Homenet Naming DHCP Options

draft-mglt-homenet-naming-architecture-dhc-options-00.txt

D. Migault, W. Cloetens, C. Griffiths, R. Weber

05/11/2013- IETF88- Vancouver
Table of Contents

- Architecture Description
- Setting the DNS Homenet DNS
- Uploading the DNS(SEC) Homenet Zone
Architecture Description

Internet

Homenet DNS traffic

Homenet DNS (slave)

DNS-2-DNSSEC

Public Authoritative Server

CPE / Homenet

M/S Synchronization

DNS (Hidden Master)
Architecture Description

The two operations consists in:

- Building the DNS Homenet Zone
 - Expected to be published on the Public Authoritative Masters

- Uploading the DNS Homenet Zone
 - To the Public Authoritative Name Server Set
 - via a secured channel
Architecture Description

We define one DHCP Option for those two operations:

- **OPTION_ZONE_PUBLIC_MASTER**, binding
 - Registered Domain
 - Public Authoritative Masters (FQDNs and IP addresses).

- **OPTION_PUBLIC_MASTER_UPLOAD**, binding
 - Public Authoritative Masters
 - Secure channels defined as
 - Protocol (NONE, TSIG, IPsec, SIG(0))
 - Security Credentials (PSK, ...)
 - Public Authoritative Name Server Set (IP addresses)
Setting the DNS Homenet Zone

$ORIGIN example.com
$TTL 1h

@ IN SOA public.autho.servers.example.net
 hostmaster.example.com. (2013120710 ; serial number of this zone file
 1d ; slave refresh
 2h ; slave retry time in case of a problem
 4w ; slave expiration time
 1h ; maximum caching time in case of failed
 ; lookups
)

@ NS public.autho.servers.example.net

public.autho.servers.example.net A @IP1
public.autho.servers.example.net A @IP2
public.autho.servers.example.net AAAA @IP3
public.autho.servers.example.net AAAA @IP4
ZONE_PUBLIC_MASTER: Factorized

From DHCP option guide lines, we encapsulated the various options:

```
OPTION_ZONE_PUBLIC_MASTER_LIST <-- X OPTION_ZONE_PUBLIC_MASTER
  - OPTION_ZONE_PUBLIC_MASTER
    - OPTION_REGISTERED_DOMAIN_NAME (list)
    - OPTION_MASTER <-- X masters
      - MASTER_FQDN (Field) <-- single FQDN
      - OPTION_MASTER_IP4 <-- X IP4
      - OPTION_MASTER_IP6
    - OPTION_MASTER
      - MASTER_FQDN (Field)
      - OPTION_MASTER_IP4
      - OPTION_MASTER_IP6
```

DHCP design questions:

- Can we assume that in IPv6 Home Networks the Master MUST be IP6
 - OPTION_MASTER_IP6 becomes a field
- Is 3 levels encapsulation fine?
- To reduce level encapsulation, one can have a list of (1 FQDN - 1 master)?
ZONE_PUBLIC_MASTER: Expanded

OPTION_ZONE_PUBLIC_MASTER_LIST
 - OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN_NAME (field because single)
 - MASTER_FQDN (Field)
 - MASTER_IP6
 - OPTION_MASTER_IP4

Comparison between the Expanded Way and Factorized Way:

- Factorized optimize bandwidth
- Expanded is easy to develop
- Factorize does not make configuration harder:
 - Factozone-to-Expand function on the DHCP client
 - Expand-to-Factorize function on the Server side.
ZONE_PUBLIC_MASTER: Example

Suppose the CPE has 2 Registered Domains:
- mydomain.net
- mydomain.org

The CPE hosts these two domains on two different masters:
- master1.org
- master2.net

Every master has 2 IP4, 2 IP6

Do we agree that is a plausible use case?
ZONE_PUBLIC_MASTER: Example

Expanded way:
- OPTION_ZONE_PUBLIC_MASTER_LIST
 - OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN : mydomain.net
 - MASTER FQDN : master1.org
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
 - OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN : mydomain.net
 - MASTER FQDN : master2.org
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
 - OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN : mydomain.org
 - MASTER FQDN : master1.org
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
- OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN : mydomain.org
 - MASTER FQDN : master2.org
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
- OPTION_ZONE_PUBLIC_MASTER
 - REGISTERED_DOMAIN : mydomain.org
 - MASTER FQDN : master2.org
 - MASTER_IPV6
 - OPTION_MASTER_IPV4

