
Network Working Group R. Stewart
Internet-Draft Adara Networks
Intended status: Standards Track M. Tuexen
Expires: April 23, 2014 Muenster Univ. of Appl. Sciences
 S. Loreto
 Ericsson
 R. Seggelmann
 T-Systems International GmbH
 October 20, 2013

 A New Data Chunk for Stream Control Transmission Protocol
 draft-stewart-tsvwg-sctp-ndata-03.txt

Abstract

 The Stream Control Transmission Protocol (SCTP) is a message oriented
 transport protocol supporting arbitrary large user messages.
 However, the sender can not interleave different user messages which
 which causes head of line blocking at the sender side. To overcome
 this limitation, this document adds a new data chunk to SCTP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Stewart, et al. Expires April 23, 2014 [Page 1]

Internet-Draft SCTP N-DATA Chunk October 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. N-DATA Chunk . 3
 3. Procedures . 4
 4. Socket API Considerations 5
 5. IANA Considerations . 8
 6. Security Considerations 9
 7. Acknowledgments . 9
 8. References . 9
 Authors’ Addresses . 10

1. Introduction

1.1. Overview

 When SCTP [RFC4960] was initially designed it was mainly envisioned
 for transport of small signaling messages. Late in the design stage
 it was decided to add support for fragmentation and reassembly of
 larger messages with the thought that someday Session Initiation
 Protocol (SIP) [RFC3261] style signaling messages may also need to
 use SCTP and a single MTU sized message would be too small.
 Unfortunately this design decision, though valid at the time, did not
 account for other applications which might send very large messages
 over SCTP. When such large messages are now sent over SCTP a form of
 sender side head of line blocking becomes created within the
 protocol. This head of line blocking is caused by the use of the
 Transmission Sequence Number (TSN) for two different purposes:

 1. As an identifier for DATA chunks to provide a reliable transfer.

 2. As an identifier for the sequence of fragments to allow
 reassembly.

 The protocol requires all fragments of a user message to have
 consecutive TSNs. Therefore the sender can not interleave different
 messages.

 This document describes a new Data chunk called N-DATA. This chunk
 incorporates all the flags and properties of the current SCTP Data
 chunk but also adds a new field in its chunk header, the Fragment
 Sequence Number (FSN). Then the FSN is only used for reassembly and

Stewart, et al. Expires April 23, 2014 [Page 2]

Internet-Draft SCTP N-DATA Chunk October 2013

 the TSN only for the reliability. Therefore, the head of line
 blocking caused by the original design is avoided.

1.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. N-DATA Chunk

 The following Figure 1 shows the new data chunk N-DATA.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 17 | Res |I|U|B|E| Length |
 +-+
 | TSN |
 +-+
 | Stream Identifier | Stream Sequence Number |
 +-+
 | Payload Protocol Identifier |
 +-+
 | Message Identifier |
 +-+
 | Fragment Sequence Number |
 +-+
 \ \
 / User Data /
 \ \
 +-+

 Figure 1: N-DATA chunk format

 The only differences between the N-DATA chunk in Figure 1 and the
 DATA chunk defined in [RFC4960] and
 [I-D.ietf-tsvwg-sctp-sack-immediately] is the addition of the new
 Message Identifier (MID) and Fragment Sequence Number (FSN).

 Message Identifier (MID): 32 bits (unsigned integer)
 The Message Identifier . Please note that the MID is in "network
 byte order", a.k.a. Big Endian.

 Fragment Sequence Number (FSN): 32 bits (unsigned integer)
 Identifies the fragment number of this piece of a message. FSN’s
 are unsigned number, the first fragment MUST start at 0 and MUST
 have the ’B’ bit set. The last fragment of a message MUST have

Stewart, et al. Expires April 23, 2014 [Page 3]

Internet-Draft SCTP N-DATA Chunk October 2013

 the ’E’ bit set. Note that the FSN may wrap completely multiple
 times allowing arbitrary large messages. Please note that the FSN
 is in "network byte order", a.k.a. Big Endian.

3. Procedures

3.1. Sender Side Considerations

 A sender MUST NOT send a N-DATA chunk unless the peer has indicated
 its support of the N-DATA chunk type within the Supported Extensions
 Parameter as defined in [RFC5061].

 A sender MUST NOT use the N-DATA chunk unless the user has requested
 that use via the socket API (see Section 4). This constraint is made
 since usage of this chunk requires that the application be willing to
 interleave messages upon reception within an association. This is
 not the default choice within the socket API (see [RFC6458]) thus the
 user MUST indicate support to the protocol of the reception of
 completely interleaved messages. Note that for stacks that do not
 implement [RFC6458] they may use other methods to indicate
 interleaved message support and thus enable the usage of the N-DATA
 chunk, the key is that the the stack MUST know the application has
 indicated its choice in wanting to use the extension.

