I nt ernet Engi neering Task Force W Eddy, Ed.

I nternet-Draft MTIl Systens

Obsol etes: 793, 879, 6093, 6528, 6691 February 6, 2015
(i f approved)

Updates: 1122 (if approved)

I nt ended status: Standards Track

Expires: August 10, 2015

Transm ssion Control Protocol Specification
draft-eddy-rfc793bis-05

Abst ract

Thi s docunment specifies the Internet’s Transm ssion Control Protoco
(TCP). TCP is an inportant transport |ayer protocol in the Internet
stack, and has continuously evol ved over decades of use and growt h of
the Internet. Over this tine, a nunber of changes have been nade to
TCP as it was specified in RFC 793, though these have only been
docunented in a pieceneal fashion. This docunent collects and brings
those changes together with the protocol specification fromRFC 793
Thi s docunent obsol etes RFC 793 and several other RFCs (TODO i st

all actual RFCs when finished).

RFC EDI TOR NOTE: |f approved for publication as an RFC, this should
be marked additionally as "STD: 7" and replace RFC 793 in that role.

Requi renents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

Eddy Expi res August 10, 2015 [Page 1]

Internet-Draft TCP Specification February 2015

This Internet-Draft will expire on August 10, 2015.
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

This docunment may contain material from | ETF Docunents or | ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this document may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into | anguages other
than Engli sh.

Tabl e of Contents

1. Purpose and Scope . 3
2. Introduction . 4
3. Functional SpeC|f|cat|on 4
3.1. Header Format 4
3.2. Termnol ogy . 9
3.3. Sequence Nunbers . e <
3.4. Establishing a connectlon 2 ¢
3.5. dosing a Connection - 27
3.6. Precedence and Security . 29
3.7. Segnentation . < 10]
3.7. 1. NBX|nun18egnent Slze Cpt|on T ¥ §
3.7.2. Path MIU Di scovery . e e e e 32
3.7.3. Interfaces with Varlable NBS Values N V24
3.7.4. 1Pv6 Junmbograns 32
3.8. Data Comunication 32
3.9. Interfaces . . <)
3.9.1. User/TCP Interface Y 4

Eddy Expi res August 10, 2015 [Page 2]

Internet-Draft TCP Specification February 2015

3.9.2. TCP/Lower-Level Interface 43
3.10. Event Processing 44
3.11. dossaryo oo b
4. Changes from RFC 79 Y 47
5. | ANA Considerations .. 15
6. Security and Privacy Considerations 75
7. Acknow edgenents . 1716
8. References 16

8.1. Normative References 1716

8.2. Informative References 16
Appendi x A, TCP Requirenent Sumtmary 17
Author’'s Address ... 80

1. Purpose and Scope

In 1981, RFC 793 [2] was rel eased, docunenting the Transm ssion
Control Protocol (TCP), and replacing earlier specifications for TCP
that had been published in the past.

Since then, TCP has been inpl enented many times, and has been used as
a transport protocol for nunerous applications on the Internet.

For several decades, RFC 793 plus a number of other docunents have
combi ned to serve as the specification for TCP [10]. Over tine, a
number of errata have been identified on RFC 793, as well as
deficiencies in security, performance, and other aspects. A nunber
of enhancements has grown and been docunented separately. These were
never accunul ated together into an update to the base specification

The purpose of this docunent is to bring together all of the | ETF

St andards Track changes that have been made to the basic TCP
functional specification and unify theminto an update of the RFC 793
protocol specification. Some conpanion docunments are referenced for
i mportant algorithns that TCP uses (e.g. for congestion control), but
have not been attenpted to include in this docunent. This is a
consci ous choice, as this base specification can be used with
mul ti ple additional algorithnms that are devel oped and incorporated
separately, but all TCP inplenmentations need to inplenent this
specification as a common basis in order to interoperate. As sone
additional TCP features have becone quite conplicated t hensel ves
(e.g. advanced | oss recovery and congestion control), future
conpani on docunents may attenpt to simlarly bring these together

In addition to the protocol specification that descibes the TCP
segnment format, generation, and processing rules that are to be

i npl emented in code, RFC 793 and ot her updates al so contain

i nformati ve and descriptive text for human readers to understand
aspects of the protocol design and operation. This docunent does not

Eddy Expi res August 10, 2015 [Page 3]

Internet-Draft TCP Specification February 2015

3.

3.

attenpt to alter or update this informative text, and is focused only
on updating the normative protocol specification. W preserve
references to the docunentation containing the inportant explanations
and rational e, where appropriate.

Thi s docunent is intended to be useful both in checking existing TCP
i mpl emrent ations for conformance, as well as in witing new
i mpl enent ati ons.

I ntroduction

RFC 793 contains a discussion of the TCP design goals and provi des
exanpl es of its operation, including exanples of connection

est abli shnent, cl osing connections, and retransmitting packets to
repair | osses.

Thi s docunment describes the basic functionality expected in nodern

i mpl ementations of TCP, and repl aces the protocol specification in
RFC 793. It does not replicate or attenpt to update the exanpl es and
ot her discussion in RFC 793. Oher docunents are referenced to
provi de expl anation of the theory of operation, rationale, and
detail ed di scussion of design decisions. This docunent only focuses
on the normative behavior of the protocol

TEMPORARY EDI TOR'S NOTE: This is an early revision in the process of
updati ng RFC 793. Many pl anned changes are not yet incorporat ed.

***P| ease do not use this revision as a basis for any work or
reference. ***

A list of changes from RFC 793 is contained in Section 4.

TEMPORARY EDI TOR' S NOTE: the current revision of this docunent does
not yet collect all of the changes that will be in the final version
The set of content changes planned for future revisions is kept in
Section 4.

Functi onal Specification
1. Header For mat

TCP segnents are sent as internet datagrans. The Internet Protoco
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host |evel protocols other than
TCP.

Eddy Expi res August 10, 2015 [Page 4]

Internet-Draft TCP Specification February 2015

TCP Header For mat

0 1 2 3
01234567890123456789012345678901
B T i it T s i S e i SR SR
[Sour ce Port | Destination Port |
T T e e o i e S S e R Ch o o SR
| Sequence Number |
B i S S T s i S T st i S S S S S S S S i

Acknowl edgment Nunber [

B i T S e et o i SIS SR SR S
| U AP RIS|F| I
RC S| SlY] W ndow [
G K HTIN N I
+

+
+
93+

I

+- - +-

I I

| O‘f set| Reserved |

I I I

+- B i i S i S S i sk s o S S S I S S
[Checksum [Ur gent Poi nter [
+

I

+

I

+

i i S i it i S S il ik SHE SN SN SR

Opti ons I Paddi ng |
e R S N g

dat a |
B s S S e s e S il o SN S S S S S
TCP Header For mat
Note that one tick mark represents one bit position
Figure 1

Source Port: 16 bits

The source port nunber.
Destination Port: 16 bits

The destination port nunber.
Sequence Nunber: 32 bits

The sequence nunber of the first data octet in this segnent (except

when SYN is present). |If SYNis present the sequence nunber is the

initial sequence nunber (ISN) and the first data octet is | SN+1.
Acknowl edgnment Nunber: 32 bits

If the ACK control bit is set this field contains the value of the

next sequence nunber the sender of the segnent is expecting to
receive. Once a connection is established this is always sent.

Eddy Expi res August 10, 2015 [Page 5]

Internet-Draft TCP Specification February 2015

Data Offset: 4 bits

The nunber of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
i ntegral nunber of 32 bits |ong.

Reserved: 6 bits
Reserved for future use. Mist be zero.
Control Bits: 6 bits (fromleft to right):

URG Urgent Pointer field significant
ACK: Acknow edgrent field significant
PSH: Push Function

RST: Reset the connection

SYN: Synchroni ze sequence nunbers
FIN. No nore data from sender

W ndow. 16 bits

The nunber of data octets beginning with the one indicated in the
acknow edgnent field which the sender of this segnment is willing to
accept.

Checksum 16 bits

The checksumfield is the 16 bit one’s conpl enent of the one’s
conmpl enent sumof all 16 bit words in the header and text. |If a
segnment contains an odd nunber of header and text octets to be
checksumred, the last octet is padded on the right with zeros to
forma 16 bit word for checksum purposes. The pad is not
transmtted as part of the segment. \Vhile conputing the checksum
the checksumfield itself is replaced with zeros.

The checksum al so covers a 96 bit pseudo header conceptually
prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP | ength.
This gives the TCP protection against m srouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/ Network interface in the argunents or results of
calls by the TCP on the IP

Eddy Expi res August 10, 2015 [Page 6]

Internet-Draft TCP Specification February 2015

oo oo oo oo +
| Sour ce Address |
Fom e e e - - Fom e e e - - Fom e e e - - Fom e e e - - +
[Destination Address [
Fommnaann I I I +
| zero | PTCL | TCP Length

oo - oo - oo - oo - +

The TCP Length is the TCP header length plus the data length in
octets (this is not an explicitly transnmtted quantity, but is
computed), and it does not count the 12 octets of the pseudo
header .

Urgent Pointer: 16 bits

This field comuni cates the current value of the urgent pointer as
a positive offset fromthe sequence nunber in this segnment. The
urgent pointer points to the sequence nunber of the octet follow ng
the urgent data. This field is only be interpreted in segnents
with the URG control bit set.

Options: variable

Eddy

Options may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. Al options are included in the
checksum An option rmay begin on any octet boundary. There are
two cases for the format of an option

Case 1. A single octet of option-Kkind.

Case 2: An octet of option-kind, an octet of option-Iength, and
the actual option-data octets.

The option-length counts the two octets of option-kind and option-
Il ength as well as the option-data octets.

Note that the list of options rmay be shorter than the data of fset
field might inply. The content of the header beyond the End- of -
Option option nust be header padding (i.e., zero).

Currently defined options include (kind indicated in octal):

Ki nd Length Meani ng

0 - End of option list.

1 - No- Oper at i on.

2 4 Maxi mum Segnent Si ze.

Expi res August 10, 2015 [Page 7]

Internet-Draft TCP Specification February 2015

A TCP MUST be able to receive a TCP option in any segnent. A TCP
MUST i gnore without error any TCP option it does not inplenent,
assunming that the option has a length field (all TCP options except
End of option list and No-Operation have length fields). TCP MJST
be prepared to handle an illegal option length (e.g., zero) wthout
crashing; a suggested procedure is to reset the connection and | og
t he reason.

Specific Option Definitions

Eddy

End of Option List

This option code indicates the end of the option list. This

nmi ght not coincide with the end of the TCP header according to
the Data Ofset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwi se coincide with the end of the TCP
header .

No- Oper ati on

This option code may be used between options, for exanple, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
recei vers nust be prepared to process options even if they do
not begin on a word boundary.

Maxi mum Segnent Si ze (MSS)

Hom e e oo - Hom e e oo - Fomm e - Hom e e oo - +
| 00000010| 00000100| max seg size |
o m e e oo o m e e oo TR o m e e oo +

Ki nd=2 Lengt h=4
Maxi mum Segnment Size Option Data: 16 bits

If this option is present, then it conmuni cates the nmaxi num
receive segnent size at the TCP which sends this segnent. This

Expi res August 10, 2015 [Page 8]

Internet-Draft TCP Specification February 2015

field may be sent in the initial connection request (i.e., in
segments with the SYN control bit set) and nust not be sent in
other segnents. |If this option is not used, any segment size is
al | owned.

Paddi ng: variabl e

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is conposed of
zeros.

3.2. Term nol ogy

Bef ore we can di scuss very much about the operation of the TCP we
need to introduce sone detailed term nology. The maintenance of a
TCP connection requires the remenbering of several variables. W
concei ve of these variables being stored in a connection record

call ed a Transm ssion Control Block or TCB. Anobng the variables
stored in the TCB are the local and renote socket nunbers, the
security and precedence of the connection, pointers to the user’s
send and receive buffers, pointers to the retransmt queue and to the
current segnent. In addition several variables relating to the send
and receive sequence nunbers are stored in the TCB

Send Sequence Vari abl es

SND. UNA - send unacknow edged
SND. NXT - send next

SND. WAD - send wi ndow

SND. UP - send urgent pointer

SND. W.1 - segnment sequence nunber used for |ast w ndow update

SND. W.2 - segnent acknow edgment nunber used for |ast w ndow
updat e

| SS - initial send sequence nunber

Recei ve Sequence Vari abl es

RCV. NXT - receive next

RCV. WND - receive w ndow

RCV. UP - receive urgent pointer

I RS - initial receive sequence nunber

The followi ng diagrams may help to relate some of these variables to
t he sequence space.

Eddy Expi res August 10, 2015 [Page 9]

Internet-Draft TCP Specification February 2015

Send Sequence Space

I
SND. UNA SND. NXT SND. UNA
+SND. WND

- ol d sequence nunbers which have been acknow edged
- sequence nunbers of unacknow edged data

sequence nunbers allowed for new data transm ssion
- future sequence nunbers which are not yet allowed

A WN P
1

Send Sequence Space
Figure 2

The send window is the portion of the sequence space labeled 3 in
Fi gure 2.

Recei ve Sequence Space

1 - old sequence nunbers whi ch have been acknow edged
2 - sequence nunbers allowed for new reception
3 - future sequence nunbers which are not yet allowed
Recei ve Sequence Space
Figure 3

The receive windowis the portion of the sequence space labeled 2 in
Fi gure 3.

There are al so some variables used frequently in the discussion that
take their values fromthe fields of the current segnent.

Current Segnent Vari abl es

SEG. SEQ - segnent sequence nunber

SEG ACK - segnent acknow edgnment nunber
SEG LEN - segnent |ength

SEG. WAD - segnent w ndow

SEG. UP - segnent urgent pointer

SEG. PRC - segment precedence val ue

Eddy Expi res August 10, 2015 [Page 10]

Internet-Draft TCP Specification February 2015

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN SENT, SYN- RECEl VED,

ESTABLI SHED, FI N-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK
TIME-WAIT, and the fictional state CLOSED. CLOSED is fictiona
because it represents the state when there is no TCB, and therefore,
no connection. Briefly the nmeanings of the states are:

LI STEN - represents waiting for a connection request from any
renote TCP and port.

SYN-SENT - represents waiting for a natching connection request
after having sent a connection request.

SYN- RECEI VED - represents waiting for a confirmng connection
request acknow edgnent after having both received and sent a
connection request.

ESTABLI SHED - represents an open connection, data received can be
delivered to the user. The normal state for the data transfer
phase of the connection

FIN-VWAIT-1 - represents waiting for a connection term nation
request fromthe renote TCP, or an acknow edgnent of the
connection termnation request previously sent.

FIN-WAIT-2 - represents waiting for a connection term nation
request fromthe renote TCP

CLOSE-VWAIT - represents waiting for a connection term nation
request fromthe |l ocal user

CLOSING - represents waiting for a connection ternination request
acknow edgment fromthe renmote TCP

LAST- ACK - represents waiting for an acknow edgnent of the
connection term nation request previously sent to the renote TCP
(this termination request sent to the renote TCP al ready incl uded
an acknow edgnment of the term nation request sent fromthe renote
TCP).

TIME-WAIT - represents waiting for enough tinme to pass to be sure
the renote TCP received the acknow edgnment of its connection
term nation request.

CLCSED - represents no connection state at all

A TCP connection progresses fromone state to another in response to
events. The events are the user calls, OPEN, SEND, RECElIVE, CLOSE

Eddy Expi res August 10, 2015 [Page 11]

Internet-Draft TCP Specification February 2015

ABCORT, and STATUS; the inconing segnents, particularly those
contai ning the SYN, ACK, RST and FIN flags; and timeouts.

The state diagramin Figure 4 illustrates only state changes,
together with the causing events and resulting actions, but addresses
nei ther error conditions nor actions which are not connected with
state changes. In a later section, nore detail is offered with
respect to the reaction of the TCP to events.

