CLUE protocol

draft-presta-clue-protocol-03
(to appear)
IETF 88 @ Vancouver
Outline

• Clue message types
• Extensions
 – Rationale
• CLUE session initiation
 – Version and extension negotiation
 – OPTIONS mechanism proposal
• Next steps
Message types

• Each CLUE message inherits the characteristics of the corresponding class

1. Requests
 – Issued from a MC to a MP
 – Each request is answered by a response message
 • They are coupled by looking at the sequence number
 – Example: CONF, RE-ADV

2. Responses
 – Answers to request messages, from the MP to the MC

3. Notifications
 – Sent asynchronously from the MP to the MC to notify offers, as well as changes on the provider’s side

4. Acknowledgments
 – Sent from the MC to the MP to acknowledge notifications
Why notifications

• The advertisement is not semantically a request
• The configure is not semantically a response
 – There can be more than one configuration request referred to the same advertisement
Why acknowledgements (1/2)

• Needed to tell the MP the notification has been correctly received and understood by the MC...

• ...But:
 – DTLS/SCTP/ UDP channel is used by CLUE in reliable mode
 • ...hence there is no need to ack the delivery and the integrity of the message
 – A mechanism for negotiating the version and the extensions has been conceived
 • ...hence there can not be “Version incompatibility”, “Option incompatibility”, “Unsupported option” cases
Why acknowledgements (2/2)

• ACKs are useful to timely indicate:
 – XML Syntax errors in the notification
 – XML value errors in the notification
 • “Invalid value”: an invalid parameter value
 • “Conflicting parameters”: multiple values that can not be used together
 • ...

04/11/13
Demux rule

- A CLUE Participant can act as a MP and as a MC simultaneously on the same channel.
- Messages can be demultiplexed on the basis of their type:
 - The MC part receives only:
 - Responses
 - Notifications
 - The MP part receives only:
 - Requests
 - Acknowledgements

04/11/13
Extensions

• Something that is not envisioned in the current specification of the protocol...
• ...*and* something that is not envisioned in the current specification of the datamodel
 – since data model elements are included in CLUE messages

• Extensions are defined elsewhere
 – In other documents, in other XML schemas
 – An extension can be identified by the defining XML schema
Extension examples

• Extensions can be
 1. New data model elements
 • For example, a new audio capture attribute that can be used to provide an enhanced description
 2. New protocol message fields
 • For example, a new field in the request message identifying the sender of the message
 3. New protocol messages
 • For example, a new notification message

• New information (1 and 2) can be passed in place of the “any” and “any attribute” fields of the existing schema
• New messages (3) can be obtained by deriving the CLUE message types
The OPTIONS proposal

• A mechanism for handling version and extensions negotiation *as soon as the channel is ready*

• ...what happens as soon as the channel is instatiated between two CLUE Participants?

 • Reminder (from framework document):
 – A CLUE Participant is an entity able to use the CLUE protocol within a telepresence session
 – It can be an endpoint or an MCU able to use the CLUE protocol
CLUE Session initiation

• Three main layers
 – Establishment of the CLUE channel
 • Considered in draft-clue-kyzivat-signaling
 – Negotiation of the CLUE protocol version and extensions
 • OPTIONS message
 – Media session description and negotiation
 • ADVERTISEMENT, CONFIGURE,...
CLUE session initiation

- The CLUE Participant which is the **Channel Initiator (CI)** sends an OPTIONS message to the other party
 - OPTIONS request contains
 - the extensions supported by the CI
 - The version number of the CLUE protocol supported by the CI
- The CLUE Participant which is the **Channel Receiver (CR)** answers with an OPTIONS response
 - OPTIONS response contains
 - The extensions supported by the CR among those proposed by the CI
 - The version number of the CLUE protocol supported by the CR
 - Lower than or equal to the one proposed by the CI
CLUE Participant’s state machine

04/11/13
From this moment on, we consider separately the two following dialogues:
1. the one btw A’s MC and B’s MP
2. the one btw B’s MC and A’s MP

CP = Clue Protocol
CI = Channel Initiator
CR = Channel Receiver
Successful establishment of a bidirectional session
Limiting cases

• Both A and B don’t want to send anything
 – There will be no ADVs on the channel on both directions
 • ...until something changes

• Both A and B don’t want to receive any stream
 – They use a void CONF after the ADVs
 • “I don’t need anything, thanks”
 – When things change (“I want to consume media streams”), a READV request can be issued
MP’s State Machine
MC’s State Machine
Next steps

- Gathering feedbacks
- Update the protocol document accordingly
- Update and validate the XML Schema definitions