PID Property Extension for ALTO Protocol

draft-roome-alto-pid-properties-00

Wendy Roome, Y. Richard Yang

IETF 88

Nov. 4, 2013

Motivation

 A network map defines a set of PIDs, where each PID represents a set of endpoints with similar properties

 But the Base Protocol defines only the name and the set of endpoints of each PID, not the similar properties

Goal: allow ALTO Server to publish the properties of PIDs

PID Properties and Network Maps

- The set of PID Properties that make sense depends on how the endpoints are partitioned
 - partition respects country boundary, => country-code(s)
 - partition respects AS boundary, => ASN(s)
 - partition respects endpoint type, => endtype (e.g., server, end user)

 Implication: Different network maps may define different sets PID properties

PID Properties: Retrieval

- Issue: How to return the PID Properties of a Network Map?
- Option 1: Return in the network map
 - Problems:
 - Larger map response
 - Redefines existing response message
 - Implies vtag changes whenever a property value changes
- ✓ Option 2: Define new Full & Filtered PID Property Services:
 - Analogous to Full & Filtered Cost Map Services
 - Messages are similar to Endpoint Property Service
 - IRD "uses" a Network Map Resource to indicate the base Network Map

PID Properties: Advertisement

- Issue: How does an ALTO Client know the set of PID Properties associated with a PID Properties Resource?
 - Announce as a list in "capabilities" of a PID Properties
 Resource, similar to endpoint properties

PID and Endpoint Properties: Properties Are Properties

 A PID Property is common to all endpoints in the PID

=>

 Conceptually each defined PID Property also defines an Endpoint Property

=>

- PID and Endpoint Properties use the same property name space and semantics
- Property names must be registered with IANA:
 - The registry does not distinguish Endpoint Properties from PID properties
 - Perhaps change IANA registry name from "ALTO Endpoint Property Types" to just "ALTO Endpoint/PID Property Types"

Semantics: PID Property Value as Aggregation of Endpoint Property Values in the PID

Denote

- PID pid which consists of a set of endpoints {ip1, ip2, ..., ipn}
- ip1.prop as the value of prop of endhost ip1
- pid.prop as the value of prop of PID pid

Then, conceptually, ALTO Server computes

```
- pid.prop = aggreg(ip1.prop, ip2.prop, ...,
ipn.prop},
where possible aggreg can be functions such as
```

- average/mean,
- mode (degenerate to common if all same value),
- geo-center;
- union,
- bounding box,
- ...
- meaningful aggreg depends on prop

Consistency of PID Properties

- If two PID Properties Resources offer the same Property (e.g., country-code):
 - Both must follow the property format
 - But the values for the same endpoint may differ, e.g.,
 - One provides a country-code "US", while the other "CA"
- Decision: do not check such consistency, as neither do we validate this for cost-metrics:
 - Suppose Network Maps NM1 and NM2 both define PIDs PA and PB with the same CIDRs
 - Further suppose both maps have "hopcount" Cost Maps
 - ALTO does not require that the "hopcount" from PA to PB be the same in those two Cost Maps

Consistency of Endpoint and PID Properties: Inheritance Override

 If both an EPS and a PID Properties Resource offer values to the same Property (e.g., geo-location), the value from EPS overrides that from the PID Properties

 EPS IRD indicates that the default of a Property is from a given PID Properties Resource

Discussion: Properties under General Inheritance

Possible Formal Definition of PID Property Inheritance

- Defining PIDs hierarchy
 - Approach 1: allowing using PIDs in defining PIDs, e.g.,
 - "P'" : { "PID" : ["P"], "ipv4" : [...], "ipv6" : [...] }
 - Approach 2: derived
 - PID P' *partially covers* PID P iff some CIDR in P is a refinement of a CIDR in P'.
 - PID P' *fully covers* PID P iff every CIDR in P is a refinement of a CIDR in P'.
 - Let PC(P) be the set of all PIDs that partially cover P. If PC(P) has a unique PID P' such that every other PID in PC(P) fully covers P', then P' is the *immediate parent* of P. Otherwise, P does not have an immediate parent.
- Property inheritance
 - PID P recursively inherits all properties of its immediate parent.
 - Limit to single inheritance

Next Steps

- This draft
 - Specify the encoding of base PID Properties Resource

Define a relatively more extensive set of Properties (e.g., asn, country-code, endpoint-type, ...) either in this doc or a separate one.

Integrate inheritance

 Propose PID Properties Resource as a WG item (does not need to use this draft)

Some Additional Points

- EPS defaults
 - May extend Endpoint Property Service:
 - If an EPS "uses" a Network Map Resource, the default properties for an endpoint from the are those of its PID in that map
 - Otherwise an EPS may or may not use PID properties from some Network Map as defaults
- May need to define Property variations according to aggregation, e.g.,
 - country-code => country-codes to allow a set