NOTA BENE: this diagramis only a summary and nmust not be taken as
the total specification.

e + o \ active OPEN
| CLCSED | L
S e - \ \ Ccreate TCB
A \ \ snd SYN
passi ve OPEN | | CLCSE \ \
—————————————————————— \ \
create TCB | | delete TCB \ \
Y [\ \
rcv RST (note 1) +--------- + CLCSE | \
———————————————————— >| LI STEN | Rt [
/ R + del ete TCB | |
/ rcv SYN [[SEND [[
I R R R | - [\Y
--------- + snd SYN, ACK / \ snd SYN S s
| <o >| |
SYN | rcv SYN [SYN |
ROVD | S-mmmmmmmmm e m e oo oo | SENT |
[snd SYN, ACK [[
R L PR ELSEEEEEE | |
--------- + rcv ACK of SYN \ [/ rcv SYN, ACK S s
I _________________________
[X [[snd ACK
| Y Y
| CLCSE R +
| ------- | ESTAB |
| snd FIN e +
[CLGCSE [[rcv FIN
v e | -
————————— + snd FIN / \ snd ACK Fo-em--- -t
FI N IR LUt > CLOSE |
WAIT-1 |-----mmmmmmmea - [VAIT |
--------- + rcv FIN \ S s
| rcv ACK of FIN ------- CLCSE |
| ---------- - snd ACK | aee---- [
\ X \ snd FIN V
--------- + S S

Eddy Expi res August 10, 2015 [Page 12]

Internet-Draft TCP Specification February 2015

| FI NWAI T- 2| | CLOSING | | LAST- ACK
Fomm e oo - + Fomm e oo - + Fomm e oo - +
| rcv ACK of FIN | rcv ACK of FIN

| rev FIN -eeeeeea - [Timeout =2MSL -------------- [

| ------- X N A L X Y
\ snd ACK Fommeoo-- +del ete TCB Fommeoo-- +
------------------------ > TIME WAIT| ------------------>] CLOSED |
Fomm e oo - + Fomm e oo - +

note 1. The transition from SYN-RCVD to LI STEN on receiving a RST is
conditional on having reached SYN-RCVD after a passive open

note 2: An unshown transition exists fromFINWAIT-1 to TIME-VWAIT if
a FINis received and the local FINis also acknow edged.

TCP Connection State Di agram
Fi gure 4
3.3. Sequence Nunbers

A fundanental notion in the design is that every octet of data sent
over a TCP connection has a sequence nunber. Since every octet is
sequenced, each of them can be acknow edged. The acknow edgnent
mechani sm enpl oyed is cumul ati ve so that an acknow edgnent of
sequence number X indicates that all octets up to but not including X
have been received. This nmechanismallows for straight-forward
duplicate detection in the presence of retransm ssion. Nunbering of
octets within a segnent is that the first data octet immediately
followi ng the header is the | owest nunbered, and the follow ng octets
are nunbered consecutively.

It is essential to renenber that the actual sequence nunber space is
finite, though very large. This space ranges fromO0O to 2**32 - 1.
Since the space is finite, all arithnetic dealing with sequence
nunmbers nust be performed nmodul o 2**32. This unsigned arithmetic
preserves the relationship of sequence nunbers as they cycle from
2**32 - 1 to 0 again. There are sone subtleties to conputer nodul o
arithmetic, so great care should be taken in progranm ng the

conpari son of such values. The synbol "=<" neans "less than or
equal " (rodul o 2**32).

The typical kinds of sequence nunmber conparisons which the TCP nust
perform i ncl ude:

(a) Determining that an acknow edgnent refers to sone sequence
nunber sent but not yet acknow edged.

Eddy Expi res August 10, 2015 [Page 13]

Internet-Draft TCP Specification February 2015

(b) Determining that all sequence nunbers occupied by a segnent
have been acknow edged (e.g., to renove the segment froma
retransm ssi on queue).

(c) Determining that an inconmi ng segnent contains sequence nunbers
whi ch are expected (i.e., that the segment "overlaps" the receive
wi ndow) .

In response to sending data the TCP will receive acknow edgnents.
The follow ng conparisons are needed to process the acknow edgnents.

SND. UNA

ol dest unacknow edged sequence nunber
SND. NXT = next sequence nunber to be sent

SEG. ACK = acknow edgnent fromthe receiving TCP (next sequence
nunber expected by the receiving TCP)

SEG SEQ = first sequence nunber of a segnent

SEG LEN = the nunber of octets occupied by the data in the segnent
(counting SYN and FIN)

SEG SEQ+SEG. LEN-1 = | ast sequence nunber of a segnent

A new acknow edgnent (called an "acceptable ack"), is one for which
the inequality bel ow hol ds:

SND. UNA < SEG ACK =< SND. NXT
A segnment on the retransm ssion queue is fully acknow edged if the
sum of its sequence nunber and length is | ess or equal than the
acknow edgment value in the incom ng segnent.

When data is received the followi ng conpari sons are needed:

RCV. NXT = next sequence nunber expected on an incom ng segments,
and is the left or |l ower edge of the receive w ndow

RCV. NXT+RCV. WND- 1 = | ast sequence nunber expected on an inconing
segnent, and is the right or upper edge of the receive w ndow

SEG SEQ = first sequence nunber occupi ed by the inconing segnent

SEG SEQ+SEG LEN-1 = | ast sequence nunber occupi ed by the incomn ng
segment

Eddy Expi res August 10, 2015 [Page 14]

Internet-Draft TCP Specification February 2015

A segrment is judged to occupy a portion of valid receive sequence
space if

RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
or
RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

The first part of this test checks to see if the beginning of the

segnent falls in the window, the second part of the test checks to
see if the end of the segnent falls in the window, if the segnent

passes either part of the test it contains data in the w ndow.

Actually, it is alittle nore conplicated than this. Due to zero
wi ndows and zero | ength segnents, we have four cases for the
acceptability of an incom ng segnent:

Segment Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WAD

or RCV.NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WAD

Note that when the receive windowis zero no segnments shoul d be
accept abl e except ACK segnments. Thus, it is be possible for a TCP to
mai ntain a zero receive window while transnmitting data and receiving
ACKs. However, even when the receive windowis zero, a TCP nust
process the RST and URG fields of all incom ng segnments.

We have taken advantage of the numbering schene to protect certain
control information as well. This is achieved by inplicitly

i ncluding sonme control flags in the sequence space so they can be
retransmtted and acknow edged wi t hout confusion (i.e., one and only
one copy of the control will be acted upon). Control information is
not physically carried in the segnent data space. Consequently, we
must adopt rules for inplicitly assigning sequence numbers to
control. The SYN and FIN are the only controls requiring this
protection, and these controls are used only at connection opening
and closing. For sequence nunber purposes, the SYNis considered to
occur before the first actual data octet of the segnment in which it

Eddy Expi res August 10, 2015 [Page 15]

Internet-Draft TCP Specification February 2015

occurs, while the FINis considered to occur after the |last actua
data octet in a segnent in which it occurs. The segnent |ength

(SEG LEN) includes both data and sequence space occupying control s.
When a SYN is present then SEG SEQ is the sequence nunber of the SYN

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as

i ncarnati ons of the connection. The problemthat arises fromthis is
-- "how does the TCP identify duplicate segnents from previous

i ncarnati ons of the connection?" This problem becones apparent if
the connection is being opened and cl osed in quick succession, or if
the connection breaks with loss of nenory and is then reestablished.

To avoid confusion we nust prevent segnents fromone incarnation of a
connection from being used while the sanme sequence nunbers may stil
be present in the network froman earlier incarnation. W want to
assure this, even if a TCP crashes and | oses all know edge of the
sequence nunbers it has been using. Wen new connections are
created, an initial sequence nunber (ISN) generator is enployed which
selects a new 32 bit ISN. There are security issues that result if
an off-path attacker is able to predict or guess | SN val ues.

The recomrended | SN generator is based on the conbination of a
(possibly fictitious) 32 bit clock whose | ow order bit is incremented
roughly every 4 microseconds, and a pseudorandom hash function (PRF).
The cl ock conponent is intended to insure that with a Maxi num Segnent
Lifetime (MSL), generated | SNs will be unique, since it cycles
approxi mately every 4.55 hours, which is nuch | onger than the MSL.

TCP SHOULD generate its Initial Sequence Nunmbers with the expression
ISN = M+ F(localip, localport, renoteip, renoteport, secretkey)

where Mis the 4 microsecond tinmer, and F() is a pseudorandom
function (PRF) of the connection’s identifying paranmeters ("l ocalip,
| ocal port, renmoteip, renpteport”) and a secret key ("secretkey").
F() MJUST NOT be conputable fromthe outside, or an attacker could
still guess at sequence nunbers fromthe | SN used for sone other
connection. The PRF could be inplenented as a cryptographic has of
the concatenation of the TCP connection paraneters and sonme secret
data. For discussion of the selection of a specific hash algorithm
and managenment of the secret key data, please see Section 3 of [8].

For each connection there is a send sequence nunber and a receive
sequence nunber. The initial send sequence nunber (I1SS) is chosen by

Eddy Expi res August 10, 2015 [Page 16]

Internet-Draft TCP Specification February 2015

the data sending TCP, and the initial receive sequence nunber (IRS)
is learned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs nust
synchroni ze on each other’s initial sequence nunbers. This is done
in an exchange of connection establishing segnents carrying a contro
bit called "SYN' (for synchronize) and the initial sequence nunbers.
As a shorthand, segnents carrying the SYN bit are also called "SYNs".
Hence, the solution requires a suitable mechanismfor picking an
initial sequence nunber and a slightly involved handshake to exchange
the I SN s.

The synchroni zation requires each side to send it’s own initial
sequence nunber and to receive a confirmation of it in acknow edgnent
fromthe other side. Each side nust also receive the other side’s
initial sequence nunber and send a confirm ng acknow edgnent.

1) A--> B SYN ny sequence nunber is X
2) A <-- B ACK your sequence nunber is X
3) A<-- B SYN ny sequence nunber is Y
4) A --> B ACK your sequence nunber is Y

Because steps 2 and 3 can be conbined in a single nessage this is
called the three way (or three nessage) handshake.

A three way handshake is necessary because sequence numbers are not
tied to a global clock in the network, and TCPs may have different
mechani sns for picking the ISNs. The receiver of the first SYN has
no way of know ng whether the segnent was an ol d del ayed one or not,
unless it renenbers the |ast sequence nunber used on the connection
(which is not always possible), and so it nust ask the sender to
verify this SYN. The three way handshake and the advantages of a

cl ock-driven schene are discussed in [3].

Knowi ng When to Keep Qui et

To be sure that a TCP does not create a segnment that carries a
sequence nunber which nmay be duplicated by an old segnent remaining
in the network, the TCP nust keep quiet for a nmaxi mum segnent
lifetime (MSL) before assigning any sequence nunbers upon starting up
or recovering froma crash in which nenory of sequence nunbers in use
was lost. For this specification the MSL is taken to be 2 ninutes.
This is an engi neering choice, and may be changed if experience
indicates it is desirable to do so. Note that if a TCP is
reinitialized in some sense, yet retains its nmenory of sequence
nunbers in use, then it need not wait at all; it nust only be sure to
use sequence nunbers |l arger than those recently used.

Eddy Expi res August 10, 2015 [Page 17]

Internet-Draft TCP Specification February 2015

The TCP Quiet Tine Concept

This specification provides that hosts which "crash" w thout
retaining any know edge of the |ast sequence nunbers transmitted on
each active (i.e., not closed) connection shall delay enitting any
TCP segnents for at |east the agreed Maxi num Segnment Lifetinme (MSL)
in the internet systemof which the host is a part. |In the
par agr aphs bel ow, an explanation for this specification is given
TCP inplementors may violate the "quiet tine" restriction, but only
at the risk of causing sone old data to be accepted as new or new
data rejected as old duplicated by sonme receivers in the internet
system

TCPs consunme sequence nunber space each tine a segnent is forned and
entered into the network output queue at a source host. The
duplicate detection and sequencing algorithmin the TCP protoco
relies on the unique binding of segnent data to sequence space to the
extent that sequence nunmbers will not cycle through all 2**32 val ues
before the segnment data bound to those sequence numbers has been
delivered and acknow edged by the receiver and all duplicate copies
of the segments have "drained" fromthe internet. Wthout such an
assunption, two distinct TCP segnents coul d conceivably be assigned
the sane or overl appi ng sequence nunbers, causing confusion at the
receiver as to which data is new and which is old. Renenber that
each segnment is bound to as many consecutive sequence nunbers as
there are octets of data and SYN or FIN flags in the segnent.

Under nornal conditions, TCPs keep track of the next sequence nunber
to emt and the ol dest awaiting acknow edgnent so as to avoid

m st akenly using a sequence nunber over before its first use has been
acknow edged. This al one does not guarantee that old duplicate data
is drained fromthe net, so the sequence space has been nmade very

|l arge to reduce the probability that a wandering duplicate will cause
trouble upon arrival. At 2 negabits/sec. it takes 4.5 hours to use
up 2**32 octets of sequence space. Since the nmaxi num segnent
lifetime in the net is not likely to exceed a few tens of seconds,
this is deemed anple protection for foreseeable nets, even if data
rates escalate to 10’s of nmegabits/sec. At 100 negabits/sec, the
cycle time is 5.4 mnutes which may be a little short, but stil
within reason.

The basic duplicate detection and sequencing algorithmin TCP can be
def eat ed, however, if a source TCP does not have any nenory of the
sequence nunbers it last used on a given connection. For exanple, if
the TCP were to start all connections with sequence nunber 0, then
upon crashing and restarting, a TCP might re-forman earlier
connection (possibly after hal f-open connection resolution) and enit
packets with sequence nunbers identical to or overlapping with

Eddy Expi res August 10, 2015 [Page 18]

Internet-Draft TCP Specification February 2015

packets still in the network which were enmitted on an earlier

i ncarnati on of the same connection. |In the absence of know edge
about the sequence nunbers used on a particul ar connection, the TCP
specification recommends that the source delay for MSL seconds before
emtting segnents on the connection, to allowtine for segnents from
the earlier connection incarnation to drain fromthe system

Even hosts which can renenber the tine of day and used it to select
initial sequence nunber values are not imune fromthis probl em
(i.e., even if tine of day is used to select an initial sequence
nunber for each new connection incarnation).

Suppose, for exanple, that a connection is opened starting with
sequence nunber S. Suppose that this connection is not used nuch and
that eventually the initial sequence nunber function (ISN(t)) takes
on a value equal to the sequence nunber, say Sl1, of the |ast segnent
sent by this TCP on a particular connection. Now suppose, at this
instant, the host crashes, recovers, and establishes a new

i ncarnati on of the connection. The initial sequence nunber chosen is
S1 = ISN(t) -- last used sequence nunber on old incarnation of
connection! |If the recovery occurs quickly enough, any old
duplicates in the net bearing sequence nunbers in the nei ghborhood of
S1 may arrive and be treated as new packets by the receiver of the
new i ncarnation of the connection

The problemis that the recovering host may not know for how long it
crashed nor does it know whether there are still old duplicates in
the systemfromearlier connection incarnations.

One way to deal with this problemis to deliberately delay enitting
segrments for one MSL after recovery froma crash- this is the "quiet
time" specification. Hosts which prefer to avoid waiting are willing
to risk possible confusion of old and new packets at a given
destination may choose not to wait for the "quite tine".

| npl enentors nmay provide TCP users with the ability to select on a
connection by connection basis whether to wait after a crash, or may
informally inplement the "quite tine" for all connections.

Qbvi ously, even where a user selects to "wait," this is not necessary
after the host has been "up" for at |east MSL seconds.

To sumari ze: every segnment emtted occupi es one or nobre sequence
nunbers in the sequence space, the nunbers occupied by a segnent are
"busy" or "in use" until MSL seconds have passed, upon crashing a

bl ock of space-tine is occupied by the octets and SYN or FIN fl ags of
the last emtted segnent, if a new connection is started too soon and
uses any of the sequence nunbers in the space-tine footprint of the

| ast segnment of the previous connection incarnation, there is a

Eddy Expi res August 10, 2015 [Page 19]

Internet-Draft TCP Specification February 2015

potential sequence number overlap area which coul d cause confusion at
the receiver.

