-point cross

 each other in the network.

Gont & Borman Expires September 12, 2019 [Page 6]

Internet-Draft TCP Sequence Number Validation March 2019

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ...

 3. CLOSING <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <-- FIN-WAIT-1

 4. ... <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSING

 5. --> <SEQ=100><ACK=301><CTL=FIN,ACK> ...

 6. <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <--

 7. ... <SEQ=100><ACK=301><CTL=FIN,ACK> -->

 8. --> <SEQ=100><ACK=301><CTL=FIN,ACK> ...

 9. <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <--

 10. ... <SEQ=100><ACK=301><CTL=FIN,ACK> -->

 (Failed) Simultaneous Connection Termination

 In line 1, we assume that both end-points of the connection are in

 the ESTABLISHED state. In line 2, TCP A performs an "active close"

 by sending a FIN segment to TCP B, thus entering the FIN-WAIT-1

 state. In line 3, TCP B performs an active close sending a FIN

 segment to TCP A, thus entering the FIN-WAIT-1 state; when this

 segment is processed by TCP A, it enters the CLOSING state (and its

 RCV.NXT becomes 301).

 Both FIN segments cross each other on the network, thus resulting

 in a "simultaneous connection termination" (or "simultaneous

 close") scenario.

 In line 4, the FIN segment sent by TCP A arrives to TCP B, causing it

 to transition to the CLOSING state (at this point, TCP B’s RCV.NXT

 becomes 101). In line 5, TCP A acknowledges the receipt of the TCP

 B’s FIN segment, and also sets the FIN bit in the outgoing segment

 (since it has not yet been acknowledged). In line 6, TCP B

 acknowledges the receipt of TCP A’s FIN segment, and also sets the

 FIN bit in the outgoing segment (since it has not yet been

 acknowledged). In line 7, the FIN/ACK from line 5 arrives at TCP B.

 In line 8, the FIN/ACK from line 6 fails the TCP sequence number

 validation check, and thus elicits a ACK segment (the segment also

 contains the FIN bit set, since it had not yet been acknowledged).

 In line 9, the FIN/ACK from line 7 fails the TCP sequence number

Gont & Borman Expires September 12, 2019 [Page 7]

Internet-Draft TCP Sequence Number Validation March 2019

 validation check, and hence elicits an ACK segment (the segment also

 contains the FIN bit set, since it had not yet been acknowledged).

 In line 10, the FIN/ACK from line 8 finally arrives at TCP B.

 The packet exchange from lines 8-10 will repeat indefinitely, with

 both TCP end-points stuck in the CLOSING state, thus leading to a

 "FIN war": each FIN/ACK segment sent by a TCP will elicit a FIN/ACK

 from the other TCP, and each of these FIN/ACKs will in turn elicit

 more FIN/ACKs.

3.4. Simultaneous Window Probes

 The following figure illustrates a scenario in which the "persist

 timer" at both TCP end-points expires, and both TCP end-points send a

 "window probes" that cross each other in the network.

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (both TCP windows open)

 3. --> <SEQ=100><DATA=1><ACK=300><CTL=ACK> ...

 4. <-- <SEQ=300><DATA=1><ACK=100><CTL=ACK> <--

 5. ... <SEQ=100><DATA=1><ACK=300><CTL=ACK> -->

 6. --> <SEQ=100><ACK=301><CTL=ACK> ...

 7. <-- <SEQ=300><ACK=101><CTL=ACK> <--

 8. ... <SEQ=100><ACK=301><CTL=ACK> -->

 9. --> <SEQ=100><ACK=301><CTL=ACK> ...

 10. <-- <SEQ=300><ACK=101><CTL=ACK> <--

 11. ... <SEQ=100><ACK=301><CTL=ACK> -->

 (Failed) Simultaneous Connection Termination

 In line 1, we assume that both end-points of the connection are in

 the ESTABLISHED state; additionally, TCP A’s RCV.NXT is 300, while

 TCP B’s RCV.NXT is 100, and the receive window (RCV.WND) at both TCP

 end-points is 0. In line 2, both TCP windows open. In line 3, the

 "persist timer" at TCP A expires, and hence TCP A sends a "Window

Gont & Borman Expires September 12, 2019 [Page 8]

Internet-Draft TCP Sequence Number Validation March 2019

 Probe". In line 4, the "persist timer" at TCP B expires, and hence

 TCP B sends a "Window Probe".

