Transport Services (TAPS)
BOF plan

T. Moncaster, M. Welzl, D. Ros:
draft-moncaster-tsvwg-transport-services-00

https://sites.google.com/site/transportprotocolservices

Michael Welzl, with help from (alphabetical):
Anna Brunstrom, Toby Moncaster, Gorry Fairhurst,

Reinaldo Penno, Bernd Reuther
+ all the folks who contributed to the draft charter

ICCRG @ 88th IETF Meeting FP7 RITE
Vancouver, BC, Canada Reducing Internet Transport Latency

5 November 2013

Context

* The plan is to request having a BOF on
“Transport Services (TAPS)” at IETF-89 in London

* There is a website: It’s all there!

Qttps://sites.google.com/site/transportprotocolservices/ >

with a draft charter:

https://sites.google.com/site/transportprotocolservices/home/charter-
proposal-before-bof

* And a mailing list:
transport-services@ifi.uio.no
To subscribe:
https://sympa.uio.no/ifi.uio.no/info/transport-services

Problem

Internet transport layer = TCP (1981), UDP (1980)
— Does not match the diversity of today’s applications

More and more transport protocols and congestion control mechanisms
available, with various features, even overlaps

But: not “generally” used.

— SCTP in browser for rtcweb data channel, and in special environments
(telephony signalling)

— QUIC, RTMFP, LEDBAT in app (over UDP)

— Maybe Minion in OSX?

— MPTCP now used in OSX in one special way, for one special application

Consider:
RFC6897, appendix A: Requirements on a Future Advanced MPTCP API

Transport layer ossification

“Wasn’t the transport layer supposed to be relatively easy to
change, as layering ensures that IP routers don’t care about the

contents of packets?”
[Mark Handley, “Why the Internet only just works”, BT Technology Journal 24(3), 2006]

Why can’t we change it?

1. Checking for availability on the other side, compatibility with the network
path, fall-back to TCP/UDP: all left up to the application programmer

2. Lack of abstraction: transport protocols are hard coded in the applications

Today successful deployment of a new transport protocol
requires
— Many applications must explicitly make use of the protocol (because of 2.)
— Applications must deal with problem 1. on their own

How to solve this

1. Introduce abstraction:
Applications specify a transport service (i.e. what

they need) instead of “TCP” or “UDP” (i.e. how it is
implemented)

2. A system underneath this API could automatically
make the best of what is currently available, with fall-

back to TCP (best effort)

What to do here:
— Need to identify these services first
— |IETF is in the best position to do so

What real problems does this solve?

Yuchung Cheng: [transport-services mailing list, transport-services@ifi.uio.noj
“What real problems do this new transport service solve?”

Michael Welzl: [transport-services mailing list, transport-services@ifi.uio.no]
“None, for your application, if (as in case of Google) it pays off for you to put your
own new transport protocol in there

(-.)

application programmers should be able to benefit from more than what TCP
and UDP now give them

()

...take multistreaming for example - this could be done by the transport layer
without bothering the application programmer with "do you want this or not?”

Example benefits

[M. Welzl, F. Niederbacher, S. Gjessing, "Beneficial Transparent Deployment of SCTP: the Missing Pieces", GlobeCom 2011]

Transparent usage of SCTP’s multi-streaming underneath TCP

SCTP association with multi-streaming Q

* map each connection on different stream
* message based data transmission

* shared flow control

* shared congestion control

%\Host B

TCP connection

benefits

* subsequent data transfers have new cwnd - value
« faster startup if association already exists

. * multihoming only active if demanded or beneficial

e

4

Gateway

N e [——"
~
~.
~.
~.

~

~
~~
~

~)

"""""""""""""" Connection manager gateway

_______ - - -

« connect to GW i
« bytestream transfer |

* connection attempt management
* setup SCTP association

* read/write from TCP connection
* read/write on SCTP association
Gateway <« * open/close new TCP connection
S *gateway signaling protocol

« flow control
» congestion control

———————————

L

A

; § original TCP connection (possible to bypass the gateway)

Test result

. 6.614
File 1{64M) uw

. D.398
e 2 — 4.522
6.614
ol m 7.022
0 1 2 3 4 5 6 7

Time [s]

HSCTP Gateway ®TCP

1. Shows what can be achieved by using SCTP underneath
the app without even changing the transport API

2. Shows that you don’t have to put it in the OS
(user space, middle-box, ...)

Plans for a TAPS WG-to-be

Updated: includes discussion from yesterday’s side meeting, not
reflected by draft charter yet

Specify the services

Specify one transport system supporting them
— SCTP (/UDP) with fall-back to TCP, using Happy Eyeballs

Excluded: QoS and tunneling

Transport service idea is at least a decade old, without any
effect. Why will this succeed?

— Previous work: “top-down” (what do applications need?
> potentially endless debate)

— Our aproach: “bottom-up” (what do IETF transports provide?
= Every service has been discussed before)

Example to the right shows:
possible to systematically

app. PDU
bundling
error
detection
delivery
order
multi-
homing

arrive at a result (table

~| = | reliability

ala
rol | flow charac
Ej 'E teristic

4

shows services provided by

TCP, SCTP, DCCP, UDP-Lite

(RFCs, Dec. 2010) TCP I

-

p2]

TCP-like

Smooth

Smooth

Smooth-SP

[2 N
o) ol oo \J|O’\] ol ro) =] SCIVICE NO.