3.4. Establishing a connection

The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the procedure. When sinmultaneous attenpt
occurs, each TCP receives a "SYN' segnent which carries no

acknow edgnent after it has sent a "SYN'. O course, the arrival of
an ol d duplicate "SYN' segnent can potentially rmake it appear, to the
recipient, that a sinultaneous connection initiation is in progress.
Proper use of "reset" segnents can di sanbi guate these cases.

Several exanples of connection initiation follow. Al though these
exanpl es do not show connecti on synchronization using data-carrying
segnments, this is perfectly legitinmate, so long as the receiving TCP
doesn’t deliver the data to the user until it is clear the data is
valid (i.e., the data nmust be buffered at the receiver until the
connection reaches the ESTABLI SHED state). The three-way handshake
reduces the possibility of false connections. It is the

i npl ementation of a trade-off between nenory and nessages to provide
information for this checking.

The sinpl est three-way handshake is shown in Figure 5 below. The
figures should be interpreted in the following way. Each line is
nunbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segnent fromTCP Ato TCP B, or arrival of a
segnent at B from A Left arrows (<--), indicate the reverse.
Ellipsis (...) indicates a segment which is still in the network
(delayed). An "XXX' indicates a segnent which is |lost or rejected.
Conments appear in parentheses. TCP states represent the state AFTER
the departure or arrival of the segnent (whose contents are shown in
the center of each line). Segnent contents are shown in abbreviated
form wth sequence nunber, control flags, and ACK field. Oher
fields such as wi ndow, addresses, |engths, and text have been |eft
out in the interest of clarity.

Eddy Expi res August 10, 2015 [Page 20]

Internet-Draft TCP Specification February 2015

TCP A TCP B
1. CLCSED LI STEN
2. SYN- SENT --> <SEQ@=100><CTL=SYN> --> SYN- RECEI VED

3. ESTABLI SHED <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <-- SYN- RECEl VED
4. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLI SHED
5. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLI SHED
Basi ¢ 3-Way Handshake for Connection Synchroni zati on
Figure 5

Inline 2 of Figure 5, TCP A begins by sending a SYN segnent
indicating that it will use sequence nunmbers starting with sequence
nunber 100. 1In line 3, TCP B sends a SYN and acknow edges the SYN it
received fromTCP A. Note that the acknow edgnent field indicates
TCP B is now expecting to hear sequence 101, acknow edgi ng the SYN
whi ch occupi ed sequence 100.

At line 4, TCP A responds with an enpty segnment containing an ACK for
TCP B's SYN, and in line 5 TCP A sends sonme data. Note that the
sequence nunber of the segnment in line 5is the same as in line 4
because the ACK does not occupy sequence nunber space (if it did, we
woul d wi nd up ACKi ng ACK' s!).

Simul taneous initiation is only slightly nore conplex, as is shown in
Figure 6. Each TCP cycles from CLOSED to SYN-SENT to SYN RECEI VED to
ESTABLI SHED.

Eddy Expi res August 10, 2015 [Page 21]

Internet-Draft TCP Specification February 2015

TCP A TCP B
1. CLCSED CLGSED
2. SYN- SENT --> <SEQ@=100><CTL=SYN>
3. SYN RECEl VED <-- <SEQ=300><CTL=SYN> <-- SYN- SENT
4. ... <SEQ=100><CTL=SYN> --> SYN- RECEI VED

5. SYN- RECEI VED - -> <SEQ=100><ACK=301><CTL=SYN, ACK> ..
6. ESTABLI SHED <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <-- SYN- RECEI VED
7. ... <SEQ=100><ACK=301><CTL=SYN, ACK> --> ESTABLI SHED
Si nul t aneous Connection Synchroni zati on
Fi gure 6

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations fromcausing confusion. To dea
with this, a special control nessage, reset, has been devised. If
the receiving TCP is in a non-synchroni zed state (i.e., SYN SENT,
SYN- RECEI VED), it returns to LISTEN on receiving an acceptabl e reset.
If the TCP is in one of the synchronized states (ESTABLISHED, FIN-
VWAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-VAIT), it
aborts the connection and informs its user. W discuss this latter
case under "hal f-open" connections bel ow.

Eddy Expi res August 10, 2015 [Page 22]

Internet-Draft TCP Specification February 2015

TCP A TCP B

1. CLOSED LI STEN

2. SYN-SENT --> <SEQ=100><CTL=SYN>

3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN- RECEl VED

4. SYN- SENT <-- <SEQ=300><ACK=91><CTL=SYN, ACK> <-- SYN- RECEIl VED

5. SYN SENT --> <SEQ@=91><CTL=RST> --> LI STEN

6. ... <SEQ=100><CTL=SYN> --> SYN- RECEI VED
7. SYN SENT <-- <SEQ=400><ACK=101><CTL=SYN, ACK> <-- SYN- RECEI VED
8. ESTABLI SHED --> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLI SHED
Recovery from A d Duplicate SYN
Figure 7

As a sinple exanple of recovery fromold duplicates, consider

Figure 7. At line 3, an old duplicate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normally
(line 4). TCP A detects that the ACK field is incorrect and returns
a RST (reset) with its SEQ field selected to nake the segnent
believable. TCP B, on receiving the RST, returns to the LI STEN
state. Wien the original SYN (pun intended) finally arrives at |ine
6, the synchronization proceeds normally. If the SYN at line 6 had
arrived before the RST, a nore conpl ex exchange ni ght have occurred
with RST's sent in both directions.

Hal f - Open Connections and O her Anonalies

An established connection is said to be "half-open" if one of the
TCPs has cl osed or aborted the connection at its end w thout the
know edge of the other, or if the two ends of the connection have
becone desynchronized owing to a crash that resulted in | oss of
menory. Such connections will automatically becone reset if an
attenpt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
mldly invol ved.

If at site A the connection no |onger exists, then an attenpt by the

user at site Bto send any data on it will result in the site B TCP
receiving a reset control nmessage. Such a nessage indicates to the

Eddy Expi res August 10, 2015 [Page 23]

Internet-Draft TCP Specification February 2015

site B TCP that something is wong, and it is expected to abort the
connecti on.

Assunme that two user processes A and B are conmunicating with one
anot her when a crash occurs causing | oss of menory to A's TCP
Dependi ng on the operating system supporting A's TCP, it is likely
that some error recovery nechani smexists. Wen the TCP is up again,
Ais likely to start again fromthe beginning or froma recovery
point. As aresult, Awll probably try to OPEN the connection again
or try to SEND on the connection it believes open. |In the latter
case, it receives the error nmessage "connection not open" fromthe
local (A's) TCP. In an attenpt to establish the connection, A's TCP
will send a segnment containing SYN. This scenario leads to the
exanpl e shown in Figure 8. After TCP A crashes, the user attenpts to
re-open the connection. TCP B, in the neantime, thinks the
connection is open.

TCP A TCP B
1. (CRASH (send 300, recei ve 100)
2. CLCsED ESTABLI SHED
3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (?27?)
4. (') <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLI SHED
5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)
6. SYN- SENT CLCSED
7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

Hal f - Open Connecti on Di scovery
Fi gure 8

When the SYN arrives at line 3, TCP B, being in a synchronized state,
and the incom ng segnent outside the wi ndow, responds with an

acknow edgnent indicating what sequence it next expects to hear (ACK
100). TCP A sees that this segnent does not acknow edge anything it
sent and, being unsynchroni zed, sends a reset (RST) because it has
detected a hal f-open connection. TCP B aborts at line 5. TCP A wll
continue to try to establish the connection; the problemis now
reduced to the basic 3-way handshake of Figure 5.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection

Eddy Expi res August 10, 2015 [Page 24]

Internet-Draft TCP Specification February 2015

This is illustrated in Figure 9. In this case, the data arriving at
TCP A fromTCP B (line 2) is unacceptable because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aborts the connection.
TCP A TCP B
1. (CRASH (send 300, recei ve 100)
2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLI SHED
3. --> <SEQ=100><CTL=RST> --> (ABORT!!)
Active Side Causes Hal f-Open Connection Discovery
Figure 9
In Figure 10, we find the two TCPs A and B with passive connections
waiting for SYNN An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYNNACK is returned (line 3) and causes TCP Ato

generate a RST (the ACKin line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LI STEN state.

TCP A TCP B
1. LISTEN LI STEN
2. ... <SEQ=Z><CTL=SYN> --> SYN- RECEl VED

3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN, ACK> <-- SYN RECEI VED
4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN)
5. LI STEN LI STEN
O d Duplicate SYN Initiates a Reset on two Passive Sockets
Fi gure 10

A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Reset Generation

Eddy Expi res August 10, 2015 [Page 25]

Internet-Draft TCP Specification February 2015

As a general rule, reset (RST) nust be sent whenever a segnent
arrives which apparently is not intended for the current connection.
A reset nust not be sent if it is not clear that this is the case.

There are three groups of states:

Eddy

1. If the connection does not exist (CLOSED) then a reset is sent
in response to any inconing segnent except another reset. In
particul ar, SYNs addressed to a non-exi stent connection are
rejected by this neans.

If the incom ng segment has the ACK bit set, the reset takes its
sequence nunber fromthe ACK field of the segnment, otherw se the
reset has sequence nunber zero and the ACK field is set to the sum
of the sequence number and segnent |ength of the incom ng segnent.
The connection remains in the CLOSED state.

2. If the connection is in any non-synchroni zed state (LI STEN,
SYN SENT, SYN- RECEI VED), and the incomnmi ng segnent acknow edges
somet hi ng not yet sent (the segment carries an unacceptabl e ACK),
or if an incom ng segnent has a security |evel or conpartnent

whi ch does not exactly match the |l evel and conpartnent requested
for the connection, a reset is sent.

I f our SYN has not been acknow edged and the precedence |evel of
the incom ng segnent is higher than the precedence | evel requested
then either raise the | ocal precedence level (if allowed by the
user and the systen) or send a reset; or if the precedence |eve
of the incom ng segnent is |ower than the precedence | eve
requested then continue as if the precedence matched exactly (if
the renote TCP cannot raise the precedence level to match ours
this will be detected in the next segnent it sends, and the
connection will be termnated then). If our SYN has been
acknow edged (perhaps in this incom ng segnent) the precedence

| evel of the incom ng segnent nust match the | ocal precedence

| evel exactly, if it does not a reset nust be sent.

If the incom ng segnent has an ACK field, the reset takes its
sequence nunber fromthe ACK field of the segnent, otherw se the
reset has sequence nunber zero and the ACK field is set to the sum
of the sequence nunber and segnent |ength of the incom ng segnent.
The connection remains in the same state.

3. If the connection is in a synchronized state (ESTABLI SHED,
FINWAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK, TIME-WAIT),
any unaccept abl e segnent (out of w ndow sequence nunber or
unaccept abl e acknowl edgnent nunber) nust elicit only an enpty
acknow edgnent segnment containing the current send-sequence nunber

Expi res August 10, 2015 [Page 26]

Internet-Draft TCP Specification February 2015

and an acknow edgnent indicating the next sequence nunber expected
to be received, and the connection remains in the sane state.

If an incom ng segnent has a security level, or conpartnent, or
precedence whi ch does not exactly match the | evel, and
compartnment, and precedence requested for the connection,a reset
is sent and the connection goes to the CLOSED state. The reset
takes its sequence nunber fromthe ACK field of the inconing
segnent .

Reset Processing

In all states except SYN-SENT, all reset (RST) segnents are validated
by checking their SEQfields. Areset is valid if its sequence
nunber is in the window In the SYN-SENT state (a RST received in
response to an initial SYN), the RST is acceptable if the ACK field
acknow edges the SYN

The receiver of a RST first validates it, then changes state. |If the
receiver was in the LISTEN state, it ignores it. |If the receiver was
i n SYN-RECEI VED state and had previously been in the LI STEN state,
then the receiver returns to the LI STEN state, otherw se the receiver
aborts the connection and goes to the CLOSED state. |f the receiver
was in any other state, it aborts the connection and advi ses the user
and goes to the CLOSED state.

3.5. dosing a Connection

CLCSE is an operation neaning "I have no nore data to send." The
notion of closing a full-duplex connection is subject to anbi guous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. W have chosen to treat CLOSE
in a sinplex fashion. The user who CLOSEs may conti nue to RECEl VE
until he is told that the other side has CLOCSED al so. Thus, a
programcould initiate several SENDs followed by a CLOSE, and then
continue to RECEIVE until signaled that a RECElIVE fail ed because the
ot her side has CLOSED. W assune that the TCP will signal a user,
even if no RECEI VEs are outstanding, that the other side has cl osed,
so the user can termnate his side gracefully. A TCP will reliably
deliver all buffers SENT before the connection was CLOSED so a user
who expects no data in return need only wait to hear the connection
was CLOSED successfully to know that all his data was received at the
destination TCP. Users nmust keep reading connections they close for
sending until the TCP says no nore data.

There are essentially three cases:

1) The user initiates by telling the TCP to CLOSE the connection

Eddy Expi res August 10, 2015 [Page 27]

Internet-Draft TCP Specification February 2015

2) The renmpte TCP initiates by sending a FIN control signa

3) Both users CLOSE sinultaneously

Case 1: Local wuser initiates the close

In this case, a FIN segnent can be constructed and placed on the
out goi ng segnent queue. No further SENDs fromthe user will be
accepted by the TCP, and it enters the FINNWAIT-1 state. RECEI VEs
are allowed in this state. Al segnents precedi ng and incl uding
FINw Il be retransmtted until acknow edged. When the other TCP
has both acknow edged the FIN and sent a FIN of its own, the first
TCP can ACK this FIN. Note that a TCP receiving a FIN wi |l ACK
but not send its own FIN until its user has CLOSED the connection
al so.

Case 2: TCP receives a FIN fromthe network

If an unsolicited FIN arrives fromthe network, the receiving TCP
can ACK it and tell the user that the connection is closing. The
user will respond with a CLOSE, upon which the TCP can send a FIN
to the other TCP after sending any renaining data. The TCP then

waits until its own FIN is acknow edged whereupon it del etes the

connection. |If an ACK is not forthcoming, after the user tinmeout
the connection is aborted and the user is told.

Case 3: both users close sinultaneously

Eddy

A simul taneous CLCSE by users at both ends of a connection causes
FIN segnents to be exchanged. Wen all segnents preceding the

FI Ns have been processed and acknow edged, each TCP can ACK the
FIN it has received. Both will, upon receiving these ACKs, delete
t he connecti on.

Expi res August 10, 2015 [Page 28]

Internet-Draft

TCP A

ESTABLI SHED

TCP Specification

February 2015

TCP B

ESTABLI SHED

> I(:ICIN?\S/\(Z? T-1 --> <SEQ=100><ACK=300><CTL=FI N, ACK> --> CLOSE-WAI T
3. FINWAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT
4. (d ose)

TIVE-VWAI T <-- <SEQ=300><ACK=101><CTL=FI N, ACK> <-- LAST-ACK
5 TIME-VWAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED
6. (2 MBL)

CLCSED

Nor mal Cl ose Sequence
Figure 11
TCP A TCP B

1. ESTABLI SHED ESTABLI SHED

2. (Cose) (d ose)
FINWAIT-1 --> <SEQ=100><ACK=300><CTL=FI N, ACK> ... FINWAIT-1
<-- <SEQ=300><ACK=100><CTL=FI N, ACK> <--
<SEQ=100><ACK=300><CTL=FI N, ACK> -->
3. CLOsI NG --> <SEQ=101><ACK=301><CTL=ACK> ... CLOSING
<-- <SEQ=301><ACK=101><CTL=ACK> <--
<SEQ=101><ACK=301><CTL=ACK> -->
4. TIME-WAI T TI ME-VWAI T
(2 MBL) (2 MBL)
CLCSED CLCSED

Si nul t aneous Cl ose Sequence
Fi gure 12

3.6. Precedence and Security

The intent is that connection be allowed only between ports operating
with exactly the sane security and conpartnent values and at the

hi gher of the precedence |evel requested by the two ports.

