
IETF88 HTTPauth WG 1

RESTauth

● RESTful auth roughly means “at the app layer”
● But it can be orthogonal to the app

– One part of an app can be written in FCGI,
another in WSGI, and so on

– HTTP server == router

IETF88 HTTPauth WG 2

Why RESTful

● To make it easy to factor authentication code
out of the application code to ease deployment

● Your app (server-side) needs an authorization context
(authenticated ID, whatever); why deal with crypto
protocol details?

● Your app (client-side) just needs to invoke the right API
and let the credential manager do the rest

● This also allows authen. to be pluggable

IETF88 HTTPauth WG 3

Why RESTful

● To gain more control over the UI than the
HTTP or TLS stacks would give you...

● ...Without sacrificing security:
– The raw credentials, are not available to the app

– The UA↔IdP interactions are not exposed to the
app

IETF88 HTTPauth WG 4

Why RESTful

● Sending login tokens POST bodies→clear
demarcation of pre-/post-login session

● Sending login tokens in HTTP headers→might
send sensitive info before authentication
completes
– But, once we have a session, it's nice to be able

to use HTTP headers for tying requests to
sessions

IETF88 HTTPauth WG 5

Why, again

● Refactor auth out→ease deployment
– Pluggable→use what auth infrastructure you have

preserve your infra investment – huge win in enterprise

● UI control
– The reason we still have passwords in web forms

– Bridging this in HTTP/TLS is hard

IETF88 HTTPauth WG 6

What's wrong with not RESTful

● UI issues
● Deployment issues

– HTTP server or app have more to do to, leading to
limited method selection getting baked in

– Ditto on the client

– Proxies. Did I mention proxies?

● This applies whether auth is in HTTP or TLS
layers

IETF88 HTTPauth WG 7

Examples?

● BrowserID / Persona
– Login token POSTed to server's login URI

● OAuth also has a profile where login tokens
are POSTed

IETF88 HTTPauth WG 8

Let's talk about security for a sec

● Persona, OAuth, … – these generally are
0.5 round trip (rt) authentication protocols
– One login token, from the UA to the RP

– There may be more round trips UA ↔ IdP, but it's 0.5
rt UA ↔ RP

● .5 rt → absolute dependence on HTTPS, on TLS,
with confidentiality protection
– Else replays...

– a.k.a., bearer tokens

IETF88 HTTPauth WG 9

Moar security

● What if we had 1.0 rt?
– We could then do mutual authentication (depending on

the authentication mechanism, or by composition)...
– Think of Kerberos

– ...and channel binding to...

– ...reinforce the TLS server PKI...

– ...at no extra cost in round trips
● The first token was going to get ACKed by the app anyways,

might as well have the ACK include a reply token

– Replay issues remain (replay caching is hard)

IETF88 HTTPauth WG 10

Moar security!

● What if we had 1.5 rt?
– “Unacceptable” comes to mind

– no replay issues though!

– and, of course, we still get mutual auth and CB

IETF88 HTTPauth WG 11

But teh perf!

● Replay caching as in Kerberos → total drag
● Probabilistic rcaching w/o durability →

.5 rt optimization on 1.5 rt in the common case!
● Awesome

– No sync writes (fsync()) needed, so it's fast

– Probabilistic: moar fast, max size bound
● there's a slow path to fall back on, after all

● No longer unacceptable

IETF88 HTTPauth WG 12

Moar security, again

● Pluggable→1-1.5rt auth methods deployable
– a way out of bearer token land

● Explicit sessions→session state can be
checked
– explicit logout

● If you really want you can exchange keys for
app-layer crypto too

IETF88 HTTPauth WG 13

Clusters and proxies

● RESTful→proxy-friendly
● Session state as resources with URIs→

cluster support
– and cross-origin session sharing

IETF88 HTTPauth WG 14

So RESTauth is...

● A RESTful pattern and framework for authen.
for HTTP apps supporting
– Proxies

– Clustering

– Arbitrary auth methods (pluggable)

– Strengthening of TLS server authentication
– If your auth method can authenticate servers

– Possibly non-TLS session cryptop option as well

IETF88 HTTPauth WG 15

RESTauth framework

● The framework part is for session binding
● Where the UA shows it knows the session keys for

some session it wants to use

– Several new headers for login-time negotiations

– Header for carrying session ID (URI)

– Header for carrying MAC of TLS CB using session
keys

IETF88 HTTPauth WG 16

Parting thoughts

● Single-sign-on means
– Login once [in a while]...

– ...works for all your apps

– Either there's one auth method universally
implemented in all apps
or
apps are pluggable

– Guess which of those two isn't happening
– Take your time if you must

IETF88 HTTPauth WG 17

Parting thoughts

● End-to-end session crypto at the lowest
possible layer is good because:

● Best opportunity for optimizations
● If you multiplex traffic then you get fewer crypto

contexts, less L1/L2 cache thrashing, …

● Authentication at the highest layer possible is
good because:

● Best UI and timing control, pluggability, …

● Channel binding bridges the gap

IETF88 HTTPauth WG 18

Parting thoughts

● Fast clustered replay caching can be had for
authentication:
– Just salt the authenticator token construction with

a cluster member ID (e.g., IP address)

– If you get that wrong you just fall into the slow
(1.5rt) path

– But this doesn't work for session binding

IETF88 HTTPauth WG 19

Parting thoughts

● Client-sends-first, multi-round-trip auth has a
generic abstract “API”: GSS-API
– Luke Howard has a BrowserID-as-GSS

mechanism implementation, including 1 and 1.5 rt
options

– When I say GSS, read “SSPI” if it helps (or not, if it doesn't)