Factorized way:
- OPTION_ZONE_PUBLIC_MASTER_LIST
 - OPTION_ZONE_PUBLIC_MASTER
 - OPTION_REGISTERED_DOMAIN : mydomain.net
 - MASTER_IPV4
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
 - OPTION_ZONE_PUBLIC_MASTER
 - OPTION_REGISTERED_DOMAIN : mydomain.net
 - MASTER_IPV4
 - MASTER_IPV6
 - OPTION_MASTER_IPV4
 - OPTION_ZONE_PUBLIC_MASTER
 - OPTION_REGISTERED_DOMAIN : mydomain.org
 - MASTER_IPV4
 - MASTER_IPV6
 - OPTION_MASTER_IPV4

- Factorized: [OPTION (7*4), IPs (2*4+2*32), FQDNs (#2*11+2*10)] # 150 B
- Expanded: 9*4 + (FQDN) 2*(#42) + (IPs) 2*(72) # 264 B (X 2)
- Difference increases with number of IP addresses, number of masters.
Uploading Zone

Public Authoritative Masters are bound Public Authoritative Name Server Set because:

- Each Public Authoritative Master is associated with a Public Authoritative Name Server Set

- A given DNS Homenet Zone MAY:
 - Have multiple Public Authoritative Masters
 - Need to upload on multiple Public Authoritative Name Server Sets
OPTION_PUBLIC_MASTER_UPLOAD

From DHCP option guide lines, we encapsulated the various options:

OPTION_PUBLIC_MASTER_UPLOAD_LIST <- X Public Masters
 - OPTION_PUBLIC_MASTER_UPLOAD
 - SECURE_PROTOCOL (field)
 - OPTION_MASTER_FQDN_LIST (mandatory)
 - OPTION_PSK_CREDENTIAL
 - (future use Certificates, IDi)
 - OPTION_SERVER_SET_IP4
 - OPTION_SERVER_SET_IP6

DHCP design questions:
- Is 3 encapsulation fine?
- Can we assume that the SERVER MUST be able to be reached with IPv6?
PUBLIC_MASTER_UPLOAD: Example

Public Masters can be reached using IPsec or TSIG, using the same PSK if masters belong to different entities (ISP, third party)

OPTION_PUBLIC_MASTER_UPLOAD_LIST <- X Public Masters
 - OPTION_PUBLIC_MASTER UPLOAD
 - SECURE_PROTOCOL (field) TSIG
 - OPTION_MASTER_FQDN_LIST master1.org
 - OPTION_PSK_CREDENTIAL (12 bytes) -> to be confirmed
 - OPTION_SERVER_SET_IP4
 - OPTION_SERVER_SET_IP6
 - OPTION_PUBLIC_MASTER_UPLOAD
 - SECURE_PROTOCOL (field) IPsec
 - OPTION_MASTER_FQDN_LIST master2.org
 - OPTION_PSK_CREDENTIAL (12 bytes) -> To be confirmed
 - (future use Certificates, IDi) -> much more ;-)
PUBLIC_MASTER_UPLOAD: Example

If master1.org and master2.org belong to the same entities.

- A single Name Server Set is needed

OPTION_PUBLIC_MASTER_UPLOAD_LIST <- X Public Masters
 - **OPTION_PUBLIC_MASTER_UPLOAD**
 - SECURE_PROTOCOL (field) TSIG
 - **OPTION_MASTER_FQDN_LIST** master1.org, master2.org
 - **OPTION_PSK_CREDENTIAL** (12 bytes) -> to be confirmed
 - **OPTION_SERVER_SET_IP4**
 - **OPTION_SERVER_SET_IP6**
 - **OPTION_PUBLIC_MASTER_UPLOAD**
 - SECURE_PROTOCOL (field) IPsec
 - **OPTION_MASTER_FQDN_LIST** master1.org, master2.org
 - **OPTION_PSK_CREDENTIAL** (12 bytes) -> To be confirmed
 - (future use Certificates, IDi) -> much more ;-
 - **OPTION_SERVER_SET_IP4**
 - **OPTION_SERVER_SET_IP6**

We do not factorize SECURE_PROTOCOL to keep credential associated to ONE secure channel.

- Any suggestions?
Conclusion

Questions:

- Is IP6 an option or mandatory for masters and master server sets?
- Do we prefer the Expanded or Factorized or both options?
- Do people agree with these options?
Thank you for your attention