IS-IS Extension For Building Distribution Trees

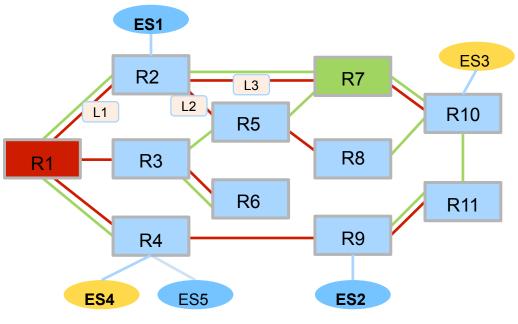
draft-yong-isis-ext-4-distribution-tree-01

Lucy Yong, Weiguo Hao, Donald Eastlake Andrew Qu, Jon Hudson

November 2013 Vancouver BC

Problem Statement

- IP network doesn't yet support multicast transport
- IP network relies on PIM protocols and solutions to carry multi-destination traffic
- Pain points in PIM protocol solutions:
 - Use own "hello" protocol and hop-by-hop message
 - Additional convergence time besides IGP's
 - A lot of soft state and heavy CPU load
 - Packet may be forwarded to RP unnecessarily
 - Scalability Challenges to support overlay applications

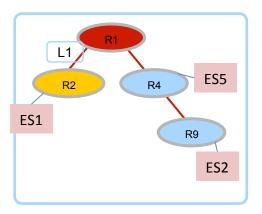

Problem Statement Cont.

- PIM solutions hardly meet the requirements for network virtualization overlays, i.e. [NVO3]
 - IP as underlying network may carry many overlay VNs that contain some BUM traffic
 - A VN maps to an IP multicast group, PIM can't scale to
 - A VN topology may be spare and dynamic compared to underlying network topology
 - Massive PIM states burden the device
 - Slow convergence time for multicast traffic
 - Major impacts to VNs and cloud applications
- Overlay VN BUM traffic may be carried as underlying unicast traffic
 - May waste massive network capacity due to replications
 - Increase the cost on the applications

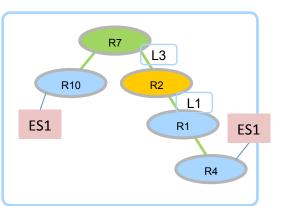
IS-IS Extension for Multicast Transport

- IS-IS has been used for unicast traffic routing
 - Can be for multicast traffic routing as well, like TRILL
- Simple IS-IS extension can achieve:
 - Build distribution rooted-trees for multicast transport
- The benefits to do this:
 - One protocol for both unicast and multicast transport
 - Use of LSDB and SPF algorithm to build a tree
 - Same convergence time for both unicast and multicast
 - Forwarding Optimization
 - Well align with network evolution direction, create programmable, self-healing, multi-service fabric
 - In the fabric, a closed IP network carry all types of traffic under one control plane protocol

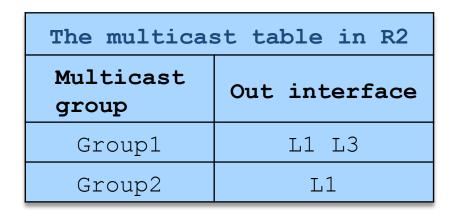
ISIS based Rooted Distribution Trees


R1&R7 are the root of red and green trees

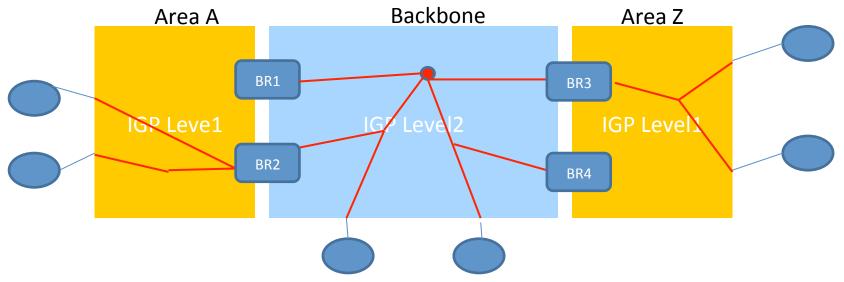
ES1、ES2、ES5 is the end station of Group1, ES3、ES4 is the end station of Group2


Group1 uses red tree and Group2 uses green

- Provision tree root and associated (*,G) at a node
- ISIS distributes tree root/ (* G) in IGP
- Nodes compute the trees with SPF/LSDB
- Supports ECMP and allow multiple rooted trees associated w/ (*, G)


Distribution Tree Pruning for (*, G)

Pruning red tree for Group1



Pruning green tree for Group2


- Edge Routers use IGMP to learn host interested (*,G) or (S, *G)
- Edge routers announce their interested (*,G)
- Each router prunes the tree based on other edge router's interests on the (*, G) /(S,G)
- Multi-destination traffic for a group is forwarded over the pruned tree for the group

IGP Multi-Level Support

- The solution needs to work under multi-levels configuration
 - Multicast source(s) and listeners may be in any area, respectively
- A tree root node associated multicast groups may be in any area
 - The distributed tree spans across all other areas via BR
- Loop prevention is must
 - Single designated BR is selected for (*, G)
- Level optimization is possible
 - If an area doesn't have any interested members, the pruned tree may not have any branch in the area.

IGP Multi-Level Support

Transport Overlay VN BUM Traffic in IGP

- Designated edge/boarder Routers (DR) maintains the mapping between the VN (*, G) to a underlying (*,G)
- DRs perform packet encaps/descap upon receiving a packet from a host or the underlying network
- Mapping of the VN (*, G) and a underlying (*,G) at DR
 - manually configured at DRs
 - automatically generated
 - dynamically informed
- The same edge/boarder router MUST be selected as the Designated Router for the VN (*, G) and the underlying (*,G) that are mapped

Next Step

- Seek some comments and feedbacks
- Should we add this work item to the WG?

Huawei has the solution demo in the Bits-n-Bytes event on Thur. 7pm. Welcome to visit and comment