Eddy Expi res August 10, 2015 [Page 29]

Internet-Draft TCP Specification February 2015

The precedence and security paraneters used in TCP are exactly those
defined in the Internet Protocol (IP) [2]. Throughout this TCP
specification the term"security/conpartnent” is intended to indicate
the security parameters used in I P including security, conpartnent,
user group, and handling restriction.

A connection attenpt with m snmatched security/conpartnent values or a
| ower precedence val ue nust be rejected by sending a reset.

Rej ecting a connection due to too | ow a precedence only occurs after
an acknow edgnent of the SYN has been received.

Not e that TCP nodul es which operate only at the default val ue of
precedence will still have to check the precedence of incoming
segnments and possibly raise the precedence | evel they use on the
connecti on.

The security paranmeters nay be used even in a non-secure environnent
(the values would indicate unclassified data), thus hosts in non-
secure environnents nust be prepared to receive the security
paraneters, though they need not send them

3.7. Segnentation

The term "segnentation" refers to the activity TCP perforns when
ingesting a streamof bytes froma sending application and
packetizing that stream of bytes into TCP segments.

For efficiency and perfornmance reasons, it is desirable to send |arge
segnents that contain as nany bytes of payload data as possi bl e.
However, packets that are too long will either be fragnmented or
dropped within the network. Some firewalls or middl eboxes may drop
fragment ed packets. In either case, when packets are dropped, the
connection can fail; hence, it is best for a TCP inplenentation to
avoi d generating fragnents.

To enable a TCP sender to maximnize the size of segments that it
sends, wi thout generating fragnents, TCP includes the Maxi num Segnent
Size option to convey endpoint information, and TCP inpl ementations
al so support Path MIU Di scovery to discover the limts and
capabilites of internedi ate networks.

When TCP is used in a situation where either the IP or TCP headers
are not mninmum the sender must reduce the anount of TCP data in any
gi ven packet by the nunber of octets used by the IP and TCP options.
The rationale for this is explained in RFC 6691.

Eddy Expi res August 10, 2015 [Page 30]

Internet-Draft TCP Specification February 2015

3.7.1. Maxi num Segnent Size Option

TCP MJST i npl enment both sending and receiving the Maxi num Segnent
Size option

TCP SHOULD send an MSS (Maxi mum Segnent Size) option in every SYN
segrment when its receive MSS differs fromthe default 536, and MAY
send it al ways.

If an MSS option is not received at connection setup, TCP MJST assune
a default send MSS of 536 (576-40).

The maxi mum si ze of a segnent that TCP really sends, the "effective
send MSS," MJIST be the smaller of the send MSS (which reflects the
avai |l abl e reassenbly buffer size at the renpte host) and the | argest
size permitted by the IP | ayer

Ef f.snd. MSS =
m n(SendMsS+20, MMB_S) - TCPhdrsize - | Poptionsize
wher e:

0 SendMSS is the MSS value received fromthe renote host, or the
default 536 if no MSS option is received.

0 MV5_ S is the maxi mum size for a transport-|layer nessage that TCP
may send

0 TCPhdrsize is the size of the fixed TCP header; this is nornmally
20, but may be larger if TCP options are to be sent.

0 |Poptionsize is the size of any IP options that TCP will pass to
the IP layer with the current nessage.

The MSS value to be sent in an MSS option should be equal to the
effective MIU minus the fixed IP and TCP headers. By ignoring both
I P and TCP options when cal cul ating the value for the MSS option, if
there are any IP or TCP options to be sent in a packet, then the
sender nust decrease the size of the TCP data accordingly. RFC 6691
di scusses this in greater detail

The MSS value to be sent in an MSS option nmust be | ess than or equa
to:

MVB R - 20

Eddy Expi res August 10, 2015 [Page 31]

Internet-Draft TCP Specification February 2015

where MM5 R is the nmaxi mum size for a transport-Ilayer nmessage that
can be received (and reassenbled). TCP obtains MM5 R and MVS_S from

the 1P layer; see the generic call GET_MAXSIZES in Section 3.4 of RFC
1122.

3.7.2. Path MIU Di scovery

The TCP MSS option specifies an upper bound for the size of packets
that can be received. Hence, setting the value in the MSS option too
smal |l can inpact the ability for Path MU Di scovery to find a | arger
path MIU. For nore information on Path MIU Di scovery, see:

o "Path MIU Di scovery" [RFC1191]

0o "TCP Problens with Path MIU Di scovery" [RFC2923]

0 "Packetization Layer Path MIU Di scovery" [RFC4821]
3.7.3. Interfaces with Variable MSS Val ues

The effective MIU can sonetinmes vary, as when used with variable
conpression, e.g., RObust Header Conpression (ROHC) [RFC5795]. It is
tenpting for TCP to want to advertise the |argest possible MS, to
support the nost efficient use of conpressed payl oads.

Unfortunately, some conpression schenmes occasionally need to transnit
full headers (and thus snaller payloads) to resynchronize state at
their endpoi nt conpressors/deconpressors. |If the largest MU is used
to calculate the value to advertise in the MSS option, TCP

retransm ssion nay interfere with conpressor resynchroni zation

As a result, when the effective MIU of an interface varies, TCP
SHOULD use the snmallest effective MIU of the interface to cal cul ate
the value to advertise in the MSS option

3.7.4. | Pv6 Junbograns

In order to support TCP over |Pv6 junbograns, inplenentations need to
be able to send TCP segnents | arger than 64K. RFC 2675 [RFC2675]
defines that a value of 65,535 is to be treated as infinity, and Path
MIU Di scovery [RFC1981] is used to deternine the actual MSS

3.8. Data Communi cation

Once the connection is established data is conmmuni cated by the
exchange of segments. Because segnents may be | ost due to errors
(checksumtest failure), or network congestion, TCP uses

retransm ssion (after a timeout) to ensure delivery of every segnent.
Duplicate segnents may arrive due to network or TCP retransm ssion

Eddy Expi res August 10, 2015 [Page 32]

Internet-Draft TCP Specification February 2015

As di scussed in the section on sequence nunbers the TCP perforns
certain tests on the sequence and acknow edgnment nunbers in the
segnents to verify their acceptability.

The sender of data keeps track of the next sequence nunber to use in
the variabl e SND. NXT. The receiver of data keeps track of the next
sequence nunmber to expect in the variable RCV.NXT. The sender of
data keeps track of the ol dest unacknowl edged sequence nunber in the
variable SND.UNA. If the data flowis nonentarily idle and all data
sent has been acknow edged then the three variables will be equal.

When the sender creates a segnent and transmits it the sender
advances SND. NXT. When the receiver accepts a segnent it advances
RCV. NXT and sends an acknowl edgnent. When the data sender receives
an acknow edgnment it advances SND. UNA. The extent to which the

val ues of these variables differ is a neasure of the delay in the
communi cati on. The anmount by which the variabl es are advanced is the
Il ength of the data and SYN or FIN flags in the segnent. Note that
once in the ESTABLI SHED state all segnents mnust carry current

acknow edgment i nformation.

The CLCSE user call inplies a push function, as does the FIN control
flag in an incom ng segnent.

Ret ransm ssi on Ti neout

NOTE: TODO this needs to be updated in |ight of 1122 4.2.2.15 and
errata 573; this will be done as part of RFC 1122 incorporation into
thi s docunent.

Because of the variability of the networks that conpose an

i nternetwork system and the w de range of uses of TCP connections the
retransm ssion tineout nust be dynamically determ ned. One procedure
for determning a retransm ssion tinmeout is given here as an
illustration.

An Exanpl e Retransni ssion Timeout Procedure
Measure the el apsed tinme between sending a data octet with a
particul ar sequence nunmber and receiving an acknow edgnent that
covers that sequence nunber (segnents sent do not have to match
segnents received). This neasured el apsed tine is the Round Trip
Time (RTT). Next conpute a Snoothed Round Trip Tine (SRTT) as:
SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)
and based on this, conpute the retransnission tineout (RTO as:

RTO = ni n[UBOUND, max[LBOUND, (BETA* SRTT)]]

Eddy Expi res August 10, 2015 [Page 33]

Internet-Draft TCP Specification February 2015

where UBOUND i s an upper bound on the tinmeout (e.g., 1 mnute),
LBOUND is a | ower bound on the timeout (e.g., 1 second), ALPHA is
a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
factor (e.g., 1.3 to 2.0).

The Communi cation of Urgent |Information

As a result of inplenmentation differences and mni ddl ebox interactions,
new appl i cati ons SHOULD NOT enpl oy the TCP urgent mechani sm

However, TCP inplenentations MJUST still include support for the
urgent nechanism Details can be found in RFC 6093 [7].

The objective of the TCP urgent nechanismis to allow the sending
user to stimulate the receiving user to accept sone urgent data and
to pernmit the receiving TCP to indicate to the receiving user when
all the currently known urgent data has been received by the user

This mechanismpermits a point in the data streamto be designated as
the end of urgent information. \Wenever this point is in advance of
the recei ve sequence nunber (RCV.NXT) at the receiving TCP, that TCP
must tell the user to go into "urgent node"; when the receive
sequence nunber catches up to the urgent pointer, the TCP nust tel

user to go into "nornmal node". |f the urgent pointer is updated
while the user is in "urgent node", the update will be invisible to
t he user.

The met hod enploys a urgent field which is carried in all segnents
transmtted. The URG control flag indicates that the urgent field is
meani ngf ul and nust be added to the segnent sequence nunber to yield
the urgent pointer. The absence of this flag indicates that there is
no urgent data outstanding.

To send an urgent indication the user nmust also send at | east one

data octet. |If the sending user also indicates a push, tinely
delivery of the urgent information to the destination process is
enhanced.

A TCP MUST support a sequence of urgent data of any length. [3]

A TCP MUST informthe application |ayer asynchronously whenever it
receives an Urgent pointer and there was previously no pending urgent
data, or whenvever the Urgent pointer advances in the data stream
There MJST be a way for the application to | earn how nuch urgent data
remains to be read fromthe connection, or at |least to determ ne

whet her or not nore urgent data remains to be read. [3]

Managi ng the W ndow

Eddy Expi res August 10, 2015 [Page 34]

Internet-Draft TCP Specification February 2015

The wi ndow sent in each segnent indicates the range of sequence
nunbers the sender of the window (the data receiver) is currently
prepared to accept. There is an assunption that this is related to
the currently avail able data buffer space available for this
connecti on.

Indicating a | arge wi ndow encourages transmissions. |f nore data
arrives than can be accepted, it will be discarded. This will result
i n excessive retransm ssions, adding unnecessarily to the |load on the
network and the TCPs. Indicating a small w ndow nay restrict the
transm ssion of data to the point of introducing a round trip delay
bet ween each new segnent transmtted.

The mechani sms provided allow a TCP to advertise a | arge w ndow and
to subsequently advertise a nmuch snmaller w ndow w t hout having
accepted that nuch data. This, so called "shrinking the window, " is
strongly di scouraged. The robustness principle dictates that TCPs
will not shrink the wi ndow t hensel ves, but will be prepared for such
behavi or on the part of other TCPs.

The sending TCP nust be prepared to accept fromthe user and send at
| east one octet of new data even if the send window is zero. The
sending TCP nust regularly retransmt to the receiving TCP even when
the window is zero. Two minutes is recomended for the

retransm ssion interval when the windowis zero. This retransni ssion
is essential to guarantee that when either TCP has a zero w ndow the
re-opening of the windowwill be reliably reported to the other.

When the receiving TCP has a zero wi ndow and a segnent arrives it
nmust still send an acknow edgnent showi ng its next expected sequence
number and current w ndow (zero).

The sendi ng TCP packages the data to be transmitted into segnents
which fit the current window, and may repackage segnents on the
retransm ssi on queue. Such repackaging is not required, but may be
hel pful .

In a connection with a one-way data flow, the wi ndow information will
be carried in acknow edgnent segnents that all have the sanme sequence
nunber so there will be no way to reorder themif they arrive out of
order. This is not a serious problem but it will allow the w ndow
informati on to be on occasion tenporarily based on old reports from
the data receiver. A refinement to avoid this problemis to act on
the wi ndow i nformation from segnents that carry the highest

acknow edgment nunber (that is segnments wi th acknow edgnment nunber
equal or greater than the highest previously received).

Eddy Expi res August 10, 2015 [Page 35]

Internet-Draft TCP Specification February 2015

3.

Eddy

9.

The wi ndow managenent procedure has significant influence on the
communi cati on performance. The followi ng corments are suggestions to
i mpl ement ers.

W ndow Managenent Suggesti ons

Al'locating a very small w ndow causes data to be transmitted in
many small segments when better performance is achi eved using
fewer |arge segments.

One suggestion for avoiding small windows is for the receiver to
def er updating a window until the additional allocation is at

| east X percent of the nmaxi num allocation possible for the
connection (where X night be 20 to 40).

Anot her suggestion is for the sender to avoid sending snal
segnments by waiting until the windowis |arge enough before
sending data. |If the user signals a push function then the data
nmust be sent even if it is a small segnent.

Not e that the acknow edgnments should not be del ayed or unnecessary
retransmssions will result. One strategy would be to send an
acknow edgnent when a small segnent arrives (with out updating the
wi ndow i nformation), and then to send anot her acknow edgment with
new wi ndow i nformati on when the wi ndow is |arger.

The segnment sent to probe a zero wi ndow may al so begin a break up
of transmitted data into snmaller and snaller segnents. If a
segnment containing a single data octet sent to probe a zero w ndow
is accepted, it consunmes one octet of the w ndow now avail abl e.

If the sending TCP sinply sends as nmuch as it can whenever the

wi ndow i s non zero, the transmtted data will be broken into
alternating big and small segnents. As tinme goes on, occasiona
pauses in the receiver naking wi ndow allocation available wll
result in breaking the big segnents into a snall and not quite so
big pair. And after a while the data transmission will be in
nostly small segments.

The suggestion here is that the TCP inpl enentations need to
actively attenpt to conbine small w ndow allocations into |arger
wi ndows, since the nechani sns for nmanagi ng the wi ndow tend to | ead
to many small windows in the sinplest mnded inplenentations.

I nterfaces

There are of course two interfaces of concern: the user/TCP interface
and the TCP/lower-level interface. W have a fairly el aborate node
of the user/ TCP interface, but the interface to the |ower |eve

Expi res August 10, 2015 [Page 36]

Internet-Draft TCP Specification February 2015

protocol module is left unspecified here, since it will be specified
in detail by the specification of the |ower |evel protocol. For the
case that the lower level is IP we note sone of the paraneter val ues
that TCPs m ght use

3.9.1. User/TCP Interface

The follow ng functional description of user comands to the TCP is,

at best, fictional, since every operating systemw || have different

facilities. Consequently, we nust warn readers that different TCP

i npl ementations may have different user interfaces. However, al

TCPs nust provide a certain mninmmset of services to guarantee that
all TCP inplenmentations can support the same protocol hierarchy.

This section specifies the functional interfaces required of all TCP
i mpl enent ati ons.

TCP User Commands

The followi ng sections functionally characterize a USER/ TCP
interface. The notation used is simlar to nbpst procedure or
function calls in high level |anguages, but this usage is not
meant to rule out trap type service calls (e.g., SVCs, UUGCs,
EMIS) .

The user conmands descri bed bel ow specify the basic functions the
TCP must performto support interprocess conmuni cation

I ndi vi dual inplenmentations nmust define their own exact format, and
may provi de conbi nations or subsets of the basic functions in
single calls. In particular, sone inplenentations may wish to
automatically OPEN a connection on the first SEND or RECEl VE

i ssued by the user for a given connection

In providing interprocess communi cation facilities, the TCP nust
not only accept commands, but nust also return information to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
renote cl ose, binding of unspecified foreign socket).

(b) replies to specific user conmands indicating success or
various types of failure.

