Expressing encoder limits in
CLUE



Encoding limits in SDP

e Separate sendonly lines for each encoding

* Allows expression of encoder send limits

* Necessitates additional O/A(s) for far end to
add their own encodings



Initial O/A (A->B)

Offer (from A) Answer (from B)
m=video ... m=video ...

a=sendrecv a=sendrecv



Offer (from A)
m=video ...

a=sendrecv
m=video ...
a=sendonly
m=video ...
a=sendonly
m=video ...
a=sendonly

2nd O/A (A->B)

Answer (from B)

m=video ...
a=sendrecv
m=video ...
a=recvonly
m=video ...
a=recvonly
m=video ...

a=recvonly



Offer (from B)

m=video ...
a=sendrecv
m=video ...
a=recvonly
m=video ...
a=recvonly
m=video ...
a=recvonly
m=video ...
a=sendonly
m=video ...
a=sendonly
m=video ...
a=sendonly

3[4 O/A (B->A)

Answer (from A)

m=video ...
a=sendrecv
m=video ...
a=sendonly
m=video ...
a=sendonly
m=video ...
a=sendonly
m=video ...
a=recvonly
m=video ...
a=recvonly
m=video ...
a=recvonly



Encoding limits in CLUE

* Express encoding limits in ADVERTISEMENT
message

— Still have an m-line per encoding
* No longer need m-lines to be ‘sendonly’
* Express receive limits in SDP as normal



Offer SDP and Advertisment

Offer SDP

m=video ...

... H264@720p30
a=label:A
a=sendrecv
m=video ...

... H264@720p30
a=label:B
a=sendrecv
m=video ...

... H264@720p30
a=label:C
a=sendrecv

CLUE ADVERTISEMENT

Capture Scene 1:

Capture 1: Left (Encoding Group 1)
Capture 2: Center (Encoding Group 1)
Capture 3: Right (Encoding Group 1)
Capture 4: Switched

Capture Scene Entry 1: 1,2,3
Capture Scene Entry 2: 4
Simultaneous Sets: 1,2,3,4

Encoding Group 1:

Encoding 1: H264, 1080p30, label=A
Encoding 2: H264, 1080p30, label=B
Encoding 3: H264, 1080p30, label=C



Answer SDP and Configure

Answer SDP CLUE CONFIGURE
m=video ...

...H264@720p30
a=sendrecv

m=video ... Capture 1, Encoding 1

... 264@720p30 Capture 2, Encoding 2
a=sendrecv Capture 3, Encoding 3

m=video ...
... 264@720p30
a=sendrecv



Advantages/Disadvantages

Can use sendrecv for many m-lines, reduces
number of O/As needed

Less need to commit resources (ICE, etc) to
encodings that aren’t used

Can express full send limitations

Need to reinvent codec-specific language
— This will be a large and neverending pain

Or, we need suitably abstract language to not be
codec-specific



Motivation: Why do we need
individual encode limits in CLUE?

* Most normal SIP calls are OK with decoder
limits only

* CLUE calls often have much more asymmetric
media flows
* Receiver wants to make optimal decision on:

— What to ask for
— How to subdivide its decode resources



Motivation: Optimal decisions

If Alice offers 4 encodings, is that:
 1x1080p

* 3x360p

OR

* 4x720p

Also reduces bandwidth and decoder resources
allocated unnecessarily



What level of detail is required?

* Expressing individual encoder limits is done
only to let receiver make better decisions on

how to allocate resources

* Purely informative, and does not need to
represent the reservation of actual resources

e As such, are generalities sufficient?



