DTLS-based Multicast Security for Low-Power and Lossy Networks (LLNs)
draft-keoh-dice-multicast-security

Sandeep S. Kumar, Sye Loong Keoh, Oscar Garcia-Morchon, Esko Dijk
IETF88 Nov 4, 2013, Berlin
Email: sandeep.kumar AT philips.com
Group Communication Use Cases

Use-cases
- Group light control
- Firmware updates
- Parameter distribution

Source: Group Communication for CoAP (draft-ietf-core-groupcomm)
Motivation & Requirements

Group communication (in LLNs): also vulnerable to eavesdropping, tampering, message forgery, replay, etc.

Limited resources and memory: reduce the number of cryptographic protocols on device.

DTLS is chosen security solution for unicast CoAP: beneficial for constrained devices if it can be used also for COAP group communication.

Requirements

Goals of this draft
- Group level data integrity and authentication
- Data confidentiality (optional)
- Replay protection

Out-of-scope (possible future draft)
- Data source authentication: *application level*, e.g., object security
- A Group Security Association (GSA): *distribute keying materials, specify the ciphersuite for encryption and authentication*
- Multicast key management: *update/renew group keys periodically.*
Reuse of DTLS Record Layer

Assumptions:
• Group Security Association (group session key and cipher for authentication & encryption to use) are known to all group members out-of-band.
• Multiple senders and multiple listeners/receivers in the group communication.

Proposal:
• Each sender gets a unique SenderID (2-byte) either chosen by a controller or randomly or derived from the IPv6 address
 – Fallback mechanism if Sender-ID’s are not unique
• In the DTLS Record Layer, split the 6-byte sequence number field into:
 2 bytes Sender ID and 4 bytes “truncated” sequence number.
Why split sequence number?

• Reuse of nonce breaks security of CCM and GCM modes of operation (AEAD ciphersuites in TLS)

• In (D)TLS

 struct {
 opaque salt[4];
 opaque nonce_explicit[8];
 } CCMNonce;

• In DTLS specifically

 64-bit sequence number = 16-bit epoch | 48-bit seq_num

• If multiple senders send messages with the same key
 – Either synchronize seq. number => hard in practice
 – Provide separate seq. number space for each sender => our approach
Protecting Group Messages (1)

GSA is set out-of-band

=> *DTLS SecurityParameters* are set for all senders and listeners

All devices derive (or provided out-of-band) the same six DTLS key material

- *client write MAC key*
- *server write MAC key*
- *client write encryption key*
- *server write encryption key*
- *client write IV*
- *server write IV*

For Senders : *SecurityParameters.ConnectionEnd=“server”*
For Listeners : *SecurityParameters.ConnectionEnd=“client”*
Protecting Group Messages (2)

<table>
<thead>
<tr>
<th>Content Type</th>
<th>Version Major</th>
<th>Epoch</th>
<th>Sequence Number</th>
<th>Length</th>
<th>DTLS Ciphertext</th>
<th>MAC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Content Type</th>
<th>Version Major</th>
<th>Epoch</th>
<th>Sender ID</th>
<th>Sequence Number</th>
<th>Length</th>
<th>DTLS Ciphertext</th>
<th>MAC</th>
</tr>
</thead>
</table>

Senders

• “write state” is instantiated with “server write” parameters.

• Each sender manages its own `epoch` and “truncated” `sequence number`
 • no synchronization is needed with other senders in the group. Initialized to 0.

• The sender include its `Sender ID` in the DTLS Record Layer header and increments the “truncated” sequence number when sending a group message.

• The `epoch` will be increased, and the “trunc.” `sequence number` will be reset once the group session key is renewed or updated (out-of-scope: to be defined as part of key management)
Protecting Group Messages (3)

Listeners

• Multiple “read states” are instantiated with “server write” parameters for each sender linked by *SenderID*

 • Keying material same but the epoch and the "truncated" sequence number of the last received packets needs to be kept different for different senders.

• Listeners use the *multicast destination IP address* of the packet to lookup the “server write” key.

• Message is decrypted and the MAC of the message is checked

• Using the *Sender ID* field, receivers retrieve the last used *epoch* and *sequence number* to detect replayed messages.

 • If success: update last seen seq number from the SenderID in the “read state”
Other issues (1)

• Epoch update and change cipher spec security
 – Sequence number wraps need to be handled as part of key management (out of scope)

• Late joiners (John Foley)
 – Use technique similar to AERO (Authenticated Encryption with Replay prOtection)
 – First seen packet used to initialize the epoch&seq number but drop it. Check replay of next messages.
 – What if a chain of packets are being replayed?
Other issues (2)

• **SenderIDs** are not unique
 – Fallback: All senders are also listeners to the group
 – If sender sees a message from a different device with the same **SenderID** then stop using SenderID
 – Contact controller and inform about clash -> controller provides new **SenderIDs** to one or both

• Use specific ciphersuite suitable for multicast
 – **AERO** (Authenticated Encryption with Replay prOtection) ([draft-mcgrew-aero](https://www.rfc-editor.org/rfc/draft-mcgrew-aero)) mode provides inbuilt mechanism to support multi-senders
 – Should it be mandated as the only ciphersuite for DTLS multicast or keep it flexible to support all existing AEAD modes?
Summary

• Group communication is often used in machine-to-machine (M2M) applications.

• Group communication is equally vulnerable and requires security.

• Preferably re-use existing security protocols on constrained devices in LLNs.

• Propose to reuse DTLS Record layer to support secure group communication, with key management out-of-scope.
Next Steps

• Is this draft ready to be adopted as a WG document?