Open
Format: OPEN (Il ocal port, foreign socket, active/passive [

tinmeout] [, precedence] [, security/conpartnent] [, options])
-> | ocal connection nane

Eddy Expi res August 10, 2015 [Page 37]

Internet-Draft TCP Specification February 2015

Eddy

We assune that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the

i npl ementation of the TCP, the local network and TCP
identifiers for the source address will either be supplied by
the TCP or the lower |evel protocol (e.g., IP). These

consi derations are the result of concern about security, to the
extent that no TCP be able to masquerade as another one, and so
on. Simlarly, no process can nmasquerade as anot her w thout
the collusion of the TCP

If the active/passive flag is set to passive, then this is a
call to LISTEN for an incoming connection. A passive open may
have either a fully specified foreign socket to wait for a
particul ar connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be nade
active by the subsequent execution of a SEND.

A transnission control block (TCB) is created and partially
filled in with data fromthe OPEN command par amnet ers.

On an active OPEN command, the TCP will begin the procedure to
synchroni ze (i.e., establish) the connection at once.

The tineout, if present, pernmits the caller to set up a tineout
for all data submtted to TCP. |If data is not successfully
delivered to the destination within the timeout period, the TCP
will abort the connection. The present global default is five
n nut es.

The TCP or sone conponent of the operating systemwll verify
the users authority to open a connection with the specified
precedence or security/conpartnent. The absence of precedence
or security/conpartnent specification in the OPEN cal

i ndi cates the default val ues nust be used.

TCP will accept incoming requests as matching only if the
security/conpartment information is exactly the sane and only
if the precedence is equal to or higher than the precedence
requested in the OPEN call.

The precedence for the connection is the higher of the val ues
requested in the OPEN call and received fromthe inconing
request, and fixed at that value for the life of the
connection. I nplementers may want to give the user control of
this precedence negotiation. For exanple, the user mght be
all owed to specify that the precedence nust be exactly matched,

Expi res August 10, 2015 [Page 38]

Internet-Draft TCP Specification February 2015

Eddy

or that any attenpt to raise the precedence be confirned by the
user.

A local connection nane will be returned to the user by the
TCP. The local connection nane can then be used as a short
hand term for the connection defined by the <l ocal socket,
foreign socket> pair.

Send

Format: SEND (| ocal connection nane, buffer address, byte
count, PUSH flag, URGENT flag [,tinmeout])

This call causes the data contained in the indicated user
buffer to be sent on the indicated connection. |If the
connection has not been opened, the SEND i s considered an
error. Sone inplenentations may allow users to SEND first; in
whi ch case, an autonatic OPEN woul d be done. |If the calling
process is not authorized to use this connection, an error is
r et ur ned.

If the PUSH flag is set, the data nust be transmtted pronptly
to the receiver, and the PUSH bit will be set in the last TCP
segnment created fromthe buffer. |f the PUSH flag is not set,
the data may be conbined with data from subsequent SENDs for
transm ssion efficiency.

New applications SHOULD NOT set the URGENT flag [7] due to
i mpl ementation differences and ni ddl ebox i ssues.

If the URGENT flag is set, segnments sent to the destination TCP
wi Il have the urgent pointer set. The receiving TCP will

signal the urgent condition to the receiving process if the
urgent pointer indicates that data preceding the urgent pointer
has not been consuned by the receiving process. The purpose of
urgent is to stinulate the receiver to process the urgent data
and to indicate to the receiver when all the currently known
urgent data has been received. The nunber of times the sending
user’s TCP signals urgent will not necessarily be equal to the
nunber of tines the receiving user will be notified of the
presence of urgent data.

If no foreign socket was specified in the OPEN, but the
connection is established (e.g., because a LI STEN ng connection
has become specific due to a foreign segnent arriving for the

| ocal socket), then the designated buffer is sent to the
implied foreign socket. Users who nake use of OPEN with an

Expi res August 10, 2015 [Page 39]

Internet-Draft TCP Specification February 2015

unspeci fied forei gn socket can nake use of SEND wi t hout ever
explicitly knowi ng the foreign socket address.

However, if a SEND is attenpted before the foreign socket
becones specified, an error will be returned. Users can use
the STATUS call to deternine the status of the connection. In
some inplementations the TCP may notify the user when an
unspeci fi ed socket is bound.

If atimeout is specified, the current user tinmeout for this
connection is changed to the new one.

In the sinplest inplenmentation, SEND would not return contro
to the sending process until either the transnission was
complete or the timeout had been exceeded. However, this
sinmple nmethod is both subject to deadl ocks (for exanple, both
sides of the connection might try to do SENDs before doi ng any
RECEI VEs) and of fers poor performance, so it is not
recommended. A nore sophisticated inplenentation would return
i mMmediately to allow the process to run concurrently with
network 1/Q and, furthernore, to allow nmultiple SENDs to be in
progress. Miltiple SENDs are served in first cone, first
served order, so the TCP will queue those it cannot service

i mredi atel y.

We have inplicitly assumed an asynchronous user interface in
which a SEND | ater elicits sone kind of SIGNAL or pseudo-
interrupt fromthe serving TCP. An alternative is to return a
response inmmedi ately. For instance, SENDs might return

i medi ate | ocal acknow edgnment, even if the segnment sent had
not been acknow edged by the distant TCP. W could

optimstically assune eventual success. |If we are wong, the
connection will close anyway due to the tinmeout. In
i npl ementations of this kind (synchronous), there will still be

some asynchronous signals, but these will deal with the
connection itself, and not with specific segnments or buffers.

In order for the process to distinguish anong error or success
i ndications for different SENDs, it m ght be appropriate for
the buffer address to be returned along with the coded response
to the SEND request. TCP-to-user signals are discussed bel ow,

i ndicating the information which should be returned to the
calling process.

Recei ve

Format: RECEI VE (|l ocal connection nane, buffer address, byte
count) -> byte count, urgent flag, push flag

Eddy Expi res August 10, 2015 [Page 40]

Internet-Draft TCP Specification February 2015

Eddy

This command al |l ocates a receiving buffer associated with the
speci fied connection. |f no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned.

In the sinplest inplenentation, control would not return to the
calling programuntil either the buffer was filled, or sone
error occurred, but this scheme is highly subject to deadl ocks.
A nore sophisticated inplenentation would pernit severa

RECEI VEs to be outstanding at once. These would be filled as
segnents arrive. This strategy permts increased throughput at
the cost of a nore el aborate schenme (possibly asynchronous) to
notify the calling programthat a PUSH has been seen or a
buffer filled.

If enough data arrive to fill the buffer before a PUSH i s seen
the PUSH flag will not be set in the response to the RECEl VE
The buffer will be filled with as nuch data as it can hold. |If

a PUSH is seen before the buffer is filled the buffer will be
returned partially filled and PUSH i ndi cat ed.

If there is urgent data the user will have been informed as
soon as it arrived via a TCP-to-user signal. The receiving
user should thus be in "urgent node". |If the URGENT flag is
on, additional urgent data remains. |f the URGENT flag is off,
this call to RECEIVE has returned all the urgent data, and the
user may now | eave "urgent node". Note that data follow ng the
urgent pointer (non-urgent data) cannot be delivered to the
user in the same buffer with precedi ng urgent data unl ess the
boundary is clearly marked for the user

To di stinguish anong several outstanding RECEI VEs and to take
care of the case that a buffer is not conpletely filled, the
return code is acconpanied by both a buffer pointer and a byte
count indicating the actual l|ength of the data received.

Al'ternative inplenentations of RECElIVE night have the TCP
al l ocate buffer storage, or the TCP m ght share a ring buffer
with the user.

Cl ose

Format: CLOSE (Il ocal connection nane)

This command causes the connection specified to be closed. |If
the connection is not open or the calling process is not
aut horized to use this connection, an error is returned.
Cl osing connections is intended to be a graceful operation in

Expi res August 10, 2015 [Page 41]

Internet-Draft TCP Specification February 2015

Eddy

the sense that outstanding SENDs will be transnmitted (and
retransmtted), as flow control permts, until all have been
serviced. Thus, it should be acceptable to nmake several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECElI VE on CLOSI NG connections, since the other
side may be trying to transnmit the last of its data. Thus,

CLCSE neans "I have no nore to send" but does not mean "I wll
not receive any nore." It may happen (if the user |eve
protocol is not well thought out) that the closing side is
unable to get rid of all its data before timing out. In this

event, CLOSE turns into ABORT, and the closing TCP gives up

The user may CLOSE the connection at any time on his own
initiative, or in response to various pronpts fromthe TCP
(e.g., renote close executed, transm ssion tineout exceeded,
destination inaccessible).

Because cl osing a connection requires comunication with the
foreign TCP, connections may remain in the closing state for a
short time. Attenpts to reopen the connection before the TCP
replies to the CLOSE conmand will result in error responses.

Close also inplies push function

St at us

Format: STATUS (Il ocal connection nane) -> status data

This is an inplenmentati on dependent user conmmand and coul d be
excluded without adverse effect. Information returned would
typically come fromthe TCB associated with the connection

This command returns a data bl ock containing the foll ow ng
i nformation:

| ocal socket,

forei gn socket,

| ocal connection nane,

recei ve wi ndow,

send wi ndow,

connection state,

nunber of buffers awaiting acknow edgnent,
nunber of buffers pending receipt,
urgent state,

pr ecedence,

security/ conpartnent,

and transm ssion tinmeout.

Expi res August 10, 2015 [Page 42]

Internet-Draft

TCP Specification February 2015

Dependi ng on the state of the connection, or on the

i mpl ementation itself, sone of this information may not be
avail abl e or neaningful. |If the calling process is not

aut horized to use this connection, an error is returned. This
prevents unaut horized processes from gai ning i nfornmati on about

a connecti on.
Abor t

Format: ABORT (local connection
This command causes all pending
aborted, the TCB to be renoved,
be sent to the TCP on the other

Dependi ng on the inplenentation

i ndi cations for each outstandi ng SEND or

recei ve an ABORT- acknow edgnent .

TCP-t o- User Messages

It

When the TCP does signal a user
passed to the user.

will be an error message.

nane)

SENDs and RECEI VES to be
and a special RESET nessage to
si de of the connection
users may receive abort
RECEI VE, or may sinply

is assuned that the operating system environnment provides a
means for the TCP to asynchronously signa

t he user program
program certain information is

Often in the specification the information
In other cases there wll

be

information relating to the conpletion of processing a SEND or

RECEI VE or ot her user call.

The following information is provided:

Local Connection Nanme
Response String
Buf f er Address

Byte count (counts bytes rece
Push fl ag
Urgent flag

3.9.2. TCP/Lower-Level Interface

The TCP calls on a | ower |eve
receive infornmation over a network.

Protocol (IP) [2].
If the |l ower |evel protocol

service and for a tine to |live
t hese paraneters

Eddy

pr ot ocol
One case is that of the ARPA
i nternetwork system where the | ower |eve

Expi res August 10, 2015

Al ways

Al ways

Send & Receive
Recei ve
Recei ve
Recei ve

ved)

nmodul e to actually send and

nodul e is the Internet

is IP it provides argunents for a type of
TCP uses the follow ng settings for

[Page 43]

Internet-Draft TCP Specification February 2015

Type of Service = Precedence: given by user, Delay: normal,
Throughput: norrmal, Reliability: normal; or binary XXX00000, where
XXX are the three bits determ ning precedence, e.g. 000 neans
routine precedence.

Tinme to Live = one mnute, or 00111100.

Note that the assuned maxi num segnent lifetine is two mnutes.
Here we explicitly ask that a segnent be destroyed if it cannot
be delivered by the internet systemw thin one m nute.

If the lower level is IP (or other protocol that provides this
feature) and source routing is used, the interface nmust allow the
route information to be comruni cated. This is especially inportant
so that the source and destination addresses used in the TCP checksum
be the originating source and ultimate destination. It is also
inmportant to preserve the return route to answer connection requests.

Any | ower level protocol will have to provide the source address,
destination address, and protocol fields, and sone way to determ ne
the "TCP I ength", both to provide the functional equival ent service
of P and to be used in the TCP checksum

3.10. Event Processing

The processing depicted in this section is an exanple of one possible
i npl ementation. Oher inplenentations may have slightly different
processi ng sequences, but they should differ fromthose in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving segnents, and tineouts. This section describes the
processing the TCP does in response to each of the events. |In nmany
cases the processing required depends on the state of the connection

Events that occur
User Calls

OPEN
SEND
RECEI VE
CLCSE
ABCRT
STATUS

Arriving Segnents

Eddy Expi res August 10, 2015 [Page 44]

Internet-Draft TCP Specification February 2015

SEGVENT ARRI VES
Ti meout s

USER Tl MEQUT
RETRANSM SSI ON TI MEQUT
TIME-VWAI T TI MEQUT

The nodel of the TCP/user interface is that user commands receive an
i medi ate return and possi bly a del ayed response via an event or
pseudo interrupt. In the follow ng descriptions, the term"signal"
means cause a del ayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error
connecti on not open".

Pl ease note in the following that all arithmetic on sequence numnbers,
acknow edgment nunbers, wi ndows, et cetera, is nodulo 2**32 the size
of the sequence number space. Also note that "=<" neans |ess than or
equal to (nodul o 2**32).

A natural way to think about processing incoming segnents is to

i magi ne that they are first tested for proper sequence nunber (i.e.
that their contents lie in the range of the expected "receive w ndow'
in the sequence nunber space) and then that they are generally queued
and processed in sequence nunber order

When a segrment overl aps other already received segnents we
reconstruct the segnent to contain just the new data, and adjust the
header fields to be consistent.

Note that if no state change is nmentioned the TCP stays in the sane
state.

Eddy Expi res August 10, 2015 [Page 45]

Internet-Draft TCP Specification February 2015

OPEN Cal |
CLCSED STATE (i.e., TCB does not exist)

Create a new transmni ssion control block (TCB) to hold
connection state information. Fill in local socket identifier
forei gn socket, precedence, security/conpartnment, and user
timeout information. Note that sone parts of the foreign
socket may be unspecified in a passive OPEN and are to be
filled in by the paraneters of the incom ng SYN segnent.
Verify the security and precedence requested are all owed for
this user, if not return "error: precedence not allowed" or

"error: security/conpartment not allowed." |f passive enter
the LI STEN state and return. |If active and the foreign socket
is unspecified, return "error: foreign socket unspecified"; if

active and the foreign socket is specified, issue a SYN
segment. An initial send sequence nunmber (ISS) is selected. A
SYN segnent of the form <SEQ=l SS><CTL=SYN> i s sent. Set

SND. UNA to |ISS, SND.NXT to | SS+1, enter SYN SENT state, and
return.

If the caller does not have access to the | ocal socket
specified, return "error: connection illegal for this process"
If there is no roomto create a new connection, return "error
i nsufficient resources".

LI STEN STATE

If active and the foreign socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
segment, set SND.UNA to ISS, SND.NXT to |ISS+1. Enter SYN SENT
state. Data associated with SEND may be sent with SYN segnent
or queued for transm ssion after entering ESTABLI SHED st at e.
The urgent bit if requested in the command nust be sent with

the data segnents sent as a result of this command. |If there
is no roomto queue the request, respond with "error
insufficient resources". |f Foreign socket was not specified,

then return "error: foreign socket unspecified"

Eddy Expi res August 10, 2015 [Page 46]

Internet-Draft

Eddy

SYN- SENT STATE
SYN- RECEI VED STATE
ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T-2 STATE
CLOSE- WAI T STATE
CLOSI NG STATE
LAST- ACK STATE

TI ME-WAI T STATE

Return "error: connection already exists".

TCP Specification

Expi res August 10, 2015

February 2015

[Page 47]

Internet-Draft TCP Specification February 2015

SEND Cal |
CLCSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, then
return "error: connection illegal for this process”

G herwise, return "error: connection does not exist".
LI STEN STATE

If the foreign socket is specified, then change the connection
from passive to active, select an ISS. Send a SYN segment, set
SND. UNA to I'SS, SND.NXT to | SS+1. Enter SYN-SENT state. Data
associated with SEND may be sent with SYN segnent or queued for
transm ssion after entering ESTABLI SHED state. The urgent bit
if requested in the comand nust be sent with the data segnents
sent as a result of this command. |If there is no roomto queue
the request, respond with "error: insufficient resources". |If
Forei gn socket was not specified, then return "error: foreign
socket unspecified"

SYN- SENT STATE
SYN- RECEI VED STATE

Queue the data for transm ssion after entering ESTABLI SHED
state. If no space to queue, respond with "error: insufficient
resources”.

