Packet-oriented QoS management model for a wireless Access Point

draft-jobert-iccrg-ip-aware-ap-00.txt
IETF 88, November 2013, Vancouver

Presenter: Philippe Cadro - philippe.cadro@orange.com
Authors of the presentation:
William Diego, Sébastien Jobert, Isabelle Hamchaoui
{william.diego; sebastien.jobert; isabelle.hamchaou}@orange.com
Why this Internet-Draft?

- Internet mobile traffic grows rapidly... but no model for packet-based QoS management over the radio segment has been documented
 - without such models taking into account the IP layer in the wireless Access Point for QoS management, some of the mechanisms involving the IP layer (AQM, ECN, ...) are irrelevant to cellular networks
 - common models for simulation activity are useful

- Overview of the I-D is provided here, as well as initial simulation results (based on NS-3)
- Objective: initiate discussion on the mailing list!
Current QoS model in Mobile Cellular Networks

Connection-oriented QoS management in mobile networks

- Several bearers per terminal (one per QoS level); traffic oriented at bearer endpoints
- Bearers setup via control plane signaling protocols, including input to the radio scheduler
- IP layer normally not treated by the (e)NB, which acts as a relay
- Multi-bearer QoS model is very similar to access architectures proposed in the late 90s for residential fixed services on ADSL

In the current context, this model raises issues in terms of:

- Scalability (number of bearers)
- Efficiency (signaling load)
- Performance (bearer establishment delay)
Packet-oriented QoS model for Mobile Networks

IP basis features
- IP networks natively operate packets, commonly conveyed in connectionless mode
- IP QoS naturally managed on a packet by packet basis (DSCP/ToS field)

IP aware model
- Mobile terminal connectivity may still be operated in connection-oriented mode through a bearer
- But QoS management is performed in packet mode: DSCP/ToS field controls the QoS in the bearer
- DSCP taken into account when scheduling packets on radio interface
- **Addition of an IP stage** (queue management) in IP aware wireless AP
- QoS management inside a single bearer

Advantages:
- Solves previous issues (scalability, efficiency, performance)
- Easy deployment/operation
- Allows implementation of IP mechanisms as AQM, ECN, etc
- Leads to a graceful fixed/mobile functional convergence
Possible models (intra-bearer/inter-bearer)

Model for intra-bearer arrangement
- Addition of an IP queuing stage per user prior to the radio scheduler, without changing the overall radio resources allocation between the various mobile terminals (intra-bearer arrangements only)
- Prioritization of the sensitive packets transmitted on the radio interface based on the DSCP marking

Models for inter-bearer arrangement
- Radio resource allocation depends on the traffic mix offered to the mobile terminal
- More radio resources to users operating high priority traffic (inter-bearer arrangements)
Conclusions and next steps

IP aware model

- It is in line with usual Internet paradigms, based on connectionless packet-oriented QoS management
- It is easy to deploy and operate
- It allows the activation of IP mechanisms discussed in ICCRG (AQM, ECN, etc) in the IP aware wireless AP, because the IP layer is now treated by the (e)NB in this model
- It leads to a graceful fixed/mobile functional convergence

Next steps

- Intra-bearer model has been presented in this version of the draft
 - Initial simulations results are provided in annex of this presentation
 - More advanced simulations on radio segment, based on LENA NS-3 module, on-going
 - Investigations on-going about implementation issues
- Inter-bearer model(s) will be provided later
- Feedback from IRTF/IETF community is welcome!
Thanks You
Annex: initial simulation results based on NS-3 (intra-bearer model)
QoS policies in mobile networks of today

Current 3G deployment

- A “Best Effort for all” policy within one bearer per UE
- No QoS differentiation per service
 - multibearer not available in most UEs; no strong marketing request
- Blind FIFO multiplexing within this bearer: poor customer experience
Simulation: Model for intra-bearer arrangement

- LTE network configuration: frequency band = 20MHz (100 Physical Resources Blocks), no radio loss
- Radio scheduling algorithm: Proportional Fair
- IP non-preemptive Priority Queuing system added before this radio scheduler, without influencing it. 3 finite queues per UE: highest priority queue with strict priority, and two other queues in Round Robin
- Three independent application streams: Best Effort BE/FTP (TCP cubic), Medium AF/Video (TCP cubic) and Premium EF/VoIP (UDP). FTP starts first, then Video and VoIP (at time t = 20s).
- One terminal in good radio conditions UE1 (CQIs vary uniformly in [10, 15])
- One terminal in bad radio conditions UE2 (CQIs vary uniformly in [1, 5]) – NB: full CQI range is [1-15]