 Sender side usage of the N-Data chunk is quite simple. Instead of
 using the TSN for fragmentation purposes, the sender uses the new FSN
 field to indicate which fragment number is being sent. The first
 fragment MUST have the ’B’ bit set. The last fragment MUST have the
 ’E’ bit set. All other fragments MUST NOT have the ’B’ or ’E’ bit
 set. If the ’I’ bit is set the ’E’ bit MUST also be set, i.e. the
 ’I’ bit may only be set on the last fragment of a message. All other
 properties of the existing SCTP DATA chunk also apply to the N-DATA
 chunk, i.e. congestion control as well as receiver window conditions
 MUST be observed as defined in [RFC4960].

 Note that the usage of this chunk should also imply late binding of
 the actual TSN to any chunk being sent. This way other messages from
 other streams may be interleaved with the fragmented message.

 The sender MUST NOT have more than one ordered fragmented message
 being produced in any one stream. The sender MUST NOT have more than
 one un-ordered fragmented message being produced in any one stream.
 The sender MAY have one ordered and one unordered fragmented message
 being produced within a single stream. At any time multiple streams
 MAY be producing an ordered or unordered fragmented message.

3.2. Receiver Side Considerations

Stewart, et al. Expires April 23, 2014 [Page 4]

Internet-Draft SCTP N-DATA Chunk October 2013

 Upon reception of an SCTP packet containing a N-DATA chunk if the
 message needs to be reassembled, then the receiver MUST use the FSN
 for reassembly of the message and not the TSN. Note that a non-
 fragmented messages is indicated by the fact that both the ’E’ and
 ’B’ bits are set. An ordered or unordered fragmented message is thus
 identified with any message not having both bits set.

4. Socket API Considerations

 This section describes how the socket API defined in [RFC6458] is
 extended to allow applications to use the extension described in this
 document.

 Please note that this section is informational only.

4.1. Socket Options

 +-------------------+--------------------------+-----+-----+
 | option name | data type | get | set |
 +-------------------+--------------------------+-----+-----+
 | SCTP_NDATA_ENABLE | int | X | X |
 | SCTP_PLUGGABLE_SS | struct sctp_assoc_value | X | X |
 | SCTP_SS_VALUE | struct sctp_stream_value | X | X |
 +-------------------+--------------------------+-----+-----+

4.1.1. Enable or Disable the Interleaving Capability
 (SCTP_NDATA_ENABLE)

 A new socket option to turn on/off the usage of the N-DATA chunk.
 Turning this option on only effect future associations, and MUST be
 turned on for the protocol stack to indicate support of the N-DATA
 chunk to the peer during association setup. Turning this option off,
 will prevent the N-DATA chunk from being indicated supported in
 future associations, and will also prevent current associations from
 producing N-DATA chunks for future large fragmented messages. Note
 that this does not stop the peer from sending N-DATA chunks.

 An N-DATA chunk aware application should also set the fragment
 interleave level to 2. This allows the reception from multiple
 streams simultaneously. Failure to set this option can possibly lead
 to application deadlock.

Stewart, et al. Expires April 23, 2014 [Page 5]

Internet-Draft SCTP N-DATA Chunk October 2013

4.1.2. Get or Set the Stream Scheduler (SCTP_PLUGGABLE_SS)

 A stream scheduler can be selected with the SCTP_PLUGGABLE_SS option
 for setsockopt(). The struct sctp_assoc_value is used to specify the
 association for which the scheduler should be changed and the value
 of the desired algorithm.

 The definition of struct sctp_assoc_value is the same as in
 [RFC6458]:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: Holds the identifier for the association of which the
 scheduler should be changed. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used. This parameter
 is ignored for one-to-one style sockets.

 assoc_value: This specifies which scheduler is used. The following
 constants can be used:

 SCTP_SS_DEFAULT: The default scheduler used by the SCTP
 implementation. Typical values are SCTP_SS_ROUND_ROBIN or
 SCTP_SS_FIRST_COME.

 SCTP_SS_ROUND_ROBIN: This scheduler provides a fair scheduling
 based on the number of user messages by cycling around non-
 empty stream queues.

 SCTP_SS_ROUND_ROBIN_PACKET: This is a round-robin scheduler but
 only bundles user messages of the same stream in one packet.
 This minimizes head-of-line blocking when a packet is lost
 because only a single stream is affected.

 SCTP_SS_PRIORITY: Scheduling with different priorities is used.
 Streams having a higher priority will be scheduled first and
 when multiple streams have the same priority, the default
 scheduling should be used for them. The priority can be
 assigned with the sctp_stream_value struct. The higher the
 assigned value, the lower the priority, that is the default
 value 0 is the highest priority and therefore the default
 scheduling will be used if no priorities have been assigned.

 SCTP_SS_FAIR_BANDWITH: A fair bandwidth distribution between the
 streams can be activated using this value. This scheduler

Stewart, et al. Expires April 23, 2014 [Page 6]

Internet-Draft SCTP N-DATA Chunk October 2013

 considers the lengths of the messages of each stream and
 schedules them in a certain way to maintain an equal
 bandwidth for all streams.