 Both Window Probes cross each other in the network.

 When this probe arrives at TCP A, TCP a’s RCV.NXT becomes 301, and an

 ACK segment is sent to advertise the new window (this ACK is shown in

 line 6). In line 5, TCP A’s Window Probe from line 3 arrives at TCP

 B. TCP B’s RCV-WND becomes 101. In line 6, TCP A sends the ACK to

 advertise the new window. In line 7, TCP B sends an ACK to advertise

 the new Window. When this ACK arrives at TCP A, the TCP Sequence

 Number validation fails, since SEG.SEQ=300 and RCV.NXT=301.

 Therefore, this segment elicits a new ACK (meant to re-synchronize

 the sequence numbers). In line 8, the ACK from line 6 arrives at TCP

 B. The TCP sequence number validation for this segment fails, since

 SEG.SEQ=100 AND RCV.NXT=101. Therefore, this segment elicits a new

 ACK (meant to re-synchronize the sequence numbers).

 Line 9 and line 11 shows the ACK elicited by the segment from line 7,

 while line 10 shows the ACK elicited by the segment from line 8. The

 sequence numbers of these ACK segments will be considered invalid,

 and hence will elicit further ACKs. Therefore, the segment exchange

 from lines 9-11 will repeat indefinitely, thus leading to an "ACK

 war".

4. Updating RFC 793

4.1. TCP sequence number validation

 The following text from Section 3.3 (pp. 25-26) of [RFC0793]:

Gont & Borman Expires September 12, 2019 [Page 9]

Internet-Draft TCP Sequence Number Validation March 2019

 ---------------- cut here -------------- cut here ----------------

 A segment is judged to occupy a portion of valid receive sequence

 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the

 segment falls in the window, the second part of the test checks to see

 if the end of the segment falls in the window; if the segment passes

 either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero

 windows and zero length segments, we have four cases for the

 acceptability of an incoming segment:

 Segment Receive Test

 Length Window

 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 ---------------- cut here -------------- cut here ----------------

 is replaced with:

Gont & Borman Expires September 12, 2019 [Page 10]

Internet-Draft TCP Sequence Number Validation March 2019

 ---------------- cut here -------------- cut here ----------------

 A segment is judged to occupy a portion of valid receive sequence

 space if

 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the

 segment falls in the window (or one byte to the left to the window),

 the second part of the test checks to see if the end of the segment

 falls in the window (or one byte to the left of the window); if the

 segment passes either part of the test it contains data in the

 window or control information that needs to be processed by TCP.

 Actually, it is a little more complicated than this. Due to zero

 windows and zero length segments, we have four cases for the

 acceptability of an incoming segment:

 Segment Receive Test

 Length Window

 ------- ------- ---

 0 0 RCV.NXT-1 =< SEG.SEQ <= RCV.NXT

 0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 or RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 ---------------- cut here -------------- cut here ----------------

 Additionally, the following text from Section 3.9 (pp.69-70) of

 [RFC0793]:

Gont & Borman Expires September 12, 2019 [Page 11]

Internet-Draft TCP Sequence Number Validation March 2019

 ---------------- cut here -------------- cut here ----------------

 Segments are processed in sequence. Initial tests on arrival

 are used to discard old duplicates, but further processing is

 done in SEG.SEQ order. If a segment’s contents straddle the

 boundary between old and new, only the new parts should be

 processed.

 There are four cases for the acceptability test for an incoming

 segment:

 Segment Receive Test

 Length Window

 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but

 special allowance should be made to accept valid ACKs, URGs and

 RSTs.

 If an incoming segment is not acceptable, an acknowledgment

 should be sent in reply (unless the RST bit is set, if so drop

 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment

 and return.

 In the following it is assumed that the segment is the idealized

 segment that begins at RCV.NXT and does not exceed the window.

 One could tailor actual segments to fit this assumption by

 trimming off any portions that lie outside the window (including

 SYN and FIN), and only processing further if the segment then

 begins at RCV.NXT. Segments with higher beginning sequence

 numbers may be held for later processing.

 ---------------- cut here -------------- cut here ----------------

 is replaced with:

Gont & Borman Expires September 12, 2019 [Page 12]

Internet-Draft TCP Sequence Number Validation March 2019

 ---------------- cut here -------------- cut here ----------------

 Segments are processed in sequence. Initial tests on arrival

 are used to discard old duplicates, but further processing is

 done in SEG.SEQ order. If a segment’s contents straddle the

 boundary between old and new, only the new parts should be

 processed. Acknowledgement information must still be processed

 when the contents of the incoming segment are one byte to the

 left of the receive window.