ESTABLI SHED STATE
CLOSE-WAI T STATE

Segnenti ze the buffer and send it with a piggybacked

acknow edgnent (acknow edgnent value = RCV.NXT). |If there is
insufficient space to renenber this buffer, sinply return
"error: insufficient resources".

If the urgent flag is set, then SND.UP <- SND. NXT and set the
urgent pointer in the outgoing segments.

FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE
CLOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Return "error: connection closing" and do not service request.

Eddy Expi res August 10, 2015 [Page 48]

Internet-Draft TCP Specification February 2015

RECEI VE Cal |
CLCSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
“error: connection illegal for this process"

G herwi se return "error: connecti on does not exist".

LI STEN STATE
SYN- SENT STATE
SYN- RECEI VED STATE

Queue for processing after entering ESTABLI SHED state. |If
there is no roomto queue this request, respond with "error
i nsuf ficient resources”.

ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T-2 STATE

If insufficient incom ng segnents are queued to satisfy the

request, queue the request. |If there is no queue space to
remenber the RECElI VE, respond with "error: insufficient
resources".

Reassenbl e queued incom ng segnents into receive buffer and
return to user. Mark "push seen" (PUSH) if this is the case.

If RCV.UP is in advance of the data currently being passed to
the user notify the user of the presence of urgent data.

When the TCP takes responsibility for delivering data to the
user that fact nust be communicated to the sender via an
acknow edgnent. The formation of such an acknow edgnent is
descri bed below in the discussion of processing an incom ng
segnent .

CLOSE-WAI T STATE

Since the renote side has already sent FIN, RECElI VEs nust be
satisfied by text already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response. Oherw se, any renaining
text can be used to satisfy the RECEl VE

CLOSI NG STATE
LAST- ACK STATE

Eddy Expi res August 10, 2015 [Page 49]

Internet-Draft TCP Specification February 2015

TI ME-WAI T STATE

Return "error: connection closing”.

Eddy Expi res August 10, 2015 [Page 50]

Internet-Draft TCP Specification February 2015

CLCSE Cal
CLCSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
“error: connection illegal for this process"

G herwise, return "error: connection does not exist".
LI STEN STATE

Any out standi ng RECElI VEs are returned with "error: closing"
responses. Delete TCB, enter CLOSED state, and return.

SYN- SENT STATE

Del ete the TCB and return "error: closing" responses to any
queued SENDs, or RECEI VEs.

SYN- RECEI VED STATE

If no SENDs have been issued and there is no pending data to
send, then forma FIN segnent and send it, and enter FIN-WAIT-1
state; otherw se queue for processing after entering

ESTABLI SHED st at e.

ESTABLI SHED STATE

Queue this until all preceding SENDs have been segnenti zed,
then forma FIN segnment and send it. |In any case, enter FIN
WAl T-1 state.

FI N-WAI T-1 STATE
FI N-WAI T-2 STATE

Strictly speaking, this is an error and should receive a
“error: connection closing" response. An "ok" response would
be acceptable, too, as long as a second FINis not enmtted (the
first FIN may be retransm tted though).

CLOSE- WAI T STATE

Queue this request until all preceding SENDs have been
segmenti zed; then send a FIN segnment, enter LAST-ACK state.

CLGSI NG STATE

LAST- ACK STATE
TI ME-WAI T STATE

Eddy Expi res August 10, 2015 [Page 51]

Internet-Draft TCP Specification February 2015

Respond with "error: connection closing".

Eddy Expi res August 10, 2015 [Page 52]

Internet-Draft TCP Specification February 2015

ABORT Cal |
CLCSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
“error: connection illegal for this process"

G herwi se return "error: connecti on does not exist".

LI STEN STATE

Any out st andi ng RECEI VEs shoul d be returned with "error

connection reset" responses. Delete TCB, enter CLOSED state,
and return.

SYN- SENT STATE

Al'l queued SENDs and RECEI VEs shoul d be given "connection

reset" notification, delete the TCB, enter CLOSED state, and
return.

SYN- RECEI VED STATE
ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T-2 STATE
CLOSE-WAI T STATE

Send a reset segnent:

<SEQ=SND. NXT><CTL=RST>
Al'l queued SENDs and RECEI VEs shoul d be given "connection
reset"” notification; all segnents queued for transm ssion
(except for the RST fornmed above) or retransm ssion should be
flushed, delete the TCB, enter CLCSED state, and return

CLOSI NG STATE LAST- ACK STATE TI ME-WAI T STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and
return.

Eddy Expi res August 10, 2015 [Page 53]

Internet-Draft TCP Specification February 2015

STATUS Cal |
CLCSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
“error: connection illegal for this process".

G herwi se return "error: connecti on does not exi st

LI STEN STATE

Return "state LI STEN', and the TCB pointer.

SYN- SENT STATE

Return "state SYN- SENT", and the TCB pointer.
SYN- RECEIl VED STATE
Return "state = SYN RECEI VED', and the TCB pointer.

ESTABLI SHED STATE

Return "state ESTABLI SHED', and the TCB pointer.
FI N-WAI T-1 STATE

Return "state = FINNWAIT-1", and the TCB poi nter.
FI N-WAI T- 2 STATE

Return "state = FINNVWAIT-2", and the TCB pointer.
CLOSE-WAI T STATE

Return "state = CLOSE-WAI T", and the TCB pointer.
CLCSI NG STATE

Return "state = CLOSING', and the TCB pointer.
LAST- ACK STATE

Return "state = LAST-ACK", and the TCB pointer.
TI ME-WAI T STATE

Return "state = TIME-WAIT", and the TCB pointer.

Eddy Expi res August 10, 2015 [Page 54]

Internet-Draft TCP Specification February 2015

SEGVENT ARRI VES

Eddy

| f

the state is CLOSED (i.e., TCB does not exist) then
all data in the inconm ng segnent is discarded. An inconing
segnent containing a RST is discarded. An inconing segnent not
contai ning a RST causes a RST to be sent in response. The
acknow edgnment and sequence field values are selected to make
the reset sequence acceptable to the TCP that sent the
of f endi ng segnent.
If the ACK bit is off, sequence nunber zero is used,
<SEQ=0><ACK=SEG SEQ*+SEG LEN><CTL=RST, ACK>
If the ACK bit is on,
<SEQ=SEG. ACK><CTL=RST>
Ret ur n.
the state is LI STEN then
first check for an RST
An incom ng RST should be ignored. Return
second check for an ACK
Any acknow edgnment is bad if it arrives on a connection
still in the LISTEN state. An acceptable reset segnent
shoul d be formed for any arriving ACK-bearing segnment. The
RST should be formatted as foll ows:
<SEQ=SEG. ACK><CTL=RST>
Ret ur n.

third check for a SYN

If the SYN bit is set, check the security. |If the security/
conmpartment on the incom ng segnent does not exactly match
the security/conpartment in the TCB then send a reset and
return.

<SEQ=0><ACK=SEG SEQ+SEG LEN><CTL=RST, ACK>

Expi res August 10, 2015 [Page 55]

Internet-Draft TCP Specification February 2015

Eddy

If the SEGPRC is greater than the TCB. PRC then if all owed
by the user and the system set TCB. PRC<-SEG PRC, if not
all omed send a reset and return

<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>
If the SEG PRC is |ess than the TCB. PRC then conti nue.

Set RCV.NXT to SEG SEQt+1, IRS is set to SEG SEQ and any
other control or text should be queued for processing |ater
I SS shoul d be selected and a SYN segnent sent of the form

<SEQ=| SS><ACK=RCV. NXT><CTL=SYN, ACK>

SND. NXT is set to I SS+1 and SND. UNA to ISS. The connection
state shoul d be changed to SYN-RECEI VED. Note that any
other inconming control or data (conbined with SYN) will be
processed in the SYN RECEI VED state, but processing of SYN
and ACK should not be repeated. |If the listen was not fully
specified (i.e., the foreign socket was not fully
specified), then the unspecified fields should be filled in
now.

fourth other text or contro

Any ot her control or text-bearing segnent (not containing
SYN) must have an ACK and thus woul d be di scarded by the ACK
processing. An incom ng RST segnent could not be valid,
since it could not have been sent in response to anything
sent by this incarnation of the connection. So you are
unlikely to get here, but if you do, drop the segnent, and
return.

If the state is SYN- SENT t hen

first check the ACK bit

If the ACK bit is set
I f SEG ACK =< | SS, or SEG ACK > SND. NXT, send a reset
(unless the RST bit is set, if so drop the segnent and
return)

<SEQ=SEG. ACK><CTL=RST>

and discard the segnent. Return.

Expi res August 10, 2015 [Page 56]

Internet-Draft

Eddy

TCP Specification February 2015

If SND. UNA < SEG ACK =< SND. NXT then the ACK is
acceptable. (TODG in processing Errata 1D 3300, it was
noted that some stacks in the wild that do not send data
on the SYN are just checking that SEG ACK == SND. NXT . ..
t hi nk about whet her anything shoul d be sai d about that
her e)

second check the RST bit

| f

the RST bit is set

If the ACK was acceptable then signal the user "error:
connection reset", drop the segment, enter CLOSED state,
delete TCB, and return. Oherwise (no ACK) drop the
segnment and return.

third check the security and precedence

| f

the security/conpartnment in the segnment does not exactly

mat ch the security/conmpartment in the TCB, send a reset

If there is an ACK

<SEQ=SEG. ACK><CTL=RST>
O herw se

<SEQ=0><ACK=SEG. SEQ+SEG LEN><CTL=RST, ACK>
there is an ACK

The precedence in the segment nmust match the precedence
inthe TCB, if not, send a reset

<SEQ=SEG. ACK><CTL=RST>
there is no ACK
If the precedence in the segnent is higher than the
precedence in the TCB then if allowed by the user and the
systemrai se the precedence in the TCB to that in the
segrment, if not allowed to raise the prec then send a
reset.

<SEQ=0><ACK=SEG SEQ+SEG LEN><CTL=RST, ACK>

If the precedence in the segnent is |ower than the
precedence in the TCB conti nue.

Expi res August 10, 2015 [Page 57]

Internet-Draft TCP Specification February 2015

If a reset was sent, discard the segnent and return.
fourth check the SYN bit

This step should be reached only if the ACKis ok, or there
is no ACK, and it the segnent did not contain a RST.

If the SYNbit is on and the security/conpartnment and
precedence are acceptable then, RCV.NXT is set to SEG SEQt1,
IRS is set to SEG SEQ SND. UNA shoul d be advanced to equal
SEG ACK (if there is an ACK), and any segnents on the
retransm ssi on queue which are thereby acknow edged shoul d
be renpved.

If SND.UNA > ISS (our SYN has been ACKed), change the
connection state to ESTABLI SHED, form an ACK segnent

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>
and send it. Data or controls which were queued for
transm ssion may be included. |If there are other controls
or text in the segnent then continue processing at the sixth
step bel ow where the URG bit is checked, otherw se return.
O herwi se enter SYN RECEI VED, form a SYN, ACK segnent

<SEQE| SS><ACK=RCV. NXT><CTL=SYN, ACK>
and send it. Set the variables:

SND. WAND <- SEG. WND

SND. W.1 <- SEG SEQ

SND. W.2 <- SEG ACK
If there are other controls or text in the segnent, queue
them for processing after the ESTABLI SHED state has been
reached, return.

fifth, if neither of the SYN or RST bits is set then drop the
segnment and return.

O her wi se,
first check sequence nunber
SYN- RECEI VED STATE

ESTABLI SHED STATE
FI N-WAI T-1 STATE

Eddy Expi res August 10, 2015 [Page 58]

Internet-Draft TCP Specification February 2015

Eddy

FI N-WAI T-2 STATE
CLOSE-WAI T STATE
CLGOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Segnments are processed in sequence. Initial tests on
arrival are used to discard old duplicates, but further
processing is done in SEG SEQ order. If a segnent’s

contents straddl e the boundary between old and new, only the
new parts shoul d be processed.

There are four cases for the acceptability test for an
i ncom ng segnent:

Segnment Receive Test
Length W ndow

0 0 SEG. SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND

or RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

If the RCV.VWND i s zero, no segnments will be acceptable, but
speci al all owance should be made to accept valid ACKs, URGs
and RSTs.

If an incom ng segnent is not acceptable, an acknow edgnent
should be sent in reply (unless the RST bit is set, if so
drop the segnent and return):

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

After sending the acknow edgnent, drop the unacceptabl e
segrment and return.

In the following it is assumed that the segnment is the

i deal i zed segment that begins at RCV.NXT and does not exceed
the window. One could tailor actual segnents to fit this
assunption by trinmng off any portions that |lie outside the
wi ndow (i ncluding SYN and FIN), and only processing further

Expi res August 10, 2015 [Page 59]

Internet-Draft TCP Specification February 2015

if the segment then begins at RCV.NXT. Segnents with higher
begi nni ng sequence nunbers should be held for |ater
processi ng.

second check the RST bit,
SYN- RECEI VED STATE
If the RST bit is set

If this connection was initiated with a passive OPEN
(i.e., came fromthe LISTEN state), then return this
connection to LISTEN state and return. The user need
not be informed. |f this connection was initiated
with an active OPEN (i.e., cane from SYN-SENT state)
then the connection was refused, signal the user
"connection refused". |In either case, all segnments on
the retransm ssion queue should be renbved. And in
the active OPEN case, enter the CLOSED state and

del ete the TCB, and return.

ESTABLI SHED
FI' N-WAI T-1
FI N-WAI T- 2
CLOSE-WAI'T

If the RST bit is set then, any outstandi ng RECEI VEs and
SEND shoul d receive "reset" responses. Al segnent
queues shoul d be flushed. Users should al so receive an
unsol icited general "connection reset" signal. Enter the
CLOSED state, delete the TCB, and return.

CLGCSI NG STATE

LAST- ACK STATE
TIME-WAI T

If the RST bit is set then, enter the CLOSED state,
delete the TCB, and return
third check security and precedence
SYN- RECEI VED
If the security/conpartnent and precedence in the segnent

do not exactly match the security/conpartnment and
precedence in the TCB then send a reset, and return.

Eddy Expi res August 10, 2015 [Page 60]

Internet-Draft TCP Specification February 2015

Eddy

ESTABLI SHED
FI' N-VWAIT-1
FI N-WAI T- 2
CLOSE-WAI T
CLOSI NG
LAST- ACK
TIME-VWAI T

If the security/conpartnent and precedence in the segnent
do not exactly match the security/conpartnment and
precedence in the TCB then send a reset, any outstanding
RECEI VEs and SEND shoul d receive "reset" responses. Al
segrment queues should be flushed. Users should al so
receive an unsolicited general "connection reset" signal
Enter the CLOSED state, delete the TCB, and return.

Note this check is placed followi ng the sequence check to
prevent a segment from an ol d connection between these ports
with a different security or precedence from causing an
abort of the current connection.

fourth, check the SYN bit,

SYN- RECEI VED
ESTABLI SHED STATE
FIN-VWAI T STATE-1
FI N-WAI T STATE-2
CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE

TI ME-WAI T STATE

TODG need to incorporate RFC 1122 4.2.2.20(e) here

If the SYNis in the windowit is an error, send a reset,
any out standi ng RECElI VEs and SEND shoul d receive "reset"
responses, all segnent queues should be flushed, the user
shoul d al so receive an unsolicited general "connection
reset"” signal, enter the CLOSED state, delete the TCB
and return.