<table>
<thead>
<tr>
<th>Number of terminals</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Time Interval (TTI) duration</td>
<td>1 ms</td>
</tr>
<tr>
<td>Data rate of VoIP traffic (UDP) (EF) (t₀ = 20s)</td>
<td>68.8 kbps</td>
</tr>
<tr>
<td>Data rate of Video (TCP) (AF) (t₀ = 20s)</td>
<td>Application rate: 1 Mbps</td>
</tr>
<tr>
<td>Data rate of FTP (BE) (t₀ = 0s)</td>
<td>Application rate: 15 Mbps</td>
</tr>
<tr>
<td>Packet size of VoIP traffic</td>
<td>172 bytes</td>
</tr>
<tr>
<td>Packet size of Video traffic</td>
<td>1460 bytes</td>
</tr>
<tr>
<td>Packet size of FTP traffic</td>
<td>1460 bytes</td>
</tr>
<tr>
<td>Queue size (prioritized and non-prioritized)</td>
<td>15 000 Packets</td>
</tr>
<tr>
<td>Simulation time</td>
<td>60 seconds</td>
</tr>
</tbody>
</table>
Simulation: Data rate UE_1 vs UE_2

With IP-aware

Data rate vs Time (UE1)

- VoIP
- Video
- FTP

UE1 has enough throughput (≈ 25 Mbps) to serve all its flows at the application rate.

Data rate radio interface

UE2 has not enough throughput (≈ 1.4 Mbps) to serve all its flows at the application rate.

Data rate vs Time (UE2)

- VoIP
- Video
- FTP

UE1: good radio conditions

UE2: bad radio conditions
Simulation: Queue state **UE1**
With IP-aware

Queue state vs Time

$t=20s$: Start of VoIP and video flows
Simulation: Queue state UE2
With IP-aware

Queue size vs Time

VolP
Video
FTP

Suspected buffer bloat effect with TCP flows

Queue size (number of packets)

0 100 200 300 400 500 600 700 800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Time (s)

$t=20s$: Start of VoIP and video flows

draft-jobert-iccrig-ip-aware-ap-00.txt
Simulation: Data rate UE2
With IP-aware vs Without IP-aware

UE2
With IP-aware
(3 IP queues, one for each app)

UE2
Without IP-aware
(1 single queue, shared by all apps)

Data rate vs Time (UE2)

- **With IP-aware**
 - 3 IP queues, one for each app
 - Huge delay experienced on VoIP and Video due to suspected buffer bloat

- **Without IP-aware**
 - 1 single queue, shared by all apps
 - 7s ~ (850 Packets x 1500 Bytes) / 1.4 Mbps
 - TCP throughput of Video flow cannot rise

draft-jobert-iccrig-ip-aware-ap-00.txt 14
Simulation: VoIP Delay UE_1 vs UE_2

With IP-aware

Delay vs Time

Propagation delay VoIP packets:

UE_1: \textbf{0.06ms} \sim (1 Packet x 200 Bytes) / 25 Mbps

UE_2: \textbf{1ms} \sim (1 Packet x 200 Bytes) / 1.4 Mbps

$9\text{ms} \sim$ (1 Packet x 1500 Bytes) / 1.4 Mbps

(VoIP delay spread due to non preemptive configuration)
Simulation: VoIP Delay UE_1 vs UE_2

Without IP-aware

Huge delay experienced on VoIP due to suspected buffer bloat

~ 350ms

(VoIP delay spread due to probability of more than one packet in the queue at the same time)
Quick reminder on radio schedulers

Radio resource allocation

- Achievable throughput depends on UE radio conditions (Modulation and Coding Schemes)
- Popular Proportional Fair is an opportunistic algorithm

QoS aware scheduling (GBR, weights)

- Prop. Fair behavior is modified
- Maintaining a GBR requires more resources in bad radio conditions (less efficient coding schemes)
- Impacts depends on the commitment’s harshness; potentially, all radio resources to a premium UE in very bad conditions

QoS differentiation between bearers is not “rob Peter to pay Paul”

- Impact on cell overall capacity and risk of starvation