 This is to handle simultaneous opens, simultaneous closes,

 and simultaneous window probes.

 There are four cases for the acceptability test for an incoming

 segment:

 Segment Receive Test

 Length Window

 ------- ------- ---

 0 0 RCV.NXT-1 =< SEG.SEQ <= RCV.NXT

 0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 or RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but

 special allowance should be made to accept valid ACKs, URGs and

 RSTs.

 If an incoming segment is not acceptable, an acknowledgment

 should be sent in reply (unless the RST bit is set, if so drop

 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment

 and return.

 In the following it is assumed that the segment is the idealized

 segment that begins at RCV.NXT and does not exceed the window.

 One could tailor actual segments to fit this assumption by

 trimming off any portions that lie outside the window (including

 SYN and FIN). Segments with higher beginning sequence numbers may

 be held for later processing. Acknowledgement information must

 still be processed when the contents of the incoming segment are

Gont & Borman Expires September 12, 2019 [Page 13]

Internet-Draft TCP Sequence Number Validation March 2019

 one byte to the left of the receive window.

 ---------------- cut here -------------- cut here ----------------

4.2. Alternative fix for TCP sequence number validation

 The Linux kernel performs a slightly different TCP sequence number

 validation check, that can accommodate window probes of any size (as

 opposed to the de facto standard 1-byte window probes). This makes

 the code more general, at the expense of additional state in the TCB

 (e.g., the TCP sequence number employed in the last window probe).

4.3. TCP self connects

 TCP MUST be able to gracefully handle connection requests (i.e., SYN

 segments) in which the source end-point (IP Source Address, TCP

 Source Port) is the same as the destination end-point (IP Destination

 Address, TCP Destination Port). Such segments MUST result in a TCP

 "simultaneous open", such as the one described in page 32 of RFC 793

 [RFC0793].

 Those TCP implementations that correctly handle simultaneous opens

 are expected to gracefully handle this scenario.

5. IANA Considerations

 This document has no IANA actions. The RFC Editor is requested to

 remove this section before publishing this document as an RFC.

6. Security Considerations

 This document describes a problem found in the current validation

 rules for TCP sequence numbers. The aforementioned problem has

 affected some popular TCP implementations, typically leading to

 connection failures, system crashes, or other undesirable behaviors.

 This document formally updates RFC 793, such that the aforementioned

 issues are eliminated.

7. Acknowledgements

 Thhe authors of this document would like to thank Theo de Raadt, Rui

 Paulo and Michael Scharf for providing valuable comments on earlier

 versions of this document.

8. References

Gont & Borman Expires September 12, 2019 [Page 14]

Internet-Draft TCP Sequence Number Validation March 2019

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,

 RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

 [CERT1996]

 CERT, "CERT Advisory CA-1996-21: TCP SYN Flooding and IP

 Spoofing Attacks", 1996,

 <http://www.cert.org/advisories/CA-1996-21.html>.

 [CPNI-TCP]

 Gont, F., "CPNI Technical Note 3/2009: Security Assessment

 of the Transmission Control Protocol (TCP)", 2009,

 <http://www.gont.com.ar/papers/

 tn-03-09-security-assessment-TCP.pdf>.

 [Meltman1997]

 Meltman, "new TCP/IP bug in win95. Post to the bugtraq

 mailing-list", 1996,

 <http://insecure.org/sploits/land.ip.DOS.html>.

 [Wright1994]

 Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:

 The Implementation", Addison-Wesley, 1994.

Authors’ Addresses

 Fernando Gont

 UTN-FRH / SI6 Networks

 Evaristo Carriego 2644

 Haedo, Provincia de Buenos Aires 1706

 Argentina

 Phone: +54 11 4650 8472

 Email: fgont@si6networks.com

 URI: http://www.si6networks.com

Gont & Borman Expires September 12, 2019 [Page 15]

Internet-Draft TCP Sequence Number Validation March 2019

 David Borman

 Quantum Corporation

 1155 Centre Pointe Drive, Suite 1

 Mendota Heights, MN 55120

 U.S.A.

 Phone: 651-688-4394

 Email: david.borman@quantum.com

Gont & Borman Expires September 12, 2019 [Page 16]