If the SYNis not in the window this step would not be
reached and an ack woul d have been sent in the first step
(sequence nunber check).

fifth check the ACK field,

if the ACK bit is off drop the segnment and return

Expi res August 10, 2015 [Page 61]

Internet-Draft TCP Specification February 2015

if the ACK bit is on
SYN- RECEIl VED STATE

I f SND. UNA < SEG ACK =< SND. NXT then enter ESTABLI SHED
state and continue processing with variabl es bel ow set
to:

SND. WND <- SEG WND
SND. W.1 <- SEG SEQ
SND. W.2 <- SEG ACK

If the segnent acknow edgnment is not acceptable,
forma reset segnent,

<SEQ=SEG. ACK><CTL=RST>
and send it.
ESTABLI SHED STATE

If SND. UNA < SEG ACK =< SND. NXT then, set SND. UNA <-
SEG. ACK. Any segnents on the retransni ssion queue
whi ch are thereby entirely acknow edged are renoved.
Users shoul d receive positive acknow edgnents for
buf fers which have been SENT and fully acknow edged
(i.e., SEND buffer should be returned with "ok"
response). |If the ACK is a duplicate (SEG ACK =<
SND. UNA), it can be ignored. |If the ACK acks
somet hi ng not yet sent (SEG ACK > SND. NXT) then send
an ACK, drop the segnent, and return.

I f SND. UNA =< SEG ACK =< SND. NXT, the send wi ndow
shoul d be updated. If (SND.W.1 < SEG SEQ or (SND. W.1
= SEG SEQ and SND. W.2 =< SEG ACK)), set SND. WD <-
SEG WND, set SND. W.1 <- SEG SEQ and set SND. W.2 <-
SEG ACK.

Note that SND. WND i s an offset from SND. UNA, that

SND. W.1 records the sequence nunber of the |ast
segrment used to update SND. WND, and that SND. W.2
records the acknow edgnent nunber of the |ast segnent
used to update SND. WND. The check here prevents using
old segnments to update the w ndow.

FI N-WAI T-1 STATE

Eddy Expi res August 10, 2015 [Page 62]

Internet-Draft TCP Specification February 2015

In addition to the processing for the ESTABLI SHED
state, if our FINis now acknow edged then enter FIN
WAI T- 2 and continue processing in that state.

FI N-WAI T-2 STATE

In addition to the processing for the ESTABLI SHED
state, if the retransm ssion queue is enpty, the
user’s CLOSE can be acknow edged ("ok") but do not
del ete the TCB

CLOSE- WAI T STATE

Do the sanme processing as for the ESTABLI SHED st at e.

CLGSI NG STATE

In addition to the processing for the ESTABLI SHED
state, if the ACK acknow edges our FIN then enter the
TIME-WAIT state, otherw se ignore the segnent.

LAST- ACK STATE

The only thing that can arrive in this state is an
acknow edgnment of our FIN. If our FINis now

acknow edged, delete the TCB, enter the CLOSED state,
and return.

TI ME-WAI T STATE

The only thing that can arrive in this state is a
retransm ssion of the renote FIN. Acknow edge it, and
restart the 2 MSL tinmeout.

si xth, check the URG bit,

ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T-2 STATE

If the URG bit is set, RCV.UP <- max(RCV.UP, SEG UP), and
signal the user that the renpte side has urgent data if
the urgent pointer (RCV.UP) is in advance of the data
consunmed. |If the user has already been signaled (or is
still in the "urgent node") for this continuous sequence
of urgent data, do not signal the user again.

CLOSE- WAI T STATE

Eddy Expi res August 10, 2015 [Page 63]

Internet-Draft

TCP Specification February 2015

CLOSI NG STATE
LAST- ACK STATE
TIME-VWAI T

This should not occur, since a FIN has been received from
the renote side. Ignore the URG

seventh, process the segnent text,

ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE

Once in the ESTABLI SHED state, it is possible to deliver
segnment text to user RECEIVE buffers. Text from segments
can be noved into buffers until either the buffer is ful
or the segnent is enpty. |f the segnent enpties and
carries an PUSH flag, then the user is infornmed, when the
buffer is returned, that a PUSH has been received.

When the TCP takes responsibility for delivering the data
to the user it nust al so acknow edge the receipt of the
dat a.

Once the TCP takes responsibility for the data it
advances RCV. NXT over the data accepted, and adjusts
RCV. WND as appropriate to the current buffer
availability. The total of RCV.NXT and RCV. WD shoul d
not be reduced.

Pl ease note the w ndow managenent suggestions in section
3.7.

Send an acknow edgnent of the form
<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>
Thi s acknow edgnment shoul d be piggybacked on a segnent

being transmitted if possible wi thout incurring undue
del ay.

CLOSE- WAI T STATE
CLOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Eddy

This should not occur, since a FIN has been received from
the renote side. Ilgnore the segnment text.

Expi res August 10, 2015 [Page 64]

Internet-Draft TCP Specification February 2015

ei ghth, check the FIN bit,
Do not process the FINif the state is CLOSED, LI STEN or
SYN- SENT si nce the SEG SEQ cannot be validated; drop the
segrment and return.
If the FIN bit is set, signal the user "connection closing"
and return any pendi ng RECEI VEs with sanme nmessage, advance
RCV. NXT over the FIN, and send an acknow edgnent for the
FIN. Note that FIN inplies PUSH for any segnent text not
yet delivered to the user.

SYN- RECEI VED STATE
ESTABLI SHED STATE

Enter the CLOSE-WAIT st ate.

FIN-WAI T-1 STATE
If our FIN has been ACKed (perhaps in this segnment),
then enter TIME-VWAIT, start the tine-wait tinmer, turn
off the other tinmers; otherw se enter the CLOSI NG
state.

FI N-WAI T-2 STATE

Enter the TIME-VWAIT state. Start the tine-wait tiner,
turn off the other tiners.

CLOSE-WAI T STATE

Remain in the CLOSE-WAIT state.
CLCSI NG STATE

Remain in the CLOSING state.
LAST- ACK STATE

Remain in the LAST-ACK state.
TI ME- WAl T STATE

Remain in the TIME-WAIT state. Restart the 2 MSL
time-wait tineout.

and return.

Eddy Expi res August 10, 2015 [Page 65]

Internet-Draft TCP Specification February 2015

USER Tl MEQUT

USER TI MEQUT

For any state if the user tineout expires, flush all queues,
signal the user "error: connection aborted due to user tineout"

in general and for any outstanding calls, delete the TCB, enter
the CLOSED state and return

RETRANSM SSI ON TI MEQUT

For any state if the retransmi ssion timeout expires on a
segrment in the retransm ssion queue, send the segnent at the
front of the retransm ssion queue again, reinitialize the
retransmssion tiner, and return

TI ME-VWAI T Tl MEQUT

If the time-wait timeout expires on a connection delete the
TCB, enter the CLOSED state and return

Eddy Expi res August 10, 2015 [Page 66]

Internet-Draft TCP Specification February 2015

3.

11. d ossary

1822 BBN Report 1822, "The Specification of the Interconnection of
a Host and an I MP". The specification of interface between a
host and the ARPANET.

ACK
A control bit (acknow edge) occupying no sequence space,
whi ch indicates that the acknow edgnent field of this segnent
specifies the next sequence nunber the sender of this segnent
is expecting to receive, hence acknow edgi ng recei pt of all
previ ous sequence numbers.

ARPANET nessage
The unit of transm ssion between a host and an IMP in the
ARPANET. The nmaxi mum size is about 1012 octets (8096 hits).

ARPANET packet
A unit of transmission used internally in the ARPANET between
I MPs. The maxi mum size is about 126 octets (1008 bits).

connecti on
A logical communication path identified by a pair of sockets.

dat agram
A nmessage sent in a packet sw tched computer comunications
net wor k.

Destination Address
The destinati on address, usually the network and host
i dentifiers.

FI'N
A control bit (finis) occupying one sequence nunber, which
i ndicates that the sender will send no nore data or contro
occupyi ng sequence space.
f ragment
A portion of a logical unit of data, in particular an
internet fragnment is a portion of an internet datagram
FTP
A file transfer protocol.
header

Control information at the beginning of a nessage, segnent,
fragment, packet or block of data.

Eddy Expi res August 10, 2015 [Page 67]

Internet-Draft TCP Specification February 2015

host
A computer. In particular a source or destination of
messages fromthe point of view of the conmunication networKk.

I dentification
An Internet Protocol field. This identifying value assigned
by the sender aids in assenbling the fragnments of a datagram

The Interface Message Processor, the packet switch of the
ARPANET.

i nternet address
A source or destination address specific to the host |evel

i nternet datagram
The unit of data exchanged between an internet nodul e and the
hi gher | evel protocol together with the internet header

i nternet fragnent
A portion of the data of an internet datagramw th an
i nternet header.

I P
I nt ernet Protocol

I RS
The Initial Receive Sequence nunber. The first sequence
nunber used by the sender on a connection

I SN
The Initial Sequence Nunmber. The first sequence nunber used
on a connection, (either 1SS or IRS). Selected in a way that
is unique within a given period of tinme and is unpredictable
to attackers.

| SS
The Initial Send Sequence nunber. The first sequence nunber
used by the sender on a connection

| eader

Control information at the beginning of a nmessage or bl ock of
data. In particular, in the ARPANET, the control information
on an ARPANET nessage at the host-1M interface.

| eft sequence

This is the next sequence nunber to be acknow edged by the
data receiving TCP (or the |lowest currently unacknow edged

Eddy Expi res August 10, 2015 [Page 68]

Internet-Draft TCP Specification February 2015

sequence nunber) and is sonetines referred to as the |eft
edge of the send w ndow.

| ocal packet

nodul e

oct et

Opti ons

packet

port

process

PUSH

RCV. NXT

RCV. UP

Eddy

The unit of transm ssion within a |ocal network.

An inmplenentation, usually in software, of a protocol or
ot her procedure.

Maxi mum Segrment Lifetinme, the tine a TCP segnent can exist in
the internetwork system Arbitrarily defined to be 2
m nut es.

An eight bit byte.

An Option field may contain several options, and each option
may be several octets in length. The options are used
primarily in testing situations; for exanple, to carry
timestanps. Both the Internet Protocol and TCP provide for
options fields.

A package of data with a header which may or nmay not be
logically conplete. More often a physical packaging than a
| ogi cal packagi ng of data.

The portion of a socket that specifies which |ogical input or
out put channel of a process is associated with the data.

A programin execution. A source or destination of data from
the point of view of the TCP or other host-to-host protocol

A control bit occupying no sequence space, indicating that
this segnent contains data that nust be pushed through to the
recei ving user.

recei ve next sequence nunber

receive urgent pointer

Expi res August 10, 2015 [Page 69]

Internet-Draft TCP Specification February 2015

RCV. VWND

receive

recei ve

RST

SEG ACK

SEG LEN

SEG PRC

SEG SEQ

SEG UP

SEG WAD

segnent

Eddy

recei ve w ndow

next sequence nunber
This is the next sequence nunber the |ocal TCP is expecting
to receive.

wi ndow

This represents the sequence nunbers the |ocal (receiving)
TCP is willing to receive. Thus, the |l ocal TCP considers
that segnents overl apping the range RCV. NXT to RCV. NXT +
RCV.WND - 1 carry acceptable data or control. Segnents
cont ai ni ng sequence nunbers entirely outside of this range
are consi dered duplicates and di scarded.

A control bit (reset), occupying no sequence space,

i ndicating that the receiver should del ete the connection
without further interaction. The receiver can deternmine,
based on the sequence nunber and acknow edgnent fields of the
i ncom ng segnent, whether it should honor the reset conmand
or ignore it. In no case does receipt of a segnent
containing RST give rise to a RST in response.

Real Time Protocol: A host-to-host protocol for conmunication
of time critical information

segnent acknow edgnent

segnment | ength

segnment precedence val ue

segnent sequence

segnment urgent pointer field

segnment wi ndow field

Expi res August 10, 2015 [Page 70]

Internet-Draft TCP Specification February 2015

segnent

segnment

segnent

A logical unit of data, in particular a TCP segnent is the
unit of data transfered between a pair of TCP nodul es.

acknow edgnent
The sequence nunber in the acknow edgnent field of the
arriving segnent.

I ength
The ampbunt of sequence numnber space occupied by a segnent,
i ncluding any controls which occupy sequence space.

sequence
The nunber in the sequence field of the arriving segnent.

send sequence

This is the next sequence nunber the l|ocal (sending) TCP will
use on the connection. It is initially selected from an
initial sequence nunber curve (ISN) and is increnmented for
each octet of data or sequenced control transmitted.

send wi ndow

SND. NXT

SND. UNA

SND. UP

SND. W.1

SND. W.2

SND. WND

socket

Eddy

This represents the sequence nunbers which the renote
(receiving) TCP is willing to receive. It is the value of
the window field specified in segnents fromthe renote (data
receiving) TCP. The range of new sequence nunbers whi ch may
be emitted by a TCP |lies between SND. NXT and SND. UNA +

SND. WND - 1. (Retransm ssions of sequence numbers between
SND. UNA and SND. NXT are expected, of course.)

send sequence

| eft sequence

send urgent pointer

segnment sequence nunber at | ast wi ndow update

segrment acknow edgment nunber at | ast w ndow update

send w ndow

Expi res August 10, 2015 [Page 71]

Internet-Draft TCP Specification February 2015

An address which specifically includes a port identifier
that is, the concatenation of an Internet Address with a TCP
port.

Sour ce Address
The source address, usually the network and host identifiers.

SYN
A control bit in the incom ng segment, occupying one sequence
nunber, used at the initiation of a connection, to indicate
where t he sequence nunbering will start.

TCB
Transm ssion control block, the data structure that records
the state of a connection

TCB. PRC
The precedence of the connection.

TCP
Transm ssion Control Protocol: A host-to-host protocol for
reliable comunication in internetwork environnents.

TGS

Type of Service, an Internet Protocol field.

Type of Service
An Internet Protocol field which indicates the type of
service for this internet fragnent.

URG
A control bit (urgent), occupying no sequence space, used to
i ndicate that the receiving user should be notified to do
urgent processing as long as there is data to be consuned
wi th sequence nunbers | ess than the value indicated in the
urgent pointer.

urgent pointer
A control field neaningful only when the URG bit is on. This
field communi cates the value of the urgent pointer which
i ndi cates the data octet associated with the sending user’s
urgent call.

4. Changes from RFC 793
Thi s docunent obsol etes RFC 793 as well as RFC 6093 and 6528, which

updated 793. In all cases, only the nornmative protocol specification
and requirenments have been incorporated into this docunent, and the

Eddy Expi res August 10, 2015 [Page 72]

Internet-Draft TCP Specification February 2015

i nformati onal text with background and rational e has not been carried
in. The informational content of those docunents is still valuable
in |learning about and understanding TCP, and they are valid

I nformational references, even though their nornmative content has
been incorporated into this docunent.

The mai n body of this document was adapted from RFC 793’ s Section 3,
titled "FUNCTI ONAL SPECI FI CATION', with an attenpt to keep formatting
and | ayout as cl ose as possible.

The collection of applicable RFC Errata that have been reported and
either accepted or held for an update to RFC 793 were i ncorporated
(Errata I Ds: 573, 574, 700, 701, 1283, 1561, 1562, 1564, 1565, 1571
1572, 2296, 2297, 2298, 2748, 2749, 2934, 3213, 3300, 3301). Sone
errata were not applicable due to other changes (Errata IDs: 572
575, 1569, 3602). TODO 3305

Changes to the specification of the Urgent Pointer described in RFC
1122 and 6093 were incorporated. See RFC 6093 for detailed
di scussi on of why these changes were necessary.

The nore secure Initial Sequence Nunber generation algorithmfrom RFC
6528 was incorporated. See RFC 6528 for discussion of the attacks
that this nitigates, as well as advice on selecting PRF al gorithms
and nmanagi ng secret key data.

RFC EDI TOR' S NOTE: the content below is for detail ed change tracking
and planning, and not to be included with the final revision of the
docunent .

The -00 revision of this docunent was nmerely a proposal and rough
pl an for updating RFC 793.

The -01 revision of this docunent incorporates the content of RFC 793
Section 3 titled "FUNCTI ONAL SPECI FI CATION'. Oher content from RFC
793 has not been incorporated. The -01 revision of this docunent
makes some minor formatting changes to the RFC 793 content in order
to convert the content into XM.2RFC format and account for |eft-out
parts of RFC 793. For instance, figure nunbering differs and sone

i ndentation is not exactly the sane.

The -02 revision of this docunent incorporates errata that have been
verified:

Errata I D 573: Reported by Bob Braden (note: This errata basically
is just a rem nder that RFC 1122 updates 793. Sone of the

associ ated changes are left pending to a separate revision that

i ncorporates 1122. Bob’s mention of PUSH in 793 section 2.8 was

Eddy Expi res August 10, 2015 [Page 73]

Internet-Draft

TCP Specification

February 2015

not applicabl e here because that section was not part of the

"functi onal

speci fication".

Al so the 1122 text on the

retransm ssion tinmeout also has been updated by subsequent RFCs,
so the change here deviates from Bob's suggestion to apply the
1122 text.)

Errata I D 574: Reported by Yin Shunming

Errata I D 700: Reported by Yin Shuning

Errata I D 701: Reported by Yin Shuning

Errata | D 1283: Reported by Pei-chun Cheng
Errata | D 1561: Reported by Constantin Hagenei er
Errata | D 1562: Reported by Constantin Hagenei er
Errata | D 1564: Reported by Constantin Hagenei er
Errata | D 1565: Reported by Constantin Hagenei er
Errata I D 1571: Reported by Constantin Hagenei er
Errata I D 1572: Reported by Constantin Hagenei er
Errata | D 2296: Reported by Vishwas Manra
Errata | D 2297: Reported by Vishwas Manra
Errata | D 2298: Reported by Vi shwas Manra
Errata | D 2748: Reported by Mykyta Yevstifeyev
Errata | D 2749: Reported by Mykyta Yevstifeyev
Errata I D 2934: Reported by Constantin Hagenei er
Errata | D 3213: Reported by EugnJun Y

Errata | D 3300: Reported by Botong Huang

Errata | D 3301: Reported by Botong Huang

Note: Sone verified errata were not used in this update, as they
relate to sections of RFC 793 elided fromthis docunent. These

include Errata ID 572, 575, and 1569.
Note: Errata ID 3602 was not applied in this revision as it is
duplicative of the 1122 corrections.
There is an errata 3305 currently reported that need to be
verified, held, or rejected by the ADs; it is addressing the sane
i ssue as draft-gont-tcpmtcp-seqg-validation and was not attenpted
to be applied to this docunent.

Not related to RFC 793 content, this revision also makes small tweaks

to the introductory text, fixes indentation of the pseudoheader

di agram and notes that the Security Considerations should al so

i nclude privacy, when this sectionis witten.

The -03 revision of this docunent revises all discussion of the
urgent pointer in order to conply with RFC 6093, 1122, and 1011.
Since 1122 held requirenents on the urgent pointer, the full list of
requi renents was brought into an appendi x of this docunent, so that
it can be updated as-needed.

The -04 revision of this docunent
from RFC 6528

i ncludes the | SN generation changes

Eddy Expi res August 10, 2015 [Page 74]

Internet-Draft TCP Specification February 2015

The -05 revision of this docunent incorporates MSS requirenents and
definitions fromRFC 879, 1122, and 6691, as well as option-handling
requirenents from RFC 1122.

TODG I nconplete Iist of planned changes - these need to be added to
and nade nore specific, as the docunent proceeds:

1. i ncorporate 1122 additions

2. point to major additional docs |ike 1323bis and 5681

3. i ncorporate relevant parts of 3168 (ECN)

4, i ncorporate Fernando’s new nunber-checking fixes (if past the
IESGin tine)

5. point to PMIuD?

6. point to 5461 (soft errors)

7. mention 5961 state machi ne option

8. mention 6161 (reducing TIME-WAIT)

9. i ncorporate 6429 (ZWP/ persi st)

10. look at Tony Sabatini suggestion for describing DO field

11. <clearly specify treatment of reserved bits (see TCPMthread on
EDO draft April 25, 2014)

12. look at possible nention of draft-minshall-nagle (e.g. as in
Li nux)

13. neke sure that clarifications in RFC 1011 are captured

14. per TCPM di scussion, discussion of checking reserved bits may

need to be altered from 793
15. ML acronym is defined nmultiple tines

5. | ANA Consi derati ons

This meno includes no request to | ANA. Existing | ANA registries for
TCP paraneters are sufficient.

TODO check whether entries pointing to 793 and ot her docunents
obsol eted by this one should be updated to point to this one instead.

6. Security and Privacy Considerations
TODO

See RFC 6093 [7] for discussion of security considerations related to
the urgent pointer field.

Editor’s Note: Scott Brimnentioned that this should include a
PERPASS/ pri vacy revi ew.

Eddy Expi res August 10, 2015 [Page 75]

Internet-Draft TCP Specification February 2015

7.

8.

8.

8.

Acknowl edgenent s

This docunment is largely a revision of RFC 793, which Jon Postel was
the editor of. Due to his excellent work, it was able to | ast for
three decades before we felt the need to revise it.

Andre Oppermann was a contributor and helped to edit the first
revision of this document.

We are thankful for the assistance of the | ETF TCPM wor ki ng group
chairs:

M chael Schar f
Yoshi fum N shi da
Pasi Sarol ahti

On the TCPM nailing list, and at the | ETF 88 neeting in Vancouver,
hel pful coments, critiques, and reviews were received from (listed
al phebetically): David Borman, Yuchung Cheng, Martin Duke, Kevin
Lahey, Kevin Mason, Matt Mathis, Hagen Paul Pfeifer, Anthony
Sabatini, Joe Touch, Reji Varghese, Lloyd Wod, and Al ex Zi mrer mann.

Thi s docunent includes content fromerrata that were reported by
(listed chronol ogically): Yin Shuning, Bob Braden, Mrris M Keesan,
Pei - chun Cheng, Constantin Hageneier, Vishwas Manral, Mkyta
Yevstifeyev, EungJun Yi, Botong Huang.

Ref erences

1. Nornmtive References

[1] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.
2. Informative References

[2] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981.

[3] Braden, R, "Requirenents for Internet Hosts -
Conmruni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[4] Mogul, J. and S. Deering, "Path MIU di scovery", RFC 1191,
Novenber 1990.

[5] Lahey, K, "TCP Problens with Path MIU Di scovery", RFC
2923, Septenber 2000.

Eddy Expi res August 10, 2015 [Page 76]

Internet-Draft TCP Specification February 2015

[6] Mathis, M and J. Heffner, "Packetization Layer Path MIuU
D scovery", RFC 4821, March 2007.

[7] Gont, F. and A Yourtchenko, "On the Inplenmentation of the
TCP Urgent Mechani sni, RFC 6093, January 2011.

[8] Gont, F. and S. Bellovin, "Defending agai nst Sequence
Nunmber Attacks", RFC 6528, February 2012.

[9] Borman, D., "TCP Options and Maxi num Segnent Size (MsS)",
RFC 6691, July 2012.

[10] Duke, M, Braden, R, Eddy, W, Blanton, E., and A
Zi mrer mann, "A Roadmap for Transm ssion Control Protocol
(TCP) Specification Docunments”, RFC 7414, February 2015.
Appendi x A, TCP Requirenent Sumary
This section is adapted from RFC 1122.
TODG this needs to be seriously redone, to use 793bis section
nunbers instead of 1122 ones, and all 1122 requirenents need to be
reflected in 793bis text.

RFC EDI TOR' S NOTE: 793bis in the headi ng bel ow should be repl aced by
the nunber of this RFC

I [N S I

I | || IH |F

I | | | 19Mo

I | IS [YUYo

I | [H LS|t

I IMQ |DT|n

I [UUM | |o

I | S| LI AN N t

| RFC1122 | TID Y9 Qt

FEATURE [SECTION | | | |TITle

--- |--------1-1-1-1-1-1--
I [I I B A

Push fl ag I I T I
Aggregate or queue un-pushed data [4.2.2.2 | | |Ix| | |
Sender col | apse successive PSH fl ags [4.2.2.2 | |x] | | |
SEND cal |l can specify PUSH |[4.2.2.2 | | |x| | |
If cannot: sender buffer indefinitely |[4.2.2.2 1 | | | |x]

I f cannot: PSH | ast segnent [4.2.2.2 |x| | | | |
Notify receiving ALP of PSH |[4.2.2.2 | | |x] | |1
Send max size segnent when possible [4.2.2.2 | |x] | | |

Eddy Expi res August 10, 2015 [Page 77]

Internet-Draft TCP Specification February 2015

_ I [O
W ndow I [O O O
Treat as unsigned nunber [4.2.2.3 |x] | | | |
Handl e as 32-bit nunber [4.2.2.3 | |x] | | |
Shrink wi ndow from ri ght |4.2.2.16] | | |X] |
Robust agai nst shrinki ng wi ndow |4.2.2.16|x] | | | |
Recei ver’'s wi ndow cl osed indefinitely |4.2.2.17] | | x| |
Sender probe zero w ndow |4.2.2.27| x| | | | |
First probe after RTO |4.2.2.27] |x| | | |
Exponenti al backof f |4.2.2.27] | x| | | |
Al'l ow wi ndow stay zero indefinitely |4.2.2.27| x| | | | |
Sender tinmeout OK conn with zero w nd [4.2.2.27] | | | |X]
I [O
Urgent Data | I I I |
Poi nter indicates first non-urgent octet |[4.2.2.4 | x| | | | |
Arbitrary length urgent data sequence [4.2.2.4 | x| | | | |
I nform ALP asynchronously of urgent data |[4.2.2.4 |x] | | | |2
ALP can learn if/how nuch urgent data Qd |[4.2.2.4 |x] | | | |2
I [O
TCP Options I [O O O
Recei ve TCP option in any segnent [4.2.2.5 |x] | | | |
I gnore unsupported options [4.2.2.5 |x| | | | |
Cope with illegal option length |[4.2.2.5 |x] | | | |
| mpl ement sending & receiving MSS option [4.2.2.6 |x| | | | |
Send MSS option unl ess 536 [4.2.2.6 | |x] | | |
Send MSS option al ways |4.2.2.6 | | |x| |
Send- MSS default is 536 |[4.2.2.6 | x| | | | |
Cal cul ate effective send seg size [4.2.2.6 | x| | | | |
I [O I
TCP Checksuns | I |
Sender conpute checksum [4.2.2.7 |x] | | | |
Recei ver check checksum |[4.2.2.7 |x] | | | |
| [I O O I
I SN Sel ection [I
Include a clock-driven | SN generator conponent [4.2.2.9 |x| | | | |
Secure | SN generator with a PRF conponent | NA | Ix] |] |
I [O
Openi ng Connecti ons | I I I |
Support simultaneous open attenpts |4.2.2.20| x| | | | |
SYN- RCVD renenbers | ast state |4.2.2.22 x| | | | |
Passive Open call interfere with others |4.2.2.28] | | | |x
Function: simultan. LISTENs for sane port |4.2.2.28| x| | | | |
Ask | P for src address for SYN if necc. [4.2.3.7 |Ix] | | | |
O herwi se, use | ocal addr of conn. [4.2.3.7 |x] | | | |
OPEN to broadcast/multicast | P Address |4.2.3.24] | | | |X]
Silently discard seg to bcast/ntast addr |4.2.3.24| x| | | | |
I []|
I [

Cl osi ng Connections

Eddy Expi res August 10, 2015 [Page 78]

Internet-Draft TCP Specification February 2015

RST can contain data |4.2.2.212] | x| | | |

I nform application of aborted conn |4.2.2.23| x| | | | |

Hal f - dupl ex cl ose connecti ons |4.2.2.13] | |x| | |

Send RST to indicate data | ost |4.2.2.13] | x| | | |

In TIME-WAIT state for 2xMsSL seconds |4.2.2.23| x| | | | |

Accept SYN from TIME-WAIT state [4.2.2.13] | |x]| |

I [O

Ret r ansm ssi ons | I I I |

Jacobson Slow Start al gorithm |4.2.2.15|x] | | | |

Jacobson Congesti on- Avoi dance al gorithm |4.2.2.15|x| | | | |

Retransmit with sane | P ident |4.2.2.15] | |x| | |

Karn's al gorithm [4.2.3.2 |x] | | | |

Jacobson’s RTO estinmation alg. [4.2.3.2 |x] | | | |

Exponenti al backof f [4.2.3.2 |x] | | | |

SYN RTO cal ¢ sane as data [4.2.3.2 | |x| | | |

Recomrended initial val ues and bounds [4.2.3.2 | |x] | | |

I [O I

Generating ACK s: | I |

Queue out-of -order segnents |4.2.2.20] |x| | | |

Process all Q d before send ACK |4.2.2.20|x] | | | |

Send ACK for out-of-order segnent | 4.2.2.21] | | x| |

Del ayed ACK' s [4.2.3.2 | |x] | | |

Delay < 0.5 seconds [4.2.3.2 |x] | | | |

Every 2nd full-sized segnent ACK d [4.2.3.2 |x] | | | |

Recei ver SW5- Avoi dance Al gorithm [4.2.3.3 x| | | | |

I [O O O

Sendi ng data | I I I |

Configurable TTL [4.2.2.29|x| | | | |

Sender SW5- Avoi dance Al gorithm [4.2.3.4 |x] | | | |

Nagl e al gorithm [4.2.3.4 | |x| | | |

Application can disable Nagle algorithm [4.2.3.4 x| | | | |

I [O O O

Connection Fail ures: | I I I |

Negative advice to IP on Rl retxs [4.2.3.5 |x| | | | |

Cl ose connection on R2 retxs [4.2.3.5 x| | | | |
ALP can set R2 [4.2.3.5|x] | | | |2
Inform ALP of Rl<=retxs<R2 [4.2.3.5] |x] | | |2

Recommended val ues for Rl, R2 [4.2.3.5] |x] | | |

Sanme nechani sm for SYNs [4.2.3.5 |x] | | | |

R2 at least 3 mnutes for SYN [4.2.3.5 |x| | | | |

I [O I

Send Keep-alive Packets: |4.2.3.6 | | |x| | |

- Application can request [4.2.3.6 |x] | | | |

- Default is "off" [4.2.3.6 | x| | | | |

- Only send if idle for interval [4.2.3.6 | x| | | | |

- Interval configurable [4.2.3.6 | x| | | | |

- Default at least 2 hrs. |4.2.3.6 | x| | | | |

- Tolerant of lost ACK s [4.2.3.6 | x| | | | |

Eddy Expi res August 10, 2015 [Page 79]

nt ernet-Draft TCP Specification February 2015

I P Options

I gnore options TCP doesn’t understand

Ti me Stanp support

Record Route support

Sour ce Route:
ALP can specify

Overrides src rt in datagram

Build return route fromsrc rt
Later src route overrides

X

NI
wWww
© o
x X

PrAEM BAbAA
X X X

NN
Wwww

00 00 00 O
x

x

Receiving | CMP Messages from | P
Dest. Unreach (0,1,5) => inform ALP
Dest. Unreach (0,1,5) => abort conn
Dest. Unreach (2-4) => abort conn
Source Quench => slow start
Ti me Exceeded => tell ALP, don't abort
Param Problem => tell ALP, don’t abort

x

el e akaka
NNNNNNN
WWwwwwww
© (O © © © © ©
X X X X

Address Validation
Reject OPEN call to invalid I P address
Reject SYN frominvalid IP address
Silently discard SYN to bcast/ntast addr

bl
NN
www
Tl
[=X=)=]
X X X

TCP/ ALP I nterface Services
Error Report nechani sm
ALP can disable Error Report Routine
ALP can specify TGOS for sending
Passed unchanged to IP
ALP can change TOS during connection
Pass received TOS up to ALP
FLUSH cal
Optional local IP addr parm in OPEN

x x
x

xX X

el il
X <

NN
e e ak e a

A WNNNNREP PR

voX
1
1
1

FOOTNOTES: (1) "ALP" means Application-Layer program
Aut hor’ s Address

Wesley M Eddy (editor)

MI1l Systens
us
Email: wes@rti-systens. com

Eddy Expi res August 10, 2015 [Page 80]