Smooth-SP

TCP-like

e
| -

’—l
]
—
)
o

S I
H—l
ol
GG

X = always on

v
=
.
3

empty = never on

—4
N

[
~J
| e,

P1 = partial error detection

[
o0
—
0
'

t = total reliability .

p2 = partial reliability TCP

(]
o

[
o,
O
'O

o0 = ordered

)
[
-
0
i

u = unordered i _1CF

A EIEIEIEI B EIE B EIEI B EIH EIH EIH EIH EIELE

~
=3 B=1 K=} K=} =3 F—3 N} B~] N=) N=} F=—0 F—0 K<} =0 F=2 N=2 B=2 B2 N1 B=] = K2l e

EEBEEEEE

[
)
o
0
"o

[M. Welzl, S. Jorer, S. Gjessing, "Towards a Protocol-Independent Internet Transport API”, FutureNet workshop, ICC 2011]

Resulting APl in that paper

Goal: make usage attractive = easy; stick with what
programmers know: minimize deviations from socket interface

Most services chosen upon socket creation

int socket(int domain, int service)

service number identifies line number in table; understandable aliases:
e.g. TCPLIKE_NODELAY, TCPLIKE, NO_CC_UNRELIABLE for lines 1-3

Sending / receiving: provide sendmsg, recvmsg

We classified features as:

static: only chosen upon socket creation
* flow characteristic

— configurable: chosen upon socket creation, adjusted later with setsockopt

* error detection, reliability, multi-homing

dynamic: no need to specify in advance
* application PDU bundling (Nagle in TCP)

» delivery order: socket option or flags field

11

Ask, discuss, tear to shreds!

Backup slides

About [Michael Welzl, Stefan Jorer, Stein Gjessing: "Towards a Protocol-
Independent Internet Transport API”, FutureNet IV workshop, ICC 2011]

Bottom-up: TCP, UDP, SCTP, DCCP, UDP-Lite
— start with lists from key references

Step 1: from list of protocol features, carefully identify
application-relevant services

— features that would not be exposed in APIs of the
individual protocols are protocol internals (e.g. ECN)

Result: table with a line for every possible combination
of features
— 43 lines: 32 SCTP, 3 TCP/UDP

About [Michael Welzl, Stefan Jorer, Stein Gjessing: "Towards a Protocol-
Independent Internet Transport API”, FutureNet IV workshop, ICC 2011] /2

e Step 2: carry out obvious further reductions
— e.g. flow control coupled with congestion control
— duplicates, subsets

* Apply common sense to go beyond purely
“mechanical” result of step 1

— Question: would an application have a reason to say “no”
to this service under certain circumstances?

— Features that are just performance improvements if they
are used correctly (i.e. depending on environment, not
app) are not services

Complete draft charter

(as of 31 October 2013, not including the
discussion at the side meeting)

Conjointly, transport protocols such as SCTP, DCCP, MPTCP, UDP-Lite and the
LEDBAT congestion control mechanism offer a large number of services to
applications in addition to the long-standing two services provided by TCP and
UDP. For an application programmer, using protocols other than TCP or UDP is
hard: not all protocols are available everywhere, hence a fall-back solution to e.g.
TCP or UDP must be implemented. Some protocols provide the same services in
different ways. Layering decisions must be made (e.g. should a protocol be used
native or over UDP?).

Because of these complications, programmers often resort to either using TCP or
implementing their own customized solution over UDP, and chances of benefiting
from other transport protocols are lost. If the socket interface provided a way for
applications to request transport services without specifying the protocol, a
transport system underneath the socket API could automatically try to make the
best of its available resources. It could use available transport protocols in a way
that is most beneficial for applications, and this approach could give more
freedom for diversification to designers of Operating Systems.

Complete draft charter /2

To make implementing such systems possible, the Working Group will:

develop a survey of existing IETF transport protocols and congestion control
mechanisms, based on Standards-track and Experimental RFCs that were developed in
the IETF's Transport Area

shorten the resulting list of transport services, by allowing only those features that an
application depends on to work correctly as well as hints about acceptable services that
an application can give to the transport layer. A service should be removed if there is no
clear way for an application to decide whether it should use this service or not.

extend the shortened list with services that have seen a significant level of deployment
and usage in applications, based on implementations that the WG agrees to perform
well. Here, "usage in applications" excludes applications whose primary purpose is
monitoring or manipulation of the network.

Security is necessary at a variety of network layers. The Working Group will work with the
IETF Security area to better understand how security should be addressed in the specified
list of transport services. It will publish a document on security implications and guidance.
The Working Group is expected to work closely with the APP and RAI areas to continuously
check whether the defined transport services match the requirements of application
developers. It will also coordinate closely with other Transport area groups.

Complete draft charter /3

The following topics are out of scope of this Working Group:

Specifying how a transport system operates; an example will be described
Signaling that could improve the operation of the transport layer
Quality-of-Service (QoS) and tunneling mechanisms and services

Deliverables:

Informational RFC summarizing the services provided by IETF transport protocols and congestion
control mechanisms, based on Standards-track and Experimental RFCs that were developed in the
IETF's Transport Area (list #1)

Proposed Standard RFC describing which services of IETF transport protocols and congestion
control mechanisms should be offered to applications (list #2, which is a shorter version of list #1)

Proposed Standard RFC specifying an extended set of services that a transport APl should ideally
provide (list #3, which is a longer version of list #2)

Proposed Standard RFC specifying on which basis transport services are identified for inclusion in
lists #1, #2 and #3.

Proposed Standard RFC defining IANA procedures for including new services in lists #2 and #3.
Informational RFC on Transport Service Security Implications and Guidance
Informational RFC describing an example API

Informational RFC describing example usage (i.e. how a transport system providing these services
could interoperate with applications)