 SCTP_SS_FIRST_COME: The simple first-come, first-serve algorithm
 is selected by using this value. It just passes through the
 messages in the order in which they have been delivered by
 the application. No modification of the order is done at
 all.

4.1.3. Get or Set the Stream Scheduler Parameter (SCTP_SS_VALUE)

 Some schedulers require additional information to be set for single
 streams as shown in the following table:

 +----------------------+-----------------+
 | name | per stream info |
 +----------------------+-----------------+
 | SCTP_SS_DEFAULT | no |
 | SCTP_SS_RR | no |
 | SCTP_SS_RR_INTER | no |
 | SCTP_SS_RR_PKT | no |
 | SCTP_SS_RR_PKT_INTER | no |
 | SCTP_SS_PRIO | yes |
 | SCTP_SS_PRIO_INTER | yes |
 | SCTP_SS_FB | no |
 | SCTP_SS_FB_INTER | no |
 | SCTP_SS_FCFS | no |
 +----------------------+-----------------+

 This is achieved with the SCTP_SS_VALUE option and the corresponding
 struct sctp_stream_value. The definition of struct sctp_stream_value
 is as follows:

 struct sctp_stream_value {
 sctp_assoc_t assoc_id;
 uint16_t stream_id;
 uint16_t stream_value;
 };

 assoc_id: Holds the identifier for the association of which the
 scheduler should be changed. The special
 SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used. This parameter
 is ignored for one-to-one style sockets.

Stewart, et al. Expires April 23, 2014 [Page 7]

Internet-Draft SCTP N-DATA Chunk October 2013

 stream_id: Holds the stream id for the stream for which additional
 information has to be provided.

 stream_value: The meaning of this field depends on the scheduler
 specified. It is ignored when the scheduler does not need
 additional information.

5. IANA Considerations

 [NOTE to RFC-Editor:

 "RFCXXXX" is to be replaced by the RFC number you assign this
 document.

]

 [NOTE to RFC-Editor:

 The suggested values for the chunk type and the chunk flags are
 tentative and to be confirmed by IANA.

]

 This document (RFCXXXX) is the reference for all registrations
 described in this section.

 A new chunk type has to be assigned by IANA. IANA should assign this
 value from the pool of chunks with the upper two bits set to ’00’.
 This requires an additional line in the "Chunk Types" registry for
 SCTP:

 +----------+-------------------------+-----------+
 | ID Value | Chunk Type | Reference |
 +----------+-------------------------+-----------+
 | 17 | New DATA chunk (N-DATA) | [RFCXXXX] |
 +----------+-------------------------+-----------+

 The registration table as defined in [RFC6096] for the chunk flags of
 this chunk type is initially given by the following table:

 +------------------+-----------------+-----------+
 | Chunk Flag Value | Chunk Flag Name | Reference |
 +------------------+-----------------+-----------+
 | 0x01 | E bit | [RFCXXXX] |
 | 0x02 | B bit | [RFCXXXX] |
 | 0x04 | U bit | [RFCXXXX] |
 | 0x08 | I bit | [RFCXXXX] |

Stewart, et al. Expires April 23, 2014 [Page 8]

Internet-Draft SCTP N-DATA Chunk October 2013

 | 0x10 | Unassigned | |
 | 0x20 | Unassigned | |
 | 0x40 | Unassigned | |
 | 0x80 | Unassigned | |
 +------------------+-----------------+-----------+

6. Security Considerations

 This document does not add any additional security considerations in
 addition to the ones given in [RFC4960] and [RFC6458].

7. Acknowledgments

 The authors wish to thank Lixia Zhang for her invaluable comments.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
 4960, September 2007.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061, September
 2007.

 [RFC6096] Tuexen, M. and R. Stewart, "Stream Control Transmission
 Protocol (SCTP) Chunk Flags Registration", RFC 6096,
 January 2011.

 [I-D.ietf-tsvwg-sctp-sack-immediately]
 Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
 IMMEDIATELY Extension for the Stream Control Transmission
 Protocol", draft-ietf-tsvwg-sctp-sack-immediately-04 (work
 in progress), August 2013.

8.2. Informative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

Stewart, et al. Expires April 23, 2014 [Page 9]

Internet-Draft SCTP N-DATA Chunk October 2013

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, December 2011.

Authors’ Addresses

 Randall R. Stewart
 Adara Networks
 Chapin, SC 29036
 US

 Email: randall@lakerest.net

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 48565 Steinfurt
 DE

 Email: tuexen@fh-muenster.de

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 FI

 Email: Salvatore.Loreto@ericsson.com

 Robin Seggelmann
 T-Systems International GmbH
 Fasanenweg 5
 70771 Leinfelden-Echterdingen
 DE

 Email: robin.seggelmann@t-systems.com

Stewart, et al. Expires April 23, 2014 [Page